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Abstract. We show that if a group G is mixed-identity-free, then the projective unitary
group of its group von Neumann algebra contains a maximal discrete subgroup containing G.
The proofs are elementary and make use of free probability theory. In addition, we clarify
the situation for C∗-algebras.
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1 Introduction

It has been of interest since the beginning of the theory of topological groups to study dis-
crete subgroups for familiar topological groups, such as connected Lie groups or other locally
compact groups arising from arithmetic or geometry [1, 2, 4, 8, 10, 11, 13]. Of special interest
is the question if a discrete subgroup is maximal among discrete subgroups, i.e., when every
group containing it properly is not discrete, or if, at least, it is contained in a maximal dis-
crete subgroup. For PU(n), the Jordan–Schur theorem states that any discrete (and hence
finite) subgroup has an abelian normal subgroup of uniformly bounded index. This implies
that some finite subgroups are contained in maximal discrete subgroups – we will clarify the
situation in Proposition 4.3. This realm of questions becomes even more interesting for non-
compact groups. For example, Helling’s theorem [5] states that a maximal discrete subgroup of
PSL(2,R) that is commensurable with PSL(2,Z) is conjugate to a congruence subgroup Γ+

0 (N)
for some square-free integer N . In [2], Belolipetsky and Lubotzky provided examples of maxi-
mal discrete subgroups of the isometry group of higher-dimensional hyperbolic space arising as
commensurators of certain non-arithmetic lattices.

Typical existence results of maximal discrete subgroups usually show that the family of dis-
crete subgroups is uniformly discrete and employ some contraction mechanism near the identity
element, for example in the usual operator norm on GL(n,C)∥∥1− uvu−1v−1

∥∥ ≤ 2∥1− u∥∥1− v∥
∥∥u−1

∥∥∥∥v−1
∥∥.

Any result like this provides a tool to construct smaller and smaller elements in a group once
it gets close enough to the unit element. If the group is assumed to be discrete in addition one
obtains nilpotency phenomena near the identity. More precisely, there is the following classical
result of Zassenhaus [14] which says in modern form: If G is a semisimple Lie group there exists
a neighbourhood Ω of the identity in G and a constant C > 0, such that any discrete subgroup Γ
which is generated by Γ ∩ Ω contains a nilpotent subgroup of index bounded by C. This has
been generalized by Margulis to cover isometry groups of spaces of negative sectional curvature.
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The situation is much different in the non-locally compact setting, but a similar reasoning
works for example in the unitary group of say a C∗-algebra and hinges only on submultiplicativity
of the norm which implies contractivity of the commutator map near the unit. Again, this implies
by a Zassenhaus argument that any discrete subgroup Γ of the unitary group of a C∗-algebra A
satisfies that the group generated by the set {g ∈ Γ | ∥1− g∥ < 1/2} is abelian and normal, see
Theorem 4.1. Nothing is known about the concrete examples of maximal discrete subgroups.

We aim to study this phenomenon in the context of finite von Neumann algebras, where
the unitary group is metrized by the 2-norm and no contractivity of the commutator map is
available in general. We will make use of free probability theory to overcome this problem in the
situation of the group von Neumann algebra LG, and show in many cases that nevertheless the
class of discrete subgroups of the projective unitary group PU(LG) containing G is uniformly
discrete. As a consequence, G is contained in a maximal discrete subgroup. We do not know if
or when G ⊂ PU(LG) is maximal discrete itself.

2 Preparations using free probability

Let (M, τ) be a finite von Neumann algebra and we will typically assume that it is a II1-factor.
The 2-norm on M is defined as ∥x∥2 = τ(x∗x)1/2. We denote its unitary group by U(M) and
its projective unitary group by PU(M) := U(M)/S1. Consider unitaries u, v ∈ U(M) which are
freely independent, that is to say that they lie in freely independent subalgebras in the sense of
Voiculescu [12]. We set α := τ(u) and β := τ(v). Note that because of freeness we have

0 = τ((u− α)(v − β)) = τ(uv)− βτ(u)− ατ(v) + αβ

and hence τ(uv) = τ(u)τ(v) for any freely independent pair of unitaries u, v ∈ U(M). We aim
to compute the trace of uvu∗v∗. Again, by freeness, we obtain

0 = τ((u− α)(v − β)(u∗ − ᾱ)(v∗ − β̄))

= τ(uvu∗v∗)− ατ(vu∗v∗)− βτ(uu∗v∗)− ᾱτ(uvv∗)− β̄τ(uvu∗)

+ αβτ(u∗v∗) + |α|2τ(vv∗) + αβ̄τ(vu∗) + ᾱβτ(uv∗) + |β|2τ(uu∗) + ᾱβ̄τ(uv)

− |α|2βτ(v∗)− α|β|2τ(u∗)− |α|2β̄τ(v)− ᾱ|β|2τ(u) + |α|2|β|2

= τ(uvu∗v∗)− 2|α|2 − 2|β|2 + 4|α|2|β|2 + |α|2 + |β|2 − 4|α|2|β|2 + |α|2|β|2

= τ(uvu∗v∗)− |α|2 − |β|2 + |α|2|β|2.

Hence, we conclude that

τ(uvu∗v∗) = |α|2 + |β|2 − |α|2|β|2 = 1−
(
1− |τ(u)|2

)(
1− |τ(v)|2

)
for any freely independent pair of unitaries u, v ∈ U(M). On U(M), we consider the length
function ℓ(u) := ∥1− u∥2 =

√
2− 2Re(τ(u)). Since

(1− |τ(u)|2) = (1 + |τ(u)|)(1− |τ(u)|) ≤ 2(1− |τ(u)|) ≤ 2− 2Re(τ(u)) = ℓ(u)2,

we obtain

ℓ([u, v]) =
√
2− 2Re(τ(uvu∗v∗))

=
√

2
(
1− |τ(u)|2

)(
1− |τ(v)|2

)
≤

√
2 · ℓ(u)ℓ(v)
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for any freely independent pair of unitaries u, v ∈ U(M). With only little more work, we also
obtain a lower bound for ℓ([u, v]). Indeed, define the projective length function

ℓ̄(u) = inf
|λ|=1

∥λ− u∥2 =
√

2(1− |τ(u)|),

which metrizes PU(M) in a natural way. Note that µ− µ2/4 ≥ 1/2 · µ for µ ∈ [0, 2]. If u, v are
freely independent unitaries, we get

ℓ([u, v])2 = 2(1− Re τ([u, v]))

= 2
(
1− |τ(u)|2

)(
1− |τ(v)|2

)
= 2

(
1−

(
1− ℓ̄(u)2/2

)2)(
1−

(
1− ℓ̄(v)2/2

)2)
= 2

(
ℓ̄(u)2 − ℓ̄(u)4/4

)(
ℓ̄(v)2 − ℓ̄(v)4/4

)
≥ 2(1/2)2 · ℓ(u)2ℓ(v)2.

Hence, we conclude that

ℓ([u, v]) ≥ 1/
√
2 · ℓ̄(u)ℓ̄(v)

and we may summarize the computations as follows:

Theorem 2.1. Let u, v ∈ U(M) be freely independent unitaries. Then, we have

1/
√
2 · ℓ̄(u)ℓ̄(v) ≤ ℓ̄([u, v]) = ℓ([u, v]) ≤

√
2 · ℓ̄(u)ℓ̄(v) ≤

√
2 · ℓ(u)ℓ(v).

For the rest of the paper we fix a sequence of words (wn)n in F2 = ⟨x, y⟩ such that w1 = x
and inductively wn+1 = [wn, y

nxy−n], i.e., w2 =
[
x, yxy−1

]
, w3 =

[[
x, yxy−1

]
, y2xy−2

]
, and

so on. If u, v are freely independent and v is a Haar unitary (i.e., a unitary with τ(vn) = 0
for all n ∈ Z \ {0}), it is easy to see that u, vuv∗, v2u(v∗)2, . . . are freely independent too. We
consider the sequence (wn(u, v))n, for i ∈ N, i.e.,

u1 = u, u2 = [u, vuv∗], u3 =
[
[u, vuv∗], v2u(v∗)2

]
, . . . .

Thus, we obtain from the previous theorem by induction(
1/

√
2
)n−1 · ℓ̄(u)n ≤ ℓ(wn(u, v)) ≤

(√
2
)n−1 · ℓ(u)n.

The upper bound was rather surprising for us at first, since ℓ(u) < 1/
√
2 does not seem to be

a severe assumption and we may assume in addition that the subgroup generated by u in PU(M)
is discrete, we may even assume that u′ is a Haar unitary in a corner pMp and u = u′ + p⊥ for
a projection p with τ(p) < 1/4.

Corollary 2.2. Let M be a tracial von Neumann algebra. Let u, v ∈ U(M) be freely independent
unitaries with ℓ(u) < 1/

√
2 and v a Haar unitary. For every ε > 0, there exists w ∈ F2, such

that ℓ(w(u, v)) < ε.

Corollary 2.3. Let M be a separable II1-factor. There exists a hyperfinite II1-factor R ⊂ M and
Haar unitaries v1, . . . , vn, . . . in U(R) such that the following holds. For every u ∈ U(M) satis-
fying ℓ(u) < 1/

√
2 and for every ε > 0, there exists w ∈ F2 and n ∈ N such that ℓ(w(u, vn)) < ε.

Proof. By work of Popa [9], we may assume that R′ ∩M = C and that v = [(vn)n] ∈ U(Mω)
is free from M inside Mω. Now apply the previous theorem and pass to some vn along the
ultralimit. ■
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Remark 2.4. Sources of increasing sequences of discrete groups in PU(M) that become less
and less discrete come from many sources. For example, it is easy to see that Z ⊂ PU(LZ) is not
maximal discrete, in fact U(LZ) does not admit a maximal discrete subgroup at all. Another
example is ∪nSym(2n) ⊂ U(⊗nM2(C)). More artificially, we may consider U(LF2) and pick
a partition of 1 into orthogonal projections (pn)n of trace 2−n. Then∏

n≥1

U((LF2)2−n) ⊂ U(LF2)

and (LF2)2−n = LF1+22n by results of Voiculescu [12], so that
⊕

n≥1 F1+22n is a subgroup
of U(LF2). This last example also shows clearly, that there is no reason to expect any form of
commutator contractivity near the identity in general.

3 Applications to group von Neumann algebras

We will now turn our attention to group von Neumann algebras. Let G be a group. A sequ-
ence (gn)n of elements in G is called asymptotically free if (gn)n is free from the diagonal copy
of G in

∏
nG. Equivalently, for every k ∈ N, s1, . . . , sk ∈ G \ {1} and every ε1, . . . , εk ∈ Z \ {0},

there exists n ∈ N, such that

s1g
ε1
n s2g

ε2
n s3 · · · gεkn ̸= 1.

Groups admitting an asymptotically free sequence have been studied for a long time.
Recall that a mixed identity for G is a word w ∈ Z ∗ G = ⟨G, t⟩ in one variable t with

coefficients in G such that w evaluates to the identity if any element of G is substituted for t.
A group is called mixed identity free (MIF) if it does not satisfy any non-trivial mixed identity.
We refer the reader to [6] for further details around this notion, emphasizing the following
statement.

Proposition 3.1 ([6, proof of Proposition 5.3 and Remark 5.1]). Let G be a group. The following
are equivalent:

1. The group G contains an asymptotically free sequence.

2. There is no mixed identity w ∈ Z ∗G for G.

3. G is mixed identity free, i.e., there exists no mixed identity in F∞ ∗G.

We denote the group von Neumann algebra of G with its natural trace by (LG, τ). It is
well-known that any non-trivial conjugacy class in a MIF group is infinite. In particular, the
group von Neumann algebra LG of a MIF group G is a II1-factor. Note that the left-regular
representation provides a natural inclusion G ⊂ PU(LG). We will be interested in the existence
if maximal discrete subgroups of PU(LG) containing G.

Lemma 3.2. Let (gn)n be an asymptotically free sequence. There exists an ultrafilter ω, such
that [(gn)n] ∈ U((LG)ω) is freely independent from the diagonal copy of LG in (LG)ω.

This lemma is standard but not completely trivial, and we include the argument for the sake
of completeness.

Proof. Let (wm) be an enumeration of all mixed identities, that is, elements in Z∗G. We denote
by w(m1, . . . ,mℓ) the iterated commutator

w(m1, . . . ,mℓ) = [wm1 , [wm2 , . . . , [wmℓ−1
, wmℓ

]]].

Observe that if w(m1, . . . ,mℓ)(g) ̸= 1, it guarantees that wmi(g) ̸= 1 for all i = 1, . . . , ℓ. Let
vℓ := w(1, 2, . . . , ℓ). Asymptotic freeness of (gn) guarantees the existence of natural numbers nℓ

such that vℓ(gnℓ
) ̸= 1. Taking an ultrafilter containing this sequence finishes the proof. ■
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Lemma 3.3. Let G be a MIF group and u ∈ U(LG) with u ̸∈ S1 · 1 and Re(τ(u)) > 3/4. For
any ε > 0 there exists some w ∈ F2 and g ∈ G such that ℓ(w(u, g)) < ε. Moreover, the image of
the map from Z ∗G to PU(LG) that maps the generator 1 ∈ Z to u is not discrete.

Proof. Note that from the assumptions ℓ̄(u) ̸= 0 and ℓ(u) <
√
2. Let (gk)k be an asymptotically

free sequence and set v = [(gk)k] ∈ (LG)ω. By assumption ℓ(u) ≤ 1/
√
2 − δ for some δ > 0.

By the results from above, we get(
1/

√
2
)n−1 · ℓ̄(u)n ≤ ℓ(wn(u, v)) ≤

(√
2
)n−1 · ℓ(u)n.

Thus, for some k ∈ N(
1/
√
2
)n · ℓ̄(u)n ≤ ℓ(wn(u, gk)) ≤

(√
2
)n · ℓ(u)n

and this finishes the proof. ■

The following consequence is immediate.

Corollary 3.4. Let G be a MIF group and let u ∈ PU(LG) with 0 < ℓ̄(u) < 1/
√
2. Then, the

subgroup ⟨u,G⟩ ⊂ PU(LG) is not discrete. In particular, the set of discrete subgroups of PU(LG)
containing G is uniformly discrete.

Proof. By the previous lemma, no such subgroup contains a non-trivial element with ℓ̄(u) <
1/

√
2. Indeed, we would apply the previous lemma to a suitable lift u′ with ℓ(u′) < 1/

√
2. ■

We are now able to state and prove our main result.

Theorem 3.5. Let G be a MIF group. Then, G is contained in a maximal discrete subgroup
in PU(LG).

Proof. The discrete subgroups of PU(LG) containing G are ordered by inclusion. Now, the
result follows by Zorn’s lemma since unions over chains remain discrete. ■

Corollary 3.6. Let R be the hyperfinite II1-factor. The group PU(R) contains a maximal
discrete subgroup.

Proof. It is known by results of Hull and Osin [6] that there are amenable MIF groups. Any
MIF group is automatically an i.c.c. group (that is, it has only infinite non-trivial conjugacy
classes). See also [7] for an example of an elementary amenable group that is MIF. Since LG = R
in the i.c.c. amenable case by Connes [3], this finishes the proof. ■

Question 3.7. When is G ⊂ PU(LG) a maximal discrete subgroup?

Due to existence of central subgroups, the preceding question is only interesting for i.c.c.
groups. However, we do not have a single i.c.c. group, where we could decide this question.

4 Miscellaneous results

In this section, we start out by briefly discussing maximal discrete subgroups in unitary groups
of C∗-algebras. The following result is in analogy to the Jordan–Schur theorem mentioned in
the introduction.

Theorem 4.1. Let A be a unital C∗-algebra and Γ be a discrete subgroup of its unitary
group U(A). Then, the subgroup

Γ1/2 = ⟨g ∈ Γ | ∥1− g∥ < 1/2⟩

is abelian and normal in Γ.
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Proof. We set ℓ(g) = ∥1− g∥ and note that

ℓ([g, h]) = ∥1− ghg∗h∗∥ = ∥hg − gh∥
= ∥(1− h)(1− g)− (1− g)(1− h)∥ ≤ 2∥1− g∥∥1− h∥ = 2ℓ(g)ℓ(h).

We define Γt := ⟨g ∈ Γ | ℓ(g) < t⟩. Fix ε > 0 and set

δ = inf{ℓ(g) | g ∈ Γ1/2−ε is not central in Γ1/2−ε}.

Suppose that this infimum is positive and finite, i.e., that the set of non-central elements is
bounded away from 1 and non-empty. If g is non-central in Γ1/2−ε, then it cannot commute with
the entire generating set of Γ1/2−ε. Thus, we can consider g, h ∈ Γ1/2−ε with ℓ(g) < (1 + 2ε)δ,
ℓ(h) < 1/2− ε and [g, h] ̸= 1. We compute

ℓ([g, h]) ≤ 2(1 + 2ε)δ(1/2− ε) < δ

and hence [g, h] is central in Γ1/2−ε, in particular, it commutes with g and h. Thus, we obtain
a unitary representation of the Heisenberg group

H(Z) = ⟨x, y, z | [x, y] = z, [x, z] = [y, z] = 1⟩.

But for any unitary representation of the Heisenberg group for which z acts non-trivially,
both generators are far away from the identity. Indeed, irreducible unitary representations
are parametrised by θ ∈ S1 and either lead to the unique irreducible representation of the non-
commutative torus Aθ or they are finite-dimensional and completely understood. In any case,
the generators satisfy ∥1− g∥ ≥

√
3 and ∥1− h∥ ≥

√
3 unless they commute. This implies that

Γ1/2−ε is abelian. Since ε > 0 was arbitrary and

Γ1/2 =
⋃
ε>0

Γ1/2−ε,

this finishes the proof. ■

The following corollary is immediate.

Corollary 4.2. Let A be a unital C∗-algebra and Γ ⊂ U(A) be a discrete subgroup. Then, at
least one of two conditions are satisfied:

1. The set of discrete subgroups containing Γ is uniformly discrete. In particular, the group Γ
is contained in a maximal discrete subgroup.

2. The group Γ normalizes a non-trivial abelian subalgebra of A, and there exists an ascending
chain of subgroups of U(A) containing Γ, which is not uniformly discrete.

It is natural to wonder about maximal finite subgroups of compact Lie groups, most notably
of PU(n). The following result is elementary and surely known to experts.

Proposition 4.3. Let G be a finite group. Let π : G → SU(n) be a non-trivial irreducible
representation and let π̄ : G → PU(n) be the corresponding projective representation. Assume
that π(G) does not normalize a non-trivial torus in SU(n), equivalently, every π(G)-invariant
abelian Lie subalgebra of su(n) is trivial. In particular, this holds when G does not admit a non-
trivial homomorphism to Sym(n), or, more generally, when π is non-trivial and irreducible of
least dimension.

Then, the set of discrete subgroups of PU(n) containing π̄(G) is uniformly discrete. In par-
ticular, π̄(G) is contained in a maximal discrete subgroup.
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Proof. Assume that there exists a sequence of finite subgroups H0, H1, H2, . . . containing π(G)
which is getting less and less discrete in SU(n). By the Jordan–Schur theorem we get a sequence
of abelian normal subgroups Ai ⊂ Hi of uniformly bounded index. Consider an ultralimit A
of the sequence (Ai)i in the space of closed subgroups of SU(n) and let A0 be the connected
component of the identity of A. Note that A0 is normalized by π(G). In order to obtain
a contradiction, we will show that A0 is trivial. We denote the Lie algebra of A0 by a, which
is naturally acted upon by the group G. We conclude that a is trivial and hence A0 is trivial.
This finishes the proof.

For the proof of the addendum, note that dimR(a) ≤ n−1, so that if π was irreducible of least
dimension, the action of π(G) on a must be trivial. Thus, if a is non-trivial, we obtain a non-
scalar matrix commuting with π(G), contrary to our assumption that π was irreducible. ■

Let us remark that by classification of finite subgroups of SO(3) ∼= PU(2) the abelian rotation
subgroup Z/n is not contained in any maximal finite subgroup for n > 5: the only finite
subgroups SO(3) which come in question are dihedral subgroups, and one can always embed
a dihedral subgroup into a bigger dihedral subgroup.
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