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Abstract. We present a new explicit family of polynomials orthogonal on the unit circle
with a dense point spectrum. This family is expressed in terms of q-hypergeometric func-
tion of type 2φ1. The orthogonality measure is the wrapped geometric distribution. Some
“classical” properties of the above polynomials are presented.

Key words: polynomials orthogonal on the unit circle; wrapped geometric dustribution;
dense point spectrum

2020 Mathematics Subject Classification: 33D45; 42C05

1 Introduction

Let Φn(z) be monic polynomials Φn(z) = zn + O
(
zn−1

)
defined through the recurrence rela-

tion [17]

Φn+1(z) = zΦn(z)− ānΦ∗n(z), Φ0(z) = 1,

where

Φ∗n(z) = znΦ̄n(1/z)

and where Φ̄n(z) means complex conjugation of expansion coefficients of the polynomial Φn(z).
The recursion parameters

an = −Φ̄n+1(0)

are called the Verblunsky (sometimes also reflection, Schur etc.) parameters [17].
Under the condition

|an| < 1, n = 0, 1, 2, . . . (1.1)

the polynomials Φn(z) are orthogonal on the unit circle with respect to a positive measure dσ(θ)∫ 2π

0
Φn

(
eiθ
)
Φ̄m

(
e−iθ

)
dσ(θ) = hnδnm, (1.2)

where

hn =
(
1− |a0|2

)(
1− |a1|2

)
· · ·
(
1− |an−1|2

)
(1.3)

are normalization constants (which are nonzero due to condition (1.1)). In this case Φn(z) are
called the orthogonal polynomials on the unit circle (OPUC).

mailto:zhedanov@ruc.edu.cn
https://doi.org/10.3842/SIGMA.2020.140


2 A. Zhedanov

Note that orthogonality relation (1.2) is equivalent to conditions [17]

Inj ≡
∫ 2π

0
Φn

(
eiθ
)
e−ijθ dσ(θ) = hnδnj , j = 0, 1, 2, . . . , n. (1.4)

Equivalently, OPUC Φn(z) can be constructed in terms of trigonometric moments σn. The
latter are defined as

σn =

∫ 2π

0
einθ dσ(θ), n = 0,±1,±2, . . . .

Then polynomials Φn(z) have the explicit expression

Φn(z) = (∆n)−1

∣∣∣∣∣∣∣∣∣∣
σ0 σ1 . . . σn
σ−1 σ0 . . . σn−1
. . . . . . . . . . . .
σ1−n σ2−n . . . σ1

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣
,

where

∆n =

∣∣∣∣∣∣∣∣
σ0 σ1 . . . σn−1
σ−1 σ0 . . . σn−2
. . . . . . . . . . . .
σ1−n σ2−n . . . σ0

∣∣∣∣∣∣∣∣
are Toeplitz determinants which are all positive ∆n > 0, n = 0, 1, 2, . . . . Note the symmetry
property of the trigonometric moments

σ−n = σ̄n. (1.5)

Explicit examples of polynomials orthogonal on unit circle are very interesting from different
point view. By “explicit examples” we mean that all main objects: the parameters an, the
moments σn, the measure σ(θ) and the polynomials themselves Φn(z) have explicit expressions in
terms of special functions. Usually, in most known explicit examples the parameters an are given
by elementary functions of n while the OPUC Φn(z) are expressed in terms of hypergeometric
functions (either ordinary or basic). A list of known explicit examples can be found, e.g., in
Simon’s monograph [17].

In [21, 27] new explicit examples of OPUC were presented. In these examples polyno-
mials Φn(z) are expressed in terms of elliptic hypergeometric function 3E2(z) while the mo-
ments σn and the recurrence parameters an have simple expressions in terms of elliptic func-
tions. The most interesting property of the OPUC of these examples is that they are orthogonal
on the unit circle with respect to a dense point measure. This means that the function σ(θ)
is a step function with infinitely many points θs of jumps, and these points are dense on the
interval [0, 2π]. In terms of the distribution function this can be presented as

ρ(θ) =
∞∑

s=−∞
Msδ(θ − θs),

where ρ(θ) is a distribution defined as dσ(θ) = ρ(θ)dθ, δ(θ) is the Dirac delta function and Ms

are concentrated masses located at points of jumps θs. The spectral points zs = exp(iθs) are
dense on the unit circle.
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Then orthogonality relation (1.2) can then be presented as

∞∑
s=−∞

MsΦn

(
eiθs
)
Φ̄m

(
e−iθs

)
= hnδnm.

From general considerations (see, e.g., [17]) it follows that polynomials orthogonal with re-
spect to such dense point measures are rather generic if one assumes some natural restrictions
upon behavior of the recurrence parameters an. On the other hand, such measures are very
important from physical point of view, because they correspond to the phenomenon of the
Anderson localization [10, 17].

Usually examples of OPUC with dense point spectrum are related to sequences of the para-
meters an which behave (quasi) stochastically inside the interval |an| < 1 [17]. OPUC in [21, 27]
provide perhaps the first known examples of a pure point dense measure on the unit circle where
both the coefficients an and the moments σn are given explicitly by analytic functions in n.

In this paper we propose a much simpler explicit example of polynomials orthogonal on
the unit with respect to a (wrapped) geometric distribution which is dense on the unit circle.
Polynomials themselves are expressed in terms of basic hypergeometric function 2φ1(q; z) with
|q| = 1.

2 Wrapped geometric distribution and corresponding OPUC

Let q be a fixed point belonging to the unit circle |q| = 1 and not a root of unity, i.e., we
demand that qn 6= 1 for all natural integer n = 0, 1, . . . . Choose a real parameter p within the
unit interval 0 < p < 1. Define the measure on the unit circle as

ρ(θ) = (1− p)
∞∑
s=0

psδ(θ − sχ), (2.1)

where χ is a fixed irrational parameter 0 < χ < 1 such that

q = exp(2πiχ). (2.2)

Irrationality of χ means that the set of points zs = qs, s = 0, 1, . . . (i.e., the location of jumps
of the measure) is dense on the unit circle. The weights (i.e., the concentrated masses) ws at
the points zs form the geometric sequence: ws = ps, s = 0, 1, 2, . . . .

Corresponding trigonometric moments are

σn =
∞∑
s=0

znsws = (1− p)
∞∑
s=0

qsnps =
1− p

1− pqn
, n = 0,±1,±2, . . . . (2.3)

Note that the measure (2.1) can be interpreted as the wrapped geometric distribution on the
unit circle (see, e.g., [8, 15] for definition and discussion of wrapped distributions on the unit
circle).

Relation σ0 = 1 means that the measure (2.1) has the standard normalization condition.
One can present expression (2.3) as

σn =
(p; q)n
(pq; q)n

, (2.4)

where the q-shifted factorial (q-Pochhammer symbol) is defined as [4, 9] (a; q)0 = 1 and

(a; q)n = (1− a)(1− aq) · · ·
(
1− aqn−1

)
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for positive n = 1, 2, . . . and

(a; q)n =
1(

aqn; q
)
−n

for negative n = −1,−2, . . . .
It is known that the Laurent biorthogonal Pastro polynomials P (z; a, b) [16] depending on

two arbitrary parameters a, b can be uniquely defined through their moments [22]

σn =
(a; q)n
(b; q)n

, n = 0,±1,±2, . . . . (2.5)

Explicitly, these polynomials are given by [16, 22]

P (z; a, b) = µn 2φ1

(
q−n, b

aq1−n
; qz

)
, (2.6)

where µn is an appropriate normalization factor to fulfill the condition Pn(z) = zn + O
(
zn−1

)
.

The definition and notation of the basic hypergeometric function mφn(z) is standard (see, e.g.,
[4, 9]). For example, in the special case m = n+ 1 we have the expressions

m+1φm

(
a1, a2 . . . , am+1

b1, b2 . . . , bm
; z

)
=

∞∑
s=0

(a1; q)s(a2; q)s · · · (am+1; q)s
(q; q)s(b1; q)s(b2; q)s · · · (bm; q)s

zs.

Note the Laurent biorthogonal polynomials (LBP) can be considered as a generalization of
the OPUC. Their main distinction from OPUC is that the moments σn do not satisfy, in general,
the symmetry condition (1.5). The LBP can also be characterized by the three-term recurrence
relation of RI type [7, 24]

Pn+1(z) + gnPn(z) = z(Pn(z) + dnPn−1(z)), P0 = 1, P−1 = 0 (2.7)

with some recurrence coefficients gn, dn.
In contrast to the case of orthogonal polynomials, the recurrence relation (2.7) can be pre-

sented in the form of the generalized eigenvalue problem [25]

J1P(z) = zJ2P(z), (2.8)

where J1, J2 are upper and lower bidiagonal matrices acting on the vector

P(z) = (P0(z), P1(z), . . . ).

Comparing expressions (2.5) and (2.4) we can conclude that the OPUC corresponding to the
wrappedd geometric distribution are special case of the Pastro polynomials with a = p, b = qp.

This allows us to present the main result

Theorem 2.1. The polynomials Φn(z) orthogonal on the unit circle with respect to the wrapped
geometric distribution (2.1) have the explicit expression

Φn(z) = µn 2φ1

(
q−n, pq

pq1−n
; zq

)
, (2.9)

where

µn = q−n
(q; q)n

(
pq1−n; q

)
n(

q−n; q
)
n
(pq; q)n

= pn
(
p−1; q

)
n

(qp; q)n
. (2.10)
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One can directly check that the polynomials (2.9) satisfy orthogonality relations (1.4). Indeed,
one has

Inj = (1− p)
∞∑
s=0

Φn

(
qs
)
q−sjps = (1− p)µn

∞∑
s=0

n∑
k=0

(
q−n; q

)
k
(pq; q)k

(q; q)k
(
pq1−n; q

)
k

q(1+s)kq−jsps.

Performing summation over s we get

Inj =
(1− p)µn
1− pq−j

n∑
k=0

(
q−n; q

)
k
(pq; q)k

(
pq−j ; q

)
k

(q; q)k
(
pq1−n

)
k

(
pq1−j ; q

)
k

qk =
(1− p)µn
1− pq−j 3φ2

(
q−n, pq, pq−j

pq1−n, pq1−j
; q

)
.

The above expression can be simplified by the q-Saalschütz formula [4, 9]:

3φ2

(
q−n, a, b

c, abc−1q1−n
; q

)
=

(c/a; q)n(c/b; q)n
(c; q)n(c/(ab); q)n

.

We thus have

Inj =
(1− p)µn
1− pq−j

(
q−n; q

)
n

(
qj+1−n; q

)
n(

pq1−n; q
)
n

(
p−1qj−n; q

)
n

. (2.11)

The factor
(
qj+1−n; q

)
n

in (2.11) becomes zero when j = 0, 1, . . . , n− 1 and hence

Inj = 0, j = 0, 1, . . . , n− 1,

which is equivalent to orthogonality relation (1.4). It remains to show that Inn > 0. After
simple calculations one can arrive at the expression

Inn = hn =
|(q; q)n|2

|(pq; q)n|2
pn (2.12)

from which it is clear that hn > 0 for all n = 0, 1, 2, . . . due to condition qn 6= 1.
Explicit expression for the the recurrence parameters an follows from (2.9) and (2.10):

ān−1 = −Φn(0) = −µn = −pn
(
p−1; q

)
n

(qp; q)n
.

For the square of absolute values we have rather simple expression

|an−1|2 = ān−1an−1 =
(1− p)2

1 + p2 − p
(
qn + q−n

) =
1

1 + β sin2(χπn)
, (2.13)

where

β =
4p

(1− p)2

and where the parameter χ is the same as in (2.2).
It is seen from (2.13) that the values |an| oscillate inside the interval

1− p
1 + p

< |an| < 1, n = 0, 1, . . . .

Because of irrationality of χ the absolute value |an| achieves the boundaries of this interval
with any prescribed accuracy (never achieving exact boundary values). Note that a−1 = −1
which corresponds to the standard initial conditions for OPUC [5, 17]. It is easily verified that
expression (2.12) for hn agrees with relation (1.3).

The OPUC (2.9) can be considered as |q| = 1 analogs of the OPUC introduced by Askey
in [1] (see also [3] for more general OPUC of Askey’s type).
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3 “Classicality” of the polynomials Φn(z)

The OPUC (2.9) possess “classical” properties which make them similar to classical orthogonal
polynomials.

First of all, they satisfy the three-term recurrence relation (2.7) where the recurrence coeffi-
cients are

gn =
qn − p

1− pqn+1
, dn = − p(1− qn)2

(1− pqn)(1− pqn+1)
.

Moreover, the polynomial Φn(z) possess a remarkable duality property. Indeed, one can rewrite
polynomials Φn(z) in a different form

Φn(z) = pn
(q; q)n
(pq; q)n

zn 3φ2

(
q−n, p−1, z−1

q, 0
; q

)
, (3.1)

which can be obtained from (2.9) by standard transformation formulas [4, 9].

From this formula the duality property

AsΦs(q
n) = AnΦn(qs) (3.2)

follows, where

An =
(pq; q)n
(q; q)n

p−n.

This property resembles corresponding duality properties for the classical orthogonal polyno-
mials from the Askey scheme [2, 11, 19]. The main difference is that the polynomials Φn(z)
satisfy the generalized eigenvalue problem (2.8) instead of the ordinary eigenvalue problem for
orthogonal polynomials.

From the duality property one can derive the second-order q-difference equation

Bs+1Φn

(
qs+1

)
+ gsΦn

(
qs
)

= qn
(
Φn

(
qs
)

+B−1s dsΦn

(
qs−1

))
, (3.3)

where

Bs =
As−1
As

=
p
(
1− qs

)
1− pqs

.

Equation (3.3) can also be presented in the form of the generalized eigenvalue problem

LΦn(z) = qnMΦn(z), (3.4)

where the first-order q-difference operators L, M act on the argument z of the polynomials.

Relations (2.8) and (3.4) mean that the polynomials possess the bispectrality property: they
satisfy simultaneously two GEVP. Concerning definition and general theory of bispectrality see,
e.g., [6]. For orthogonal polynomials from the Askey scheme this property is well known [9]. For
biorthogonal polynomials and rational functions the bispectrality is known for some special fa-
milies. The most general from them are elliptic biorthogonal functions [18]. However the general
theory of bispectrality for systems satisfying GEVP is not yet developed (see, e.g., [20, 23] for
algebraic description of bispectrality on the “lowest” level of hypergeometric functions 3F2(1)).

The duality property implies that for z = qs, s = 0, 1, 2, . . . the hypergeometric function
in (3.1) reduces to a polynomial of degree s of the argument q−n.
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It is well known (see, e.g., [17]) that if z0 is a point on the unit circle corresponding to
a concentrated mass M0 then the relation

∞∑
n=0

|Φn(z0)|2

hn
= 1/M0,

holds, where the normalization coefficient hn is defined in (1.3).

In our case this means that for every spectral point zs = qs, s = 0, 1, . . . there exists the
identity

∞∑
n=0

∣∣Φn

(
qs
)∣∣2

hn
= Ms

−1 =
p−s

1− p
. (3.5)

Identity (3.5) follows easily from the duality property (3.2) and from orthogonality relation.

So far, we have considered the case when q is not a root of unity. If, otherwise, q is a primitive
root of unity

q = exp

(
2πiM

N

)
with coprime integers M , N , then there are only N distinct mass points on the unit circle
located at zs = qs, s = 0, 1, 2, . . . , N − 1. In this case the polynomials Φn(z) are orthogonal on
vertices of a regular N -gon with respect to the finite wrapped geometric distribution:

N−1∑
s=0

Φn

(
qs
)
Φ̄m

(
q−s
)(

1− pN
)
ps = hnδnm, n,m = 0, 1, . . . , N − 1.

See [26] for other explicit examples of polynomials orthogonal on the vertices of regular polygons.

4 Concluding remarks

In contrast to examples of OPUC obtained in [27], the polynomials (2.6) have non-real mo-
ments σn and hence the coefficients an are non-real as well. This means that it is impossible to
associate with OPUC (2.6) polynomials orthogonal on an interval of the real line. In [27] explicit
examples of polynomials orthogonal with dense point spectrum on an interval were presented
using standard Szegő mapping from OPUC to an interval of the real line. We mention also
examples of OPUC and ordinary orthogonal polynomials with dense point spectrum presented
in [13, 14].

The OPUC (2.6) allow a trivial modification which shifts all spectral points on the unit circle
on the same constant angle ϕ, i.e., we can consider the same weights ws = ps(1− p) located at
the points

θs = 2πχs+ ϕ, s = 0, 1, 2, . . . .

Equivalently, this means that the new spectral points will be z̃s = eiϕqs, s = 0, 1, 2, . . . .

Such transformation is equivalent to a simple rotation of the argument of OPUC [5, 17]:

Φ̃n(z) = e−iϕnΦn

(
eiϕz

)
.

Another modification of the OPUC (2.6) is more substantional. It leads to Laurent biorthogonal
polynomials orthogonal on the unit circle with dense point measure.
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Indeed, assume that the spectral points on the unit circle are the same: zs = qs, s =
0, 1, 2, . . . . Take the weights:

ws = ps
(
qk; q

)
s

(q; q)s
, 0 < p < 1, k = 1, 2, 3, . . . . (4.1)

For k = 1 we return to the case of the wrapped geometric distribution. For k > 1 the moments
are

σn =
∞∑
s=0

(
qk; q

)
s

(q; q)s
psqsn. (4.2)

By q-binomial theorem [4, 9] the above sum is simplified to

σn =

(
qkpqn; q

)
∞(

pqn; q
)
∞

=
1(

pqn; q
)
k

=
(p; q)n

(p; q)k
(
pqk; q

)
n

.

Remark. Usually, the convergence problem for q-series like (4.2) with |q| = 1 is highly nontrivial
(see, e.g., [12]). In our case however this problem does not appear because for integer k there is
cancellation of almost all terms (apart of a finite number of initial ones) in denominators of the
coefficients in (4.2). Hence the convergence for 0 < p < 1 still takes place.

For fixed k the moments σn coincide (up to a constant factor) with the moments (2.5) for the
Pastro polynomials with a = p, b = pqk. Hence from (2.6) we have explicit expression for them

P (z) = µn2φ1

(
q−n, pqk

pq1−n
; qz

)
,

where

µn =
pn
(
p−1; q

)
n(

pqk; q
)
n

.

These polynomials are NOT OPUC (apart from the already considered case k = 1) because the
weights (4.1) are not positive and hence the moments σn do not satisfy symmetry property (1.5).

Existence of other explicit examples of OPUC with dense point spectrum is an interesting
open problem.
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