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Abstract. A g-deformation of the middle convolution was introduced by Sakai and Yama-
guchi. We apply it to a linear g¢-difference equation associated with the g-Painlevé VI
equation. Then we obtain integral transformations. We investigate the ¢g-middle convolution
in terms of the affine Weyl group symmetry of the ¢g-Painlevé VI equation. We deduce an
integral transformation on the g-Heun equation.
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1 Introduction

The middle convolution was introduced by Katz [8] for local systems on a punctured Riemann
sphere, and Dettweiler and Reiter [3, 4] reformulated it for the Fuchsian system of differential
equations. Here the Fuchsian system of differential equations is the system of linear differential
equations written as

dY Aq Ay A,

- Y. 1.1

dz (x—t1+x—t2+ +x—tr ’ (1.1)
where Y is a column vector with n entries and A1, Ao, ..., A, are constant matrices of size n x n.

We review briefly the definition of the middle convolution for equation (1.1) (or the tuple of the
matrices (Ai,...,A;)). Let A€ Cand F;, i = 1,...,r, be the matrix of size nr X nr of the form

o - 1) e 0
F=|A - A+X, - A |, (1.2)
o - 1) e O

where [, is the identity matrix of size n. Then the correspondence of the tuple of matrices
(A1,...,A;) = (F1,..., F,) (or the correspondence of the associated Fuchsian system) is called
the convolution. The convolution does not preserve the irreducibility in general. It is shown
that the following subspaces IC, £ of C™*" are preserved by the action of F;, 1 =1,...,7,

ker A
K= : , L=ker(Fy +Fy+---+ F,).
ker A,
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We denote the linear transformation induced from the action of F; on the quotient space
C" /(K 4 L) by F;. The correspondence of the tuple of matrices (Ay,...,A,) — (Fq,...,F)
(or the correspondence of the associated Fuchsian system) is called the middle convolution.
It was shown in [3] that the convolution is related with Euler’s integral transformation. Let Y (x)
be a solution of equation (1.1). Set

Wl(ac)
W) =~ e = |

)
x—tj

W (2)

Then W(z) is a column vector with nr entries. We apply Euler’s integral transformation for
each entry of W(x), i.e., we set

G@):%&V@xx—gkm,

where A is an appropriate cycle in C with the variable s. Then the function G(x) satisfies the
following Fuchsian system of differential equation

dYy F F F;
B Y.
dz <x—t1+x—t2+ +x—tr ’

where F1,..., F, were defined in equation (1.2).
Sakai and Yamaguchi [10] constructed a theory of a ¢g-deformation of the middle convolution
for systems of g-difference equations. Here the system is described as

Y(gx) = (Boo + 1_35;/751 +--+ 1_B;/tr>Y(ac),

where Y (x) is a column vector with n entries and Boo, B1, ..., B, are constant matrices of size
n xn. The construction of the g-middle convolution is similar to the case of the Fuchsian system
of differential equations. For details, see Section 2.

In this paper we apply the ¢g-middle convolution to linear g¢-difference equations which are
related to the g-Painlevé VI equation

yj _ (Z—th)(Z — th) 2z _ (y—ta)(y — tas)
as3aq (E — bg)(? — b4) ’ b3bs (y - a3)<y - a4)

, (1.3)

with the constraint bjbsaszas = qaijasbsby. Here § and Z denotes the time evolution ¢t — ¢t
of y and z, and the parameters ai,...,a4,b1,...,bs are time-independent. The ¢-Painlevé VI
equation was introduced by Jimbo and Sakai [6] as a g-deformation of the Painlevé VI equa-
tion. They obtained equation (1.3) by introducing a g-analogue of the monodromy preserving
deformation, and it is related to the linear g-difference equations

Y(gz) = A(x)Y (x), (1.4)

where A(x) is a 2 X 2 matrix with polynomial entries (see equation (3.2) for details). The linear
g-difference equation which we apply the g-middle convolution is not equation (1.4) but the
transformed equation

Y(qz) = B(x)Y (z),

A(x) . B1 BQ
= Bt T e T T2 ()

Blw) = co(z — tay)(xz — tag)
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for some constant cy. By applying the g-middle convolution with the parameter A, we obtain
2 x 2 matrices, if we choose the constants ¢y and A suitably. Then we obtain a correspondence
of the parameters, and we may regard it as a correspondence of the g-Painlevé VI equations.
On the other hand, it is known that the g-Painlevé VI equation has a symmetry of the affine
Weyl group of type Dél), and a realization of the symmetry was described in the review [7]
of Kajiwara, Noumi and Yamada. In this paper, we express the symmetry by the g-middle
convolution in terms of the generators of the affine Weyl group.

In [11], a relationship between the g-Painlevé VI equation and the ¢-Heun equation
($ — h1q1/2) (JJ — h2q1/2)g(x/q) + I3l (a: — l1q71/2) (w — l2q71/2)g(qx)
—{(I3 + l)a® + Bz + (Lhlalslshih) /2 (hy* + by ) Yg(x) = 0

was studied from a viewpoint of the initial value space. In particular, the ¢g-Heun equation
was obtained from the linear g-difference equation associated to the g-Painlevé VI equation by
specializing the parameters. On the other hand, the ¢g-middle convolution induces an integral
transformation of the linear g-difference equation. By considering a particular specialization,
the linear g-difference equation turns out to be the g-Heun equation and we obtain an integral
transformation of g-Heun equation.

This paper is organized as follows. In Section 2, we review a part of the theory of the
g-middle convolution established by Sakai and Yamaguchi [10]. In Section 3, we recall the
linear g-difference equation associated to the g-Painlevé VI equation and calculate the ¢g-middle
convolution for it. In Section 4, we investigate the symmetry by the g-middle convolution in
terms of the Weyl group symmetry of the g-Painlevé VI equation. For this purpose, we clarify
a relationship between equation (1.5) and the Lax pair in [7]. In Section 5, we obtain an integral
transformation on the ¢-Heun equation. In Section 6, we give concluding remarks.

2 g-middle convolution

We recall the g-convolution and the g-middle convolution introduced by Sakai and Yamagu-
chi [10].

Let B = (B B1,...,Bn) be the tuple of the square matrices of the same size and b =
(b1,b2,...,bn) be the tuple of the non-zero complex numbers which are different from one
another. We denote by Epy, the linear g-difference equations

N
B;
)= B@Y @), B =Bxtd
Definition 2.1 (g-convolution, [10]). Let B = (By; B1, . .., By) be the tuple of m x m matrices
and (b1, bo, ..., byn) be the tuple of the non-zero complex numbers which are different one another.
Set By = I, — Boo — B1 — --- — By, We define the g-convolution c¢y: (Bs; Bi,...,Bn) —
(Foo; F1, ..., Fy) as follows:

F = (Fx; F1,...,Fy) is a tuple of (N + 1)m x (N + 1)m matrices,

(0]
Fi=|(By -+ Bi—(1=¢")In --- Bn |+, 1 <i<N,
(0]
By --- By
Foo:I(NJrl)m_F’ F\:

By --- By
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Let £ € C\ {0}. The g-convolution induces the g-analogue of the Euler’s integral transfor-
mation in terms of the Jackson integral

oo >

f@)dg=(1—q) Y ¢"¢f(q"E)

n=—oo

0

for the solutions of the g¢-difference equations. Note that the value of the Jackson integral may
depend on the value &.

Theorem 2.2 ([10, Theorem 2.1]). Let Y (x) be a solution of Egy,. Set bg =0 and

Py\(z,5) = LAHS/L 9o = ﬁ i
e (as/z:q)oc 01 z—q'Ts

Define the function ?(;U) by

£oo Yo()
V= [ P@yigas im0 N Tw=|
i(x) = ; P (s)dgs, i=0,...,N, (z) = :
(2 ~
Yn(x)

Then the function ?(a:) satisfies the equation Exy, i.e.,

Y(qz) = (Foo + é 1—2/1)) Y ().

Although the original theorem by Sakai and Yamaguchi was restricted to the case £ = 1 in
the Jackson integral, we may just extend it to the case £ € C\ {0}, which was motivated by the
theory of the Jackson integral due to Aomoto [1]. The convergence of the Jackson integrals Y;(z),
i =0,...,N, would not be considered in [10]. In this paper, we discuss the Jackson integrals
formally and we do not consider the convergence in details. Namely, we discuss the Jackson
integrals under the assumption that the integrals converge absolutely and Theorem 2.2 holds
true with the convergence. Thus we use the phrasing “formally” in theorems which are related
to the Jackson integral. An aspect of convergence on Theorem 2.2 will be discussed in [2].

The ¢g-middle convolution is defined by considering an appropriate quotient space.

Definition 2.3 (¢g-middle convolution, [10]). We define the F-invariant subspaces K and £
of (C™)N*1 as follows

ker By
K=Ky= |, L=Lv(N) =ker (F = (1= ¢ [(ni1ym)-
ker By

We denote the action of Fj on the quotient space (C™)N*1/(K + L) by Fy, k = oo,1,..., N.
Then the g-middle convolution mcy is defined by the correspondence Epy +— Ef,, where

F: (FOO§F17-~-7FN)-

The ¢g-middle convolution mc) would induce the integral transformation of the solutions by
applying the integral transformation on the g-convolution, although it would be necessary to
consider the subspace K + £ C (C™)N+1,
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3 Linear g-difference equation associated
to g-Painlevé VI equation and g-middle convolution

We recall the linear ¢-difference equation
Y(qz) = A(x)Y (x), (3.1)

which was discussed by Jimbo and Sakai [6] to obtain the ¢-Painlevé VI equation by the con-
nection preserving deformation.
We take the 2 x 2 matrix A(z) in equation (3.1) to be of the form

A(z) = Ag(t) + As(t)a + Aza?, Ay = <>§J1 >?2>7

Ap(t) has eigenvalues t6;, t0o,
det A(x) = x1x2(z — tar)(x — tas)(x — az)(x — aq). (3.2)

Then we have the following relation
X1X2a1a2a304 = 9192. (33)

Note that the relations to the parameter of the g-Painlevé VI equation in equation (1.3) are
given by b1 = ara2/61, by = araz/62, bz = 1/(gx1), ba = 1/x2.
We need accessory parameters to determine uniquely the elements of the matrix A(x). Write

A(x) = (all(x) a12(1‘)>.

asy (J}) ago (33‘)

Then aj2(x) is a linear polynomial. We introduce the parameters w, y, z and impose the
condition

ai2(r) = xow(x — y), a11(x)|z=y = (y — ta1)(y — taz)/(qz). (3.4)

Then the elements of A(x) are determined as

_ (xu((z—y)(@ —a) + 2z1) xew(z —y)
Az) = < xiw(yx +6) x2((x —y)(z — B) + 22)>’ (3.5)
where
a= " i » [y—l((91 + 02)t — x121 — X222) — Xx2((a1 + a2)t + a3 + a4 — 2y>]7
B = » i » [—y‘l((91 + 02)t — x121 — x222) + x1((a1 + a2)t + a3 + ag — Qy)]’

y=z21+2+ (y+a)y+B)+ (a+ By —arast® — (a1 + az) (a3 + aq)t — azay,
§ =y ' (arazazast® — (ay + 21)(By + 22))

and

y —tar)(y —tag
2 = ( I ), 2o = qx1(y — a3)(y — aq)z.
qaxiz

We consider the ¢-middle convolution for the g-difference equation

A(x)
co(x — tar)(x — tag)’

Y(gr) = B(x)Y(z),  B(z)=
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where cg is a constant which will be fixed later. Note that, if Y () is a solution of equation (3.1)
and the parameter u satisfies ¢* = 1/ (coalath), then the function

Y () = 2" (z/(tar); a)oo(2/ (taz); @)oY (2)

satisfies equation (3.6). Write

B B, By . bll(a:) blg(x)
B(x) = Boe 77 x/(tay) = x/(tag) (bm(fﬂ) b22(fv)>' (37)
Then
Boo = 010 <>§)1 ;2>; B2 = Bl‘m(—mga (38)
By=—_%2 ( (y — tan)b}!/(qyz(x1 — x2)) wx2(y — tay) )
t01(a1 = az) \ b1/ (Ruwy?22 (1 — x2)?)  —xebb!/(ayz001 — x2)))
where
0 = 3oy — az)(y — 1)z + (y — tas) (x2y — xitar)

— gx1{2x2y” — (xata1 + xataz + x2a3 + x204)y + (61 + 62) } 2,
1
05! = g2x1 (v — as)(y — aa) (xry — xatar)2? + (y — ta1)*(y — ta)

—q(y — tal){2X1y2 — (xata1 + x1taz + x1a3 + x104)y + (01 + 92)}2.
It is shown directly that det By = 0 and det By = 0. Set By = Iy — Boo — B1 — Ba(= Is — B(0)).
Then the condition det By = 0 is equivalent to ¢y = 61/(taiaz) or ¢g = 02/(tajaz). We now
impose the condition det By = 0. For this purpose, we restrict to the case ¢g = 01/(taiasz).
Note that the case ¢y = 62/(taias) can be discussed by replacing the parameters as 6 <> 6.

We eliminate the parameter 6 by equation (3.3). It follows from det By = 0, det By = 0 and
det By = 0 that there exists non-zero vectors (405 ), (via ), (025 ) such that

m(w) =) 2 =0) »(h)-6) 0

We normalize the vectors by setting
vor = quyzbh (X1 — Xx2),  vi1 = quyzfixa(x1 — x2),  va1 = quyzbixa2(x1 — x2). (3.10)

We now apply Definition 2.1. Namely we set

0] o) o) O O 0]
Fi=(By Bi—-(1-¢")I; By|, F=[0 O @ :
O O 0] BO Bl B2 - (1 — q/\)IQ
By By Bj
F=|By B, By|, Fo=1Is—F. (3.11)
By By Bs

The invariant subspaces K and L are described as

ker BO
K=Ky=|kerB|, L£=°Ly(\)=ker(F—(1-¢")I). (3.12)
ker BQ
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Hence a basis of the space K is

Vo1 0 0 )
V02 0 0

0 V11 0

0 V12 0

0 0 V21

0 0 22/ )

If ¢* = xatajaz/6y (resp. ¢ = xitaias/61) then dim(£) = 1 and the vector (0,1,0,1,0,1)
(resp. 1(1,0,1,0,1,0)) is a basis of the space £. Here we continue the discussion by setting =
Xataiaz/01.

We introduce the matrix P by

0 0 O Vo1 0 0
g g3 1 w2 0 0 g1 = qz01 + yaz — qyzx1a2 — tajaz,
= ~1 _
p_|0 00 0 vy 0O 92 = y(qzx1 — 1)(a1 — az), (3.13)
g2 9+ 1 0 vz O g3 = —as(y — tay),
00 0 0 0 vy g4 = y(a1 — az).
0 0 1 0 0 V22

Then det P = —¢*wy?2403x3(x1 — x2)%(a1 — a2)(xataias — 61), and the matrix P is invertible
if det P # 0. Set

FL=P'RP, F=P'RP,  F.,=P'F.P

Then it follows from the invariance of the space K 4+ £ that the i.j elements of these matrices
for i € {1,2} and j € {3,4,5,6} are equal to zero. Thus, they admit the following expression:

ﬁ_EO ﬁ_FgO ﬁ_FooO
1= ]’ 2 = % % co — %’

where F1, Fg, F, are 2 x 2 matrices. The matrix F, is diagonal, which follows from the choice

of the parameters g1, ...,94. We can restrict the g-difference equation
) _ 7 N
Y = | F, Y 3.14
(4) ( T (tay) 1 —m/(ta2)> (@) (3:14)

of size 6 to that of size 2 by choosing the first two components and we write

e Fy F)
Y(qx) = F(2)Y (), F(z)=Fsx+ =2/ (tar) + =2/ (taa)” (3.15)
Then
Foo - <X1ta10a2/01 (1)>; FQ = Fl’au—)azy
. a =t a3~y - tar)as 10
qyz@l(al - ag)(ﬁl — Xltalag) fl[l]fél}az f2[1]f:£1} ’ ’
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where

1
M = 3oy — as)(y — aa)2> + (y — taz)(yxe — xitar)

— gx1{2x29” — (x1tar + xatas + x2a3 + x2a4)y + (01 + 62)} 2,

2[1] = qgx1x202(y — a3)(y — aq)z — (y — taz)(azx2y — 61),

M = q(yazxi — 61)2 — as(y — tay).

It is expected that the g-middle convolution induces an integral transformation. Let Y (x) be
a solution to Y (qz) = B(x)Y (z) in equation (3.6) and write

Y(z) = (yl(z))

y2(z)

It follows from Theorem 2.2 that the g-difference equation

Y(qz) = F(2)Y(z),  F(z)=Fx +

has a solution written as

5 571Py (2, 8)y1(5) dys
fogoo sTLP\(, 8)ya2(s) dgs
o) %Eg ) fo;@ - ta1>1PA<x, $)yn(s) dys )
Ya(2) o (s —ta1)™ Pa(z,s)ya(s) dygs
Ogoo(s — tag) L Py(x, 8)y1(s) dgs
Jo 70 (s — tag) "L P(z, 8)y2(s) dgs

71 (x) P11 P12 -+ DPle
. J2(x) P21 P22 D26
Y(z) = I I .

e () D61 P62 "t D66

Then the function Y (z) = (Z;gg) satisfies equation (3.15). On the other hand, it follows from
equation (3.17) that

[3e)
. _ b11 P13 D15 P12 P14 D16
() _/0 {( s + s —tay * s—ta2>y1(8) * ( s * s —tay + s—tag)yz(s)}
X Py(z,s)dys.

By a straightforward calculation, we have

D12 P14 D16 tth
— + + bi2(s),
s s—tay s—tay qwyzxa(xitaiaz —01)s 12(5)

P P13 P15 to,
bii(s) — 1),
S + S — tal + s — ta2 quZXQ(Xlta1a2 — 91)8( 11( ) )
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where b12(s) and b1 (s) are elements of the matrix B(s) in equation (3.7). Therefore

<pll+ P13 i D15 >y1(s)—|—<p;2+ P14 4 P16 )yg(s)

S s —taq s — tas s —tay s — tasg
_ toq
quyzxz(xitaiaz — 61)s

{=y1(s) + b11(s)y1(s) + b1a(s)y2(s) }-

Hence it follows from y1(gs) = b11(s)yi(s) + bia(s)ya(s) that

. toh /5‘” y1(gs) — y1(s)
x) = s TPy (x,8)dys.
(=) quyzxz(xitaiaz — 01) s Az, 5) dg

We are going to obtain the integral representation without using y;(gs). It follows from the
definitions of the Jackson integral and the function Py(z,s) that

foo dgs goo dgs goo r—q's dgys
[ naspan % = [ nenesn = [T ne TP @

r— S S

See [12] for details. Hence

/0500 yl(qs)s_yl(s)P,\(x, s)dys = /0500 1(30 —q*s 1>y1(s)P)\($’s) dys

S r— S

§oo S
—-) [ p s dge

r— S

We recall that ¢* = yataias/0;. Thus, we obtain

. t(xataras — 6) /500 y1(s)
x) = Py(x,s)dgys. 3.18
(@) quyzxa(x1taias — 01) s—x M, s) dg (3.18)

We also calculate g2(x). It follows from equation (3.17) that

£oo
. _ P21 P23 P25 P22 P24 P26
Jalw) = /0 {( s + s —tay + s —ta2>y1(8) + < s + s —tay + s —ta2>y2(8)}
X Py(x,s)dys.

By a straightforward calculation, we have

P22 Pu D% _ 01{(taras — qzbh)s + ytaraz(gzx1 — 1)}

_ (g bia(s)
s s—tay s—tas quyzxaaiaz(xitaras — 01)(s — y)s eh
P21 | P2 P25 01{(taraz — qz01)s + ytaras(gzxa — >}b11(s)
s s—ta; s—tay quyzxaaiaz(xitaiag — 01)(s — y)s
t{ tajas — qz61)x1s + ybi(gzx1 — 1)}

quyzxa(xitaraz — 01)(s — y)s
Therefore it follows from y;(gs) = b11(s)y1(s) + bi2(s)y2(s) that

D21 D23 D25 D22 P24 D26
<+ + >y1(5)+ <+ + )y2(s)

S s —taq s — tas S s —tay s — tas

_ 01{(taraz — qzb1)s + ytaraz(qzx1 — 1)}
 quyzxearaz(xataias — 1) (s — y)s
~ t{(taras — gz01)x1s + ybi(gex1 — 1)}
quyzxe(xitaiaz — 01)(s —y)s

y1(qs)

y1(s).
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We obtain that

£ (tayag — q20 t —1 d
[ e R I =0 gy )
0 S~y S
£ (taraz — qz0 t -1 d
- [ e S R B =) ) 1, 5/9) %
0 S—qy §
€0 (tayas — q20 t ~1 1-q d
:/ (taraz — qz01)s + qtaiazy(gzxa )(l Nl )8>y1(8)PA(x73) 4eS
0 5—qy T —5 s
Hence
. 1 £ [ gz taiasg qz01 — taras ¢*yz \ xataraz — 6
)= -, -
quyzx2a1a2 Jo s—qy S~y xitaraz — 01 s —qy r—3s
X y1(8)Pr(z, ) dgs. (3.19)
In summary, we obtain the following theorem by the g-middle convolution.
Theorem 3.1. Let Y (x) be a solution to
By By > (?ﬂ(l‘))
Y(qr) = | Boo + + Y (x), Y(z)= , 3.20
@)= (B Ty * T Y@= () (320
where By, B1 and Ba are defined in equation (3.8). The function
v 371(1‘))
Y(z)=1{"
(=) <y2(90)
defined by equations (3.18) and (3.19) formally satisfies
_ — F Fy —
Y =|(F Y 3.21
(g2) < oo+ 1—=z/(tar) + 1—x/(ta2)> (z), (3.21)

where Foo, F1 and Fo are defined in equation (3.16).

Thus, we obtain the correspondence of the systems of linear ¢-difference equations associated
with the g-Painlevé VI equation by the g-middle convolution. To give the correspondence of the
parameters by the g-middle convolution in the form of the equation Y (gz) = {Ao(t) + A1(t)z
+ A9z?}Y () in equation (3.2), we need to transform equation (3.21).

Let ¢ be a non-zero constant which will be fixed later. Set

A(z) = &z — tar)(z — tas) <Foo + 1 f/l(ml) + 5/2( m2)> (3.22)

and write A(z) = A(x,t) = Ag(t) + A1 (t)x + Aga?. Then we have

g2 _ <cxlta(1)a2/91 (c~)>7

'cvxgt?’a%a% ct2aia909
and ,
01 01

~2
det A(z,1) = 52 (0 — tay) ( — tas) (g; _ X2“91a2a3> (;,; _ X“g‘”‘”)
1 1 1

Ay(t) has the eigenvalues



g-Middle Convolution and g-Painlevé Equation 11

Hence the action of the g-middle convolution to the parameters is described as

- t _ ~t2 9 - t3 2.2
X1 — w? X2 — C, {t6,,t02} — S 2 cxat % ;
91 91 91
otaiasag xotaiasay
{al, GQ} — {al, CLQ}, {ag,a4} — {X 01 s X 01 } (3.23)

We investigate the action to the parameters y and z. Recall that y and z are determined by
equation (3.4). We denote the images of y and z by y and 2. Let a11(x) (resp. ai2(z)) be the
upper left entry (resp. the upper right entry) of the matrix A(z). Then the value ¥ is the zero
of the linear function ajs(z), and we have

5 = Xetaeioaly - a)y - a)z = (y — ta)(y — ta)}
gxixataraz(y — az)(y — as)z — 61y — tar)(y — taz)
(y—as)(ly—as) 1
(y —tar)(y —taz) xa
(y—as)(y—as) O (3.24)
(y —ta1)(y —taz)  xixetaias
The value Z satisfies a11(2)|,—5 = (¥ — ta1)(y — taz)/(qZ). Since

T ()| = ¢ (y—tar)(y —tag) (ﬂ— tha1a2a3> (@— X2t01a2a4)
T axez (y—as)(y —as) 01 6 )
we have
~ - — y—t y—t
s X2 (y—as)(y —ad) (Y — tar)(y — tas) (3.25)

¢ (y—ta1)(y — taz) (¥ — xaotarasas/61)(y — xatarazas/61)

4 g-middle convolution and Weyl group symmetry
of g-Painlevé VI equation

We investigate the transformation of the parameters induced by the ¢g-middle convolution in
terms of the Weyl group symmetry associated with the g-Painlevé VI equation. Kajiwara,
Noumi and Yamada gave a survey on discrete Painlevé equations in [7]. They presented a list of
the Weyl group symmetry and a Lax pair for each discrete Painlevé equation. The g-Painlevé VI
equation by Jimbo and Sakai [6] corresponds to the equation q—P(Dél)) in [7]. In this section,
we make a correspondence between the parameters of the g-Painlevé VI equation and those of
the equation q—P(Dél)).

The equation ¢-P (Dél)) was obtained by the compatibility condition of the Lax pair L,
and Lo in [7]. The operator L; is defined by

Luy(a) = {x(gvl —1)(gva — 1)  wvivavsva(g — vs/k2)(g — ve/K2) }y(x)

q9 fg
e q_(;f,,g_) (5)_ ) (gy () ~ y(ar/a)
N (x — /i121(/;)£33x; K1/vs) (;y(:c) _ y(qx)), (4.1)

which is independent from the time evolution. Here the parameters are constrained by the
relation

2 2
KiK5 = QU V2V3V4Vs V1718, (4.2)

In this paper, we do not use the operator Lo, which contains the operation of the time evolution.
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The correspondence between the parameters of the ¢g-Painlevé VI equation and those of the
equation q—P(Dél)) was made by considering the linear ¢-difference equation Y (qz) = A(z)Y (x)
in equation (3.1) and L;y(z) = 0 in equation (4.1).

For the system of g-difference equation

Vi) =A@V (@), @)= (0 020y - (40

az1(x) aza(x) y2(z)

we calculate the g-difference equation for y; () by eliminating y2. The system of the g-difference
equation is written as

y1(gz) = a1 (z)y1(x) + ar2(x)y2(z),
y2(qr) = a21(z)y1(x) + aza(w)y2(z).

We substitute y2(x) = ag1(x/q)y1(x/q)+as2(x/q)y2(x/q) into y1 (qz) = a11(x)y1 (z) +ar2(x)y2(z).
Then we have

y1(gz) = a11(z)y1(x) + arz2(x) a2 (z/Q)y1(z/q) + ar2(x)azz(z/q)y2(x/q).
We elimilate y»(2/q) by the relation y2(z/q) = {y1(z) — a1 (z/q)y1(z/q)}/ar2(z/q). Thus,

yi(gz) {all(ﬂf) n a2 (r/q) }y1(w) n a11(z/q)aze(x/q) — az(z/q)a (z/q)

a12(x) ap(x)  aia(x/q) a12(z/q)

yi(z/q) = 0.

We restrict it to the case that the matrix elements are fixed to equation (3.5). Then it follows
from equations (3.2) and (3.5) that

yl(qx) an(l‘) a22($/Q)

z—y {w—y T 2la—y }yl(x)

xixe(z/q — tar)(z/q — tag)(x/q — a3)(z/q — a4)
r/q—y

_l’_

yi(z/q) = 0. (4.3)

Let ¢(z) be the function such that ¢(qz) = do(x — tay)(xz — tag)p(x). Set u(z) = yi(z)/d(x).
Then it follows from equation (4.3) that the function u(x) satisfies

(x — tay)(z — tag) ai1(z) = ag(x/q)
z—y dou(qm)_{x—y+m/q—y}u(x)
xixe(z/q —a3)(w/q —aq) 1 B
" o Tu(e/a) =0

We rewrite it by using equation (3.5) as

(x — tay)(z — tag) u(x) xixz2(z/q—as3)(x/q—aq) [ 1
W10 () - M) el el ) )

X121 X222 (@ —ta1)(z —tag)
-+ X5 g gy 2 St
_exxxe(@/g—as)(z/g—a)| o
z/q—y } (@) =0

(4.4)
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It is seen that the poles z = y and x = gy are cancelled on the coefficient of u(z). By a straight-
forward calculation (see [12] for details), equation (4.4) is written as

-1 -1 —t 0 —t 0
{fﬂ(qle q2)2(2><2 )  ixaasas (g2 —taraz/ ;2);12 araz/ 2)}u(x)

xixe(as — z/q)(as — 2/q) !
o naltn = =D ) - o))

(x — tar)(z — tag) [u(z) B
+ -1 { e dou(qx)} =0. (4.5)

We compare equation (4.5) for the case dy = 1 with equation (4.1). Then we obtain the following
correspondence:

ta1 a9 1451 ta1a2 Vg

qz =9, y=1, X1 =11, X2 = qV2, 01 :FLQ’ 02 :Hga

az = v3, a4 = vy, tag = ﬂ, tas = iy (4.6)
L4 g
On the relation of the parameters, the condition xixeaiasasas = 01602 is equivalent to equa-
tion (4.2). Thus, we obtained a correspondence between the parameters of the g-Painlevé VI
equation in [6] and those of the equation q—P(Dél)) in [7].

Sakai [9] established that each discrete Painlevé equation has the symmetry in terms of the
affine Weyl group, and the description of the symmetry was reviewed explicitly by Kajiwara,
Noumi and Yamada in [7]. The g-Painlevé VI equation has the symmetry of the affine Weyl
group of the type Dél). We describe the action of the operators s, ..., s; for the parameters
(K1, k2,1, .. ,v8) € (C)1 and (f,g) € P! x P! as follows

So: U7 <> g, S1: V3 <> U4, S4: V1 <> V2, S5 Us <> Ug,
_ k1 k1 k1Ko f—vs
Sgp1 V3 — —, vy — —, ko — ; 9—=>9 7
2z V3 V37 f—ki/vq
ko ko k1ko g—1/11
$3: V1 — —, Vs — —, k1 — ) f—=f— (4'7>
Vs 21 VU5 g —vs/ka

The omitted variables are invariant by the action, i.e., so(f) = f. Then we can confirm that

these operations satisfy the relations of the Weyl group W(Dél)) whose Dynkin diagram is as
follows

On the other hand, the g-middle convolution induces the transformation of the parameters
of the ¢-Painlevé VI equation given in equation (3.23), although there was an arbitrary param-
eter ¢. We describe it in terms of the Weyl group action by specializing the parameter ¢ in
equation (3.22).

Proposition 4.1. We specify the parameter ¢ in equation (3.22) by setting ¢ = x2. Then the
transformation of the parameters of the q-Painlevé VI equation which is induced by the g-middle
convolution coincides with the action

$5825150525352505152 (4.8)
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by the generators of W(Dél)), and it is written as

V1 VoVs K1 K1 K1 K1
v1 —q ) vy — Vo, — = — = —,
K9 v vr vy Vg
P LR N R N i%,
K2 K2 Vs Ve Ve K2
(f —vs)(f —va) g_i
= (f —m/v))(f —k1/vs)” 1
— f= ,
U e e e
(f = r1/v)(f — k1/vs)”  quivevs
. (f —w3)(f —va) (f = F1/v0)(f — K1/vs) (4.9)
(f — k1/ve)(f — K1/g) (f — quavsvs ko) (f — quavavs/kK2)

Proof. Set ¢ = x2. Then it follows from equations (3.23), (3.24) and (3.25) that we may write
the transformation of the parameters induced by the g-middle convolution as

N X1X2taias

01 R X2 — X2, a; — ay, as — aa,
tajasa taiasa t2a1a90 2t3a2a2
a3—>X2 1237 a4—>X2 1247 t91—>X2 122, 10y — X2 12,
61 th 01 61
(y—as)ly—as) 1
~ (y —tar)(y —taz) x1
— =
S Ty ey —a) 6
(y —tar)(y —taz)  x1x2taias
~ - - J—ta)(y—t
L oz W—as)(y—ad) (U — tar)(y — tas) . (4.10)

(y — tar)(y — taz) (y — xatarazas/61)(y — xatarazas/61)

By the correspondence in equation (4.6), it is rewritten as equation (4.9).

We show that the transformation of the parameters given in equation (4.9) coincides with
the consequence of the action given in equation (4.8). We apply the operation ssspsise to f
and g. Then

(f —wv3)(f —wa) g
f=r1/ve)(f — k1/ws)

Note that we define the composition of the transformations as automorphisms of the algebra
(symbolical composition in [7, Remark 2.1]). Since s3(f) = f(g — 1/v1)/(g — v5/k2), we have

sasosis2(f) = f, s2505152(9) = (

(f —v3)(f —wa) g—l
(= rm/v)(f —ri/vs)”
swosslf) =) ) I

(F=rafvn)(f — /)’ quivans

Here we used equation (4.2). By comparing it with equation (4.9), we obtain

s55250818283(f) = f.
We consider the operation to g. Since g is invariant under the actions of s3 and s5, we have

(f —v3)(f — 1) ’
f—=r1/vD)(f — K1/18)

$58250515283(9) = S2508152(9) = (
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We set s = s558950515253. Then
snsosssonsls) =
f-ss) f-sa) f-v f-wu ;
f—skivr) f —s(kifvg) [ —r1/vr [ —r1/vs ™

It follows from equation (4.2) that

R1 qUolV4ls R1 qUolV3ls R1 K1
s| — || = ——, s| — )| = ————, s(vs) = —, s(vg) = —.

vy K2 vy K2 g vy

Hence

85828180828382808182(9) =,

85828180525352505152(f) = 358280515253(f) = f

The action of the operation s5s25159S25352505152 to the other parameters is given by

2.2 2
qr1V2V5 q-vyVs
Kl — ——, KRy — ——,
K2 %)
qUiVvals qUaV3ls qU2al4ls
vy — ) Vo — V3, vy — ) vy — )
K92 R2 K2
qUaVslg quralsl7 qUalslg
Vs =& ——, Ve — Us, vr — ———, Vg — ——,
K92 R2 K2
and it recovers equation (4.9). [

5 Integral transformation on g-Heun equation

We interpret the integral transformation in Theorem 3.1 as the one for solutions of the single
second-order linear ¢-difference equations.

Proposition 5.1.
(i) The function yi(x) in equation (3.20) satisfies
{x(QXIZ —1)(x2z —1) (¢z — taraz/61)(qz — taraz/6s) }y1(l‘)

— X1X2a304
z Yz

X1x2(7 — qaz)(x — qay) tara
e — {qzyltﬂ)- ;12y1(w/q)}

L Az —ta)(@ —tay) fap(x) O
Yy—x qz taias

yl(qw)} =0. (5.1)

(1i) The function §1(z) in equation (3.21) satisfies

— T

2(qtha? — azaq)(x2Z — 1) tParaz(gx2b27 — 61) (gx3tarazz — 61) . ()
asa4z 0iyz 4

. XatOa(x — qth2/(x104))(x — qtb2/(x103)) {qzﬂl (z) — 12311 (:U/q)}

azas(qy — )
n q(x — t;l)(i — tay) {qu(;) o Xzyl(ql,)} =0, (5.2)

where y and z are determined by equation (4.10).
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Proof. It follows from equation (3.6) that the function y;(x) in equation (3.20) satisfies equa-
tion (4.5) with the condition dy = ¢o = 601/(tajaz). Then we obtain (7).

Equation (3.21) is obtained as the form of equation (3.20) by replacing the parameters as
(y,z) — (¥, 2) and equation (3.23) up to the ambiguity of the parameter w, and the g-difference
equation for 1 (x) does not depend on the parameter w. Hence (ii) follows from equation (3.22)
with the condition ¢ = ys. |

Theorem 5.2. Assume that y;(x) is a solution to equation (5.1) and X satisfies ¢* = x2a1a2t/0;.
Then the function

£oo s
i (2) = /0 Y1) b (2 5) dys (5.3)

s—x
formally satisfies equation (5.2).

Proof. Let b;jj(x) (i,j € {1,2}) be the elements of the matrix B(z) in equation (3.7). The
function y(z) is given as a solution to equation (5.1). Define the function ya(z) by yi(qz) =
bi1(x)y1(x) + bi2(x)y2(x). Since equation (5.1) is written as

y1(gz) bu(x) | baa(x/q) bii(z/q)baz(x/q) — brza(x/q)b21(x/q)
bia(z) {512(33) * 512(1’/Q)} @)+ bi2(z/q)

we obtain the equality ya(z) = ba1(z/q)y1(x/q) + bea(x/q)y2(x/q). Then the function Y (x) =
ty1(z),y2(x)) satisfies equation (3.20). Hence it follows from Theorem 2.2 that the function

Y(z) = Y(91(z), §2(z)) satisfies equation (3.21). Therefore the function g;(z) in equation (5.3)

yi(z/q) =0,

satisfies equation (5.2) by Proposition 5.1(i7). [
Corollary 5.3. Let u, ' and X be the constants such that ¢" = vs/ka, q“/ = quo and
¢ = quavs/ka. Let y(z) be a solution to the equation Liy(x) = 0 which was described in

equation (4.1). Then the function

;[ y(s
g(x) —x“/o QSNPA(:U,S) dgs (5.4)

sS—X

formally satisfies the equation EQ(HJ) = 0, where the operator Ly is obtained from Ly by replacing
the parameters in accordance with the action of $5525180525352805152 (see equation (4.9)).

Proof. Let y(z) be a solution to the equation Liy(xz) = 0 (see equation (4.1)). Set y;(x) =
xty(z). Then function y; (z) satisfies

{x(ng —D(gra —1)  vivovsva(g — vs/k2)(g — v6/k2) }y1 ()

q9 fg
nva(x — qus)(z — quy) vs
+ d(af — ) <gy1($) - @yl(ﬂf/Q)>
(x — k1/v7)(x — k1 /vg) (1 ) o) =
# P I (1)) 22y ga) )~

and it is written as equation (5.1) by the correspondence in equation (4.6). It follows from
Theorem 5.2 that the function

€0 4(s
i (x) 2/0 Sy(_ljs“PA(JfaS) dgs

satisfies equation (5.2). We apply the correspondence in equation (4.6) for the parameters and
set §(x) = z#'¢(z). Then it is seen that the function §(x) is written as equation (5.4) and
satifies the equation L;g(z) = 0. [
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We specialize the parameters y and z in Theorem 5.2 as

y = as 5= (ta1 — a3)(ta2 — a3) (5 5)
’ qt(01 + 62) + a3(qx1 + x2) + Eqbiaz/(taraz)

Then equation (5.1) is written as

xixet?ata3(z — a3)(z — qay)

(x —tay)(x — taz)y1(qx) + 0 yi(z/q)
1
t 1%
B { a1a2(z<; + QX1)x2 + Ex+ t2a1a2 (1 + 92> }y1(w) =0, (5.6)
1 1

and equation (5.2) is written as

(o= tan)o — tan)in(a) + X012 (0 ) (o I )

q1 X104
t 0 t 0
_ {mgzﬂgﬂ V Ex+ t2a1a2X2algm}@1 (z) = 0. (5.7)
gt 1

Note that these equations are the ¢-Heun equation, and the specialization of the parameters is
related to the initial value space of ¢-P (Dél)) (see [11]). By replacing the parameters, we obtain
the following theorem on the ¢g-Heun equation.

Theorem 5.4. Assume that l1lal3ly = h1hahsq? and g(x) satisfies the q-Heun equation writ-
ten as

(z — h1g"?) (z — hag" ) g(z/q) + l3la(z — Lig/?) (z — lag™"/?) g(qa)
— {(Is + la)a? + I3laEx + (hlalglahaho) V2 (hs'* + hy *) Yg(x) = 0. (5.8)

Let X be the value satisfying ¢ = q/ls. Then the function

€00 (g
g(x) :/ 9(s) Py(z,s)dgs
0
formally satisfies

(z — hiq"?) (z — hha*) g(x/q) + 15l (x — g™ ?) (z — tha™ ") glqa)
— {5+ U))2? + By Ex + (L5100 RS2 ((Rs)2 + (hs)™Y2) }a(x) = 0, (5.9)

where
1=bh, lb=l, =1l lU=q ki =qhi/ls, hy=qho/ls, hi=1s/(ghs).

Proof. Let Iy, ls, I3, l4, h1, he and hsz be the values such that l1l2l3ls = h1hohsg?. We evaluate
the values a1, a9,a3 and a4 as ag = h1q1/2, a4 = hgq_l/z, ta; = llq_l/2 and tas = lgq_l/z, and
fix the ratios 61/x1 and 01/x2 by ls = 01/(x1taiaz) and Iy = g1 /(xataiaz). It follows from
the relation X1X2ai1a2a304 = 01(92 in equation (33) that h3 = l1l2l3l4/(h1h2q2) == 91/92. Then
equation (5.8) is written as equation (5.6) by setting g(x) = y1(z). We apply Theorem 5.2, where
the parameters y and z are specialized as equation (5.5). Then we obtain equation (5.7) by the
g-integral transformation. By rewriting the parameters a1, aa, as, a4, 61/x1, 01/x2 and 6, /62,
we obtain equation (5.9). [
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6 Concluding remarks

In this paper, we applied the ¢g-middle convolution to a linear ¢-difference equation associated
with the g¢-Painlevé VI equation, and we obtain integral transformations as a consequence.
We investigated the symmetry by the ¢-middle convolution in terms of the affine Weyl group
symmetry of the g-Painlevé VI equation. As an application, we obtained an integral transfor-
mation on the ¢-Heun equation. Note that our result is a g-analogue of the results in [5, 13, 14]
on the Painlevé VI equation, the middle convolution and Heun’s differential equation.

In [10], the g-convolution was connected to the g-integral transformation by the Jackson
integral. On the other hand, the convolution for the system of Fuchsian differential equations
was connected to the Euler’s integral transformation, and there are several choice of the cycles
on the integration by the Pochhammer contour. Thus, there is a problem to find more cycles on
the g-integral transformation associated with the g-convolution. Other problems related with
the general g-middle convolution may be found from our explicit application of the specified
g-middle convolution.

The g-Painlevé VI equation was denoted by q—P(Dél)) in [7], and the Weyl group symmetry
and the Lax pair of discrete Painlevé equations including q—P(Dél)) were reviewed in [7]. The
equations g-P (Eél)) and q—P(Egl)) are also g-analogue of the Painlevé VI equation. We hope to

extend the symmetry of integral transformations to the cases ¢-P (Eél)) and q—P(Eél)) by using
the g-middle convolution, which might be related with the variants of ¢-Heun equation [15, 16].
There is also a problem to connect the degenerated g-Painlevé equations (e.g., q-P (Afll))) with
the g-middle convolution. In this direction, the theory of the ¢g-middle convolution for the
non-Fuchsian ¢-difference equation is anticipated.

A Middle convolution for other parameters

In Section 3, we discussed the middle convolution which is related to the g-Painlevé VI equation.
The space £ was defined in equation (3.12) and we imposed the condition ¢* = y2ajast/0; in
Section 3, which induces dim(£) = 1. In the appendix, we discuss the case Q= x1a1a9t/61,
which also induces dim(£) = 1.

We continue the argument in the case ¢* = xjajast/f; by replacing the matrix P in equa-
tion (3.13) with

0O 0 1 wypu O 0
g1 93 0 v2 0O O
p_ |0 0 1 0 wn O g3 = —q(x102y — 01)z + az(y — tay),
g2 94 0 0 oz 0 | 94 =y(a1 —a2)(gx1z — 1),
0 0 1 0 0 V21
0 0 0 0 0 V22
91 = —x2a2{@®x101(y — a3)(y — as) (x1y — xata1)2* + 01 (y — tar)*(y — tas)

— q(y—ta1) (201x1y° — 01 (xotar + xitas+ x1a3+ X1a4)y+ t(07+ X1X2a102a304)) 2},

g2 = (a1 — a2)y{@xix2b1(y — a3)(y — aa)2® + 1x2(y — tar)(y — tas)
— qx1(2x201y” — X201 (tay + tag + a3 + as)y + t(07 + x3a1a2a30a4) ) 2}

Recall that voy, ..., ves were defined by equations (3.9) and (3.10). Then det P = ¢3w?y323 x
x2(x1 — x2)%(a1 — a2)03(xataiaz — 61)v3y, and the matrix P is invertible if det P # 0. Set

=P 'RP  F=P'RP  F,=P'F.P
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(see equation (3.11)). Then they admit the following expression:

B <F1 o)j B = (F2 O>’ . (Foo 0)7
ES B3 *k *k B3 B3

where F1, Fy, Fo are 2 x 2 matrices given by

Foo = <0 X2tala2/91)’ Fo = F1la;cazs
Fi= 2 —o A —aaf!
ay20i(ar = a2) (xataraz = 01) X2a291f1[1] :E.l] Xza%f3m

where

M — gxix2a2(y — a3)(y — as)z — (x2a2y — 01)(y — taz),

A = a(1aay = 1)z — as(y — tay),
ngl] = ¢*x101(y — a3)(y — as) 1y — x2ta1)2” + 01 (y — tar)?(y — taz)
— q(y—tar) (2x161y° — 01 (xotar + xitas+ x1a3+ X1a4)y+ t(0F+ X1X2a102a304) ) 2.

Write

V(gz) = F@)Y(2), F() = Foot — 1 Fy

1—o/(tar) | 1—a/(taz)’

(A1)

Note that the upper right entry of F(z) is written as

tajas((tajas — qbh2)x + tajasy(gx1z — 1))
qyz@%(x —tay)(z — tag)(xatarag — 61)

As discussed in Section 3, equation (A.1l) is related to an integral transformation. Let Y (x)

be a solution to Y (gqz) = B(z)Y (z) in equation (3.6) and write Y (z) = (z;g;) By applying

Theorem 2.2, it is shown that the function Y (z) = (z;gg) defined by

§oo 4 . . . . .
o _ Pj1 Dj3 Djs5 Pj2 Dja Dje
93(x) /0 {< s +s—ta1+s—ta2>y1<s)+< s +s—ta1+3—ta2>y2(s)}
X Py\(z,s)dys, ji=1,2,

formally satisfies equation (A.1), where pjj, is the (j, k)-entry of the matrix P~
By a straightforward calculation, it is shown that

P21 P23 P25 —t07(x1 — x2)

il = b S),
s + s —tay + s—taz  c(xataiags —01)s 21(5)

D22 D24 D26 —t037 (x1 — X2)

b2 - boa(s) — 1),
s + s —tay + s—tay  c(xaotarag — 91)3( 22(5) )

P12 P14 p16  O1((taras — qz01)s + ytaraz(qzx1 — 1))

— + + = bi2(s),
s s—ta; s—tas qewyzxzaiaz(xataras — 01)(s — y)s

P11 P13 p15  01((taras — qz01)s + ytaraz(qzx1 — 1))

— + + = bi1(s)
s s—ta; s—tas qewyzxzaiaz(xataras — 01)(s — y)s

_ tha(taraz — gz61)s + ybi(gzxa — 1))
qewyzxa(xataiaz — 01)(s — y)s

)
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¢ = ¢°xix201(y — a3)(y — aa)z* + 01 (yx2 — xataz)(y — tar)
— qx1(2x201y” — 01 (x2tar + xatas + x2a3 + X2a4)y + t(x1X2a102a304 + 67) ) 2,

where b;(s) are elements of the matrix B(s) in equation (3.7). It follows from yi(gs) =
br1(s)y1(s) + bra(s)ya(s) that

(tayas — qz61)

71(r) =
(z) qewyzxaaiaz(xataras — 61)

S0 al1a z — T.s

Hence, the integral representation of 4; () in the case ¢* = x1tajas/6; is more complicated than
that in the case ¢* = xatajas/f;. On the other hand, it follows from 2(qs) = ba1(s)y1(s) +
baa(s)y2(s) that

—t02(x1 — x2)  [*™ y2(gs) — ya2(s)
Jo(z) = P ds.
a(®) c(xataiag — 01) /0 s A(@,8) dgs

To give the correspondence of the parameters by the g-middle convolution in the form of
the equation Y (gz) = {Ao(t) + Ai(t)z + A22?}Y (z) in equation (3.2), we need to transform
equation (3.21). N

Let ¢ and d be a non-zero constant which will be fixed later. Set x = dz,

A(F) = & — tay)(x — tay) <F°° iz f/l(ml) i 352(ta2)>

and write A(Z) = A(Z,t) = Ag(t) + A1 (t)T + A2, Then we have

AVQ _ <567201/(§ta1a2) 0 >7

EJZX2

ﬁo(t) has the eigenvalues ¢y 1t2aias and ¢tfs,

_ ~2 74
deot A7) = X0 (5t (o taa) (o atmesas (o xateaar)
tazaz d d do, do,

Hence the action of the g-middle convolution to the parameters in the case ¢ = yitajas/6; is
described as

EJ291 ~9 { ay ag }
X1 — , X2 — cd X2, a1,a2} = 4 —=,—= ¢,
taiag { I d d
t t ~ ~
{ag, a4} — {Xl 3;a2a3, X1 3190,2@4 }, {t91, t@g} — {cx1t2a1a2, Ct02}.
1 1

We investigate the action to the parameters y and z. We denote the images of y and z by ¥
and z. Let a11(7) (vesp. a12(Z)) be the upper left entry (resp. the upper right entry) of the
matrix A(z). Then the value y is the zero of the linear function a;12(z), and we have

. taras(gx1z — 1) _ xitaraz(qz — 1/x1)

U= —= = )
d(gb1z — tayaz) dh(qz — tayaz/61)

The value Zz satisfies a11(Z)|7—5 = (¥ — ta1/d) (y — taz/d) /(¢z), and we obtain

~ z
z = -
cd?
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Set d = x1taijaz /67 and ed? = 1. By applying the correspondence in equation (4.6), the trans-
formation of the parameters is written as

R2 K1 K1 K1R2 R1K2
vy — —, vy — Vo, {7}%{ ) }7 {V37V4}_>{V37V4}7
Vs vr Vg v lVs Vgli1ls

{sz @}%{m,@}, PNk VLT

)
vs Vg V6 g — VUs/Ka

Hence we obtain the following proposition.

Proposition A.1. We specify the parameters ¢ and d by setting d = xitajaz /61 and ed? = 1.
Then the transformation of the parameters induced by the g-middle convolution in the case

A

q" = x1taiag /0 is realized by the action of s3 given in equation (4.7).
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