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Abstract. The perturbation semigroup was first defined in the case of ∗-algebras by
Chamseddine, Connes and van Suijlekom. In this paper, we take E as a concrete opera-
tor system with unit. We first give a definition of gauge group G(E) of E , after that we
give the definition of perturbation semigroup of E , and the closed perturbation semigroup
of E with respect to the Haagerup tensor norm. We also show that there is a continuous
semigroup homomorphism from the closed perturbation semigroup to the collection of uni-
tal completely bounded Hermitian maps over E . Finally we compute the gauge group and
perturbation semigroup of the Toeplitz system as an example.
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1 Introduction

An operator system E is a matrix-normed vector space equipped with a conjugate linear map
x 7→ x∗ on E such that (x∗)∗ = x for all x ∈ E . Although there is not a well-defined product
of elements in E , we can embed the operator system E into some C∗-algebra A, and then take
the gauge group of E as the collection of unitary elements of A that keep E invariant under the
unitary transformation, i.e.,

G(E) := {u ∈ A : u∗Eu = E}.

There are several different approaches to embed E into a C∗-algebra, for instance, we can embed E
into the C∗-envelope C∗

en(E), the injective envelope C∗
in(E), or simply the C∗-algebra C∗(E)

generated by E when E is a concrete operator system. In this paper, we take E to be a concrete
closed operator system with unit, i.e., a closed linear subspace of bounded operators on some
Hilbert space H with Id ∈ E ⊂ B(H), and we embed E into C∗(E). In Section 2, we show that
there is a group homomorphism from G(E) to the set of unital completely positive maps on E .
In Section 4.1, we show that the gauge group G(Toepn) of Toeplitz system Toepn is independent
of n, and

G(Toepn) ∼= U(1)× (U(1)⋊ Z2).

Inspired by the definition of perturbation semigroup of ∗-algebras given in [3], the perturbation
semigroup of matrix algebras [10] and C∗-algebras [8], in Section 3, we give the definition of the
perturbation semigroup Pert(E) of an operator system E . More than that, since the perturbation
semigroup Pert(E) is a subset of A⊗A◦, we can take the closure of Pert(E) with respect to the
Haagerup tensor norm, and we can show that there is a continuous semigroup homomorphism
from this closure of Pert(E) to the collection of unital completely bounded Hermitian maps on E .
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In Section 4.2, we discuss the perturbation semigroups Pert(Toepn) of Toeplitz system Toepn
in more detail. We show the relationship between an element ω ∈ Pert(Toepn) and the cor-
responding (2n − 1) × (2n − 1) transformation matrix of Toeplitz system Toepn under the
fundamental basis {τ−n+1, . . . , τ0, . . . , τn−1} of Toepn.

2 Gauge group of an operator system

Let H be a separable Hilbert space, we denote by B(H) the set of bounded operators on H, E ⊂
B(H) an operator system,1 and C∗(E) the C∗-algebra generated by E . We are mainly interested
in the unital completely positive (UCP) maps over E . According to Arveson’s extension theorem
[1, 11], if φ : E → E is a UCP map, then there is a UCP map φ̃ : B(H) → B(H) such that φ̃

∣∣
E = φ.

In addition, if φ̃ is normal,2 according to Kraus [9, Theorem 3.3 or Theorem 4.1], the map φ̃
can be written as

φ̃(x) =
∑
k

V ∗
k xVk, ∀x ∈ B(H),

for some operators {Vk}k∈K ⊂ B(H) such that
∑
V ∗
k Vk = Id. Hence especially when U ∈ C∗(E)

is a unitary element satisfying U∗EU ⊂ E the corresponding map φ : x 7→ U∗xU is a UCP map
over E .

We denote by UCP(E) the collection of all the unital completely positive maps, and
UCPrank=1(E) the collection of rank-1 unital completely positive maps, i.e.,

UCPrank=1(E) :=
{
φ : E → E | φ(·) = V ∗(·)V for some V ∈ B(H) with V ∗V = Id

}
.

We realize that both UCP(E) and UCPrank=1(E) are semigroups with respect to the map com-
position.

Definition 2.1. We define the gauge group G(E) of E as

G(E) := {U ∈ U(C∗(E)) | U∗EU = E},

here U(C∗(E)) denotes the group of all the unitary elements in C∗(E).

Remark 2.2. If φ(·) = V ∗(·)V ∈ UCPrank=1(E), then V ∈ B(H) is an isometry. In particular, if
E ⊂Mn(C) is a finite dimensional operator system, then V is a unitary matrix and UCPrank=1(E)
is a group.

Proposition 2.3. There is a multiplicative map Ψ: G(E) → UCPrank=1(E) defined as

Ψ: U 7→ U∗(·)U, U ∈ G(E).

We observe that the image of Ψ forms a group and the map Ψ: G(E) → Image(Ψ) is a sur-
jective group homomorphism.

3 Perturbation semigroup of an operator system

In this section, we discuss unital completely bounded Hermitian(UCBH) maps and the pertur-
bation semigroup of a concrete unital operator system E ⊂ B(H).

1Please check Appendix A for more details.
2Please check Appendix A for the definition of normal map.
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Definition 3.1. We say Ψ: E → E is a Hermitian unital map if Ψ(x∗) = Ψ(x)∗ for all x ∈ E
and Ψ(Id) = Id for the unital element Id ∈ E . We denote by UCBH(E) the collection of all
unital completely bounded Hermitian maps over E , i.e.,

UCBH(E) :=
{
Ψ: E → E | Ψ(x∗) = Ψ(x)∗, Ψ(Id) = Id, Ψ is completely bounded

}
.

Inspired by the definition of perturbation semigroups introduced in [3, 8, 10], we define the
perturbation semigroup Pert(E) of an operator system as follows:

Definition 3.2. Let E be an operator system, C∗(E) be the C∗-algebra generated by E and
C∗(E)◦ be the opposite algebra of C∗(E). We define the perturbation semigroup Pert(E) as the
collection of all the finite sums of the form

∑
ai ⊗ b◦i ∈ C∗(E)⊗ C∗(E)◦ satisfying the following

requirements:

1)
∑
aibi = Id,

2)
∑
aiEbi ⊂ E ,

3)
∑
ai ⊗ b◦i =

∑
b∗i ⊗ a∗◦i .

Remark 3.3. In the definition above, the opposite algebra C∗(E)◦ contains the same elements
and addition operation as C∗(E), while the multiplication order is reversed. And it is worth to
observe that (1) and (3) inherit from the original definition of perturbation semigroup in [3],
while (2) is an extra condition we need to assume in our case of operator system.

For each (a, b◦) ∈ C∗(E) × C∗(E)◦, let δ(a,b◦) denote the completely bounded linear map
on C∗(E) in which δ(a,b◦)(ξ) = aξb, for all ξ ∈ C∗(E). Let CB(C∗(E)) denote the set of all
completed bounded maps over C∗(E). The map C∗(E)× C∗(E)◦ → CB(C∗(E)) that sends each
(a, b◦) ∈ C∗(E)×C∗(E)◦ to δ(a,b◦) ∈ CB(C∗(E)) is bilinear and therefore extends to a linear map
Ψ: C∗(E)⊗alg C

∗(E)◦ → CB(C∗(E)).
The perturbation semigroup Pert(E) is a subset of C∗(E)⊗algC

∗(E)◦, and so we define the map
Φ: Pert(E) → CB(C∗(E)) by Φ = Ψ

∣∣
Pert(E). Proposition 3.4 below shows that Φ is a semigroup

homomorphism of Pert(E) into UCBH(E).

Proposition 3.4. There is a semigroup homomorphism Φ from Pert(E) to UCBH(E) defined by

Φ: Pert(E) → UCBH(E),

ω 7→
∑

ai(·)bi

with ω =
∑
ai ⊗ b◦i ∈ Pert(E).

Proof. According to the definition of Pert(E) any element ω ∈ Pert(E) can be written as
ω =

∑
ai ⊗ b◦i =

∑
b∗i ⊗ a∗◦i , thus Φ(ω) is a Hermitian map. The assumption that

∑
aibi = Id

confirms Φ(ω) is unital. Since there are only finitely many terms in the expression of the sum

Φ(ω) : x 7→
∑

aixbi, ∀x ∈ E ,

hence it is completely bounded due to [11, Chapter 8].
Finally we shall show that the map Φ: Pert(E) → UCBH(E) is a semigroup homomorphism.

Let ω =
∑
ai ⊗ b◦i and ω̃ =

∑
ãj ⊗ b̃◦j be two elements in Pert(E), we have that ωω̃ =

∑
aiãj ⊗(

b̃jbi
)◦
, and by Definition 3.2

Φ(ωω̃)(x) =
∑

aiãj x b̃jbi =
∑
i

ai

(∑
j

ãj x b̃j

)
bi for any x ∈ E ,

thus Φ(ωω̃) = Φ(ω)Φ(ω̃) for ω, ω̃ ∈ Pert(E). ■
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We can move one step further by equipping the semigroup Pert(E) with the Haagerup tensor
norm so that Φ can be extended to the closure of Pert(E). Recall that the Haagerup tensor
norm3 ∥u∥h of an element u ∈ C∗(E)⊗ C∗(E)◦ is defined as

∥u∥h = inf

{∥∥∥∑ aia
∗
i

∥∥∥1/2∥∥∥∑ b∗i bi

∥∥∥1/2},
where the infimum is taken over all the expressions of u =

∑
ai ⊗ b◦i for ai, bi ∈ C∗(E). Here we

omit the opposite algebra structure. Since Pert(E) is a subset of C∗(E)⊗C∗(E)◦, we can endow
Pert(E) with the metric topology induced by the Haagerup tensor norm ∥ · ∥h.

Definition 3.5. We define the closed perturbation semigroup Pert(E) as the closure of Pert(E)
with respect to the topology induced by Haagerup tensor norm ∥ · ∥h.

Proposition 3.6. Let E ⊂ B(H) be a unital operator system, the map Φ: Pert(E) → UCBH(E)
can be extended to a map

Φ̃ : Pert(E) → UCBH(E),

such that Φ̃
∣∣
Pert(E) = Φ. Moreover, if we equip Pert(E) and UCBH(E) with the metric topology

induced by Haagerup tensor norm ∥ · ∥h and complete bound norm ∥ · ∥cb respectively, the map Φ̃
is contractive.

Proof. By Definition 3.2 Pert(E) is a subset of C∗(E) ⊗alg C
∗(E). Take an element ω =

∑
ai

⊗b◦i ∈ Pert(E), we define a map Φ̃: Pert(E) → CB(B(H)) as Φ̃(ω) : T 7→
∑
aiTbi for T ∈ B(H).

According to [12, Theorem 5.12], the map Φ̃ is completely isometric if we equip with ω the
Haagerup norm and Φ̃(ω) the completely bounded norm. If we can take the closure Pert(E),
we get a map from Pert(E) to CB(B(H)), which we still denote as Φ̃. By our definition of Φ̃,
we observe that Φ̃

∣∣
Pert(E) = Φ, hence we only need to show that the image of Φ̃ is contained

in UCBH(E).
Take a sequence of {ωn}n≥1 ⊂ Pert(E) that approaches to some ω ∈ Pert(E). Since

Φ̃(ωn)(Id) = Φ(ωn)(Id) = Id,

we obtain that Φ̃(ω) is a unital map. Similarly, since for each ωn the map Φ(ωn) is Hermitian, we
conclude that Φ̃(ω) is Hermitian. Hence we only need to show that for any x ∈ E , Φ̃(ω)(x) ∈ E .

In fact, for any ϵ > 0, there exists an N > 0 such that when n ≥ N we have ∥ωn − ω∥h < ϵ.
Besides that, according to [12, Theorem 5.12], if we regard Φ̃(ωn) − Φ̃(ω) as a map on B(H)
we can obtain that

∥∥Φ̃(ωn) − Φ̃(ω)
∥∥
cb

= ∥ωn − ω∥h, since E ⊂ B(H). For the restriction of

Φ̃(ωn)− Φ̃(ω) to E we obtain
∥∥Φ̃(ωn)− Φ̃(ω)

∥∥
cb
≤ ∥ωm − ω∥h. Hence∥∥Φ̃(ωn)− Φ̃(ω)

∥∥ ≤
∥∥Φ̃(ωn)− Φ̃(ω)

∥∥
cb
≤ ∥ωn − ω∥h < ϵ.

Thus if we take an x ∈ E , we have∥∥Φ̃(ωn)(x)− Φ̃(ω)(x)
∥∥

∥x∥
< ϵ.

Therefore Φ̃(ωn)(x) → Φ̃(ω)(x). So that by closedness of E we obtain that Φ̃(ω)(x) ∈ E .
Hence for an element ω ∈ Pert(E), we can consider Φ̃(ω) as either an element of UCBH(B(H))

or an element of UCBH(E). However, since E ⊂ B(H) is a subset, if we regard Φ̃(ω) as a element
in UCBH(E), the completely bounded norm of Φ̃(ω) is less than or equal to the completely
bounded norm of Φ̃(ω) as an element of UCBH(B(H)). Therefore the map Φ̃ is contractive. ■

3Please see Appendix B for more details.
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For a general operator system E we can only conclude the map Φ̃: Pert(E) → UCBH(E) is
completely contractive rather than completely isometric.

Example 3.7. Let {Eij}, 1 ≤ i, j ≤ 2 be the standard matrix units for M2(C). Define

Toep2 =

{(
a b
c a

)
⊂M2(C)

}
.

Take ω1, ω2 ∈ Pert(Toep2) given as

ω1 = E12 ⊗ E ◦
12 + E21 ⊗ E ◦

21 + E11 ⊗ E ◦
11 + E22 ⊗ E ◦

22,

ω2 = (E12 + E21)⊗ (E12 + E21)
◦.

By a direct computation we obtain that Φ(ω1) = Φ(ω2) on Toep2, both give rise to the transposi-
tion map on Toep2, and we observe that E12+E21 is a 2×2 unitary matrix, thus ∥Φ(ω2)∥cb = 1,
and therefore we obtain that ∥Φ(ω1)∥cb = 1.

However, according to [11, Theorem 17.4], the Haagerup tensor norm ∥ω1∥h is equal to the
completely bounded norm of the transposition transformation over M2(C), which is equal to 2.
Therefore, ∥Φ(ω1)∥cb = 1 < ∥ω1∥h = 2.

Definition 3.8. We denote by Pert+(E) the sub-semigroup of Pert(E) containing all the ω ∈
Pert(E) of the form ω =

∑
ai ⊗ a∗◦i for some ai ∈ C∗(E), i.e.,

Pert+(E) :=
{
ω ∈ Pert(E)

∣∣∣ω =
∑

ai ⊗ a∗◦i for some ai ∈ C∗(E)
}
.

To simplify the notation we still denote the restriction Φ|Pert+(E) to Pert+(E) by Φ.

Corollary 3.9. Let ω =
∑
ai ⊗ a∗◦i ∈ Pert+(E). We have Φ(ω) ∈ UCP(E), namely

Φ: Pert+(E) → UCP(E),

ω 7→
∑

ai(·)a∗i .

Proof. By Proposition 3.4 we have that Φ(ω) ∈ UCBH(E) for ω ∈ Pert+(E), and Φ(ω)(·) =∑
ai(·)a∗i , which is a completely positive map. ■

As in the case of Pert(E), we can take the closure of Pert+(E) with respect to Haagerup

tensor norm, which we denote as Pert+(E).

Proposition 3.10. Let Pert+(E) be the closure of Pert+(E) with respect to Haagerup tensor
norm. We can extend the map Φ: Pert+(E) → UCP(E) to a map

Φ̃ : Pert+(E) → UCP(E),

such that Φ̃
∣∣
Pert+(E) = Φ. Moreover, we have ∥ω∥h = 1 and ∥Φ̃(ω)∥cb = 1 for every ω ∈ Pert+(E).

Proof. Take an element ω ∈ Pert+(E), according to Proposition 3.6, the map Φ̃(ω) ∈ UCBH(E).
we then need to show that Φ̃(ω) is completely positive. Indeed, if we take a sequence {ωn}n≥1 ⊂
Pert+(E) such that ωn → ω, then for any ϵ > 0, there exists an N > 0 such that when n ≥ N∥∥Φ̃(ωn)− Φ̃(ω)

∥∥
cb
≤ ∥ωn − ω∥h < ϵ. (3.1)

Take a positive element Xk ∈ Mk(E), then Φ̃(ωn)(Xk) ∈ Mk(E) is also positive for all n ∈ N.
And by the inequality (3.1), we have∥∥Φ̃(ωn)(Xk)− Φ̃(ω)(Xk)

∥∥
∥Xk∥

< ϵ,
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that is to say, Φ̃(ω)(Xk) is the limit point of the sequence of positive elements
{
Φ̃(ωn)(Xk)

}
n≥1

inMk(E), thus Φ̃(ω)(Xk) ∈Mk(E) is positive. Since this is true for all k ∈ N, Φ̃(ω) is completely
positive and therefore Φ̃(ω) ∈ UCP(E).

Finally, we only need to show that
∥∥Φ̃(ω)∥∥

cb
= ∥ω∥h = 1 for each ω ∈ Pert+(E). Take an

element ω ∈ Pert+(E). For any ϵ > 0, there exists an ω′ ∈ Pert+(E) such that

∥Φ(ω′)∥cb − ϵ ≤
∥∥Φ̃(ω)∥∥

cb
≤ ∥ω∥h ≤ ∥ω′∥h + ϵ.

Since ω′ ∈ Pert+(E), we can write ω′ as ω′ =
k∑

i=1
ai ⊗ a∗◦i for some ai ∈ C∗(E), and according to

Definition 3.2, we obtain that
k∑

i=1
aia

∗
i = Id. Thus

∥ω′∥h ≤

∥∥∥∥∥
k∑

i=1

aia
∗
i

∥∥∥∥∥ = 1.

On the other hand, we observe the inequality

∥Φ(ω′)∥cb ≥ ∥Φ(ω′)∥ ≥ ∥Φ(ω′)(Id)∥ = 1.

Hence combine the three inequalities above together we conclude that

1− ϵ ≤
∥∥Φ̃(ω)∥∥

cb
≤ ∥ω∥h ≤ 1 + ϵ.

Since this is true for every ϵ > 0, we obtain that
∥∥Φ̃(ω)∥∥

cb
= ∥ω∥h = 1 for all ω ∈ Pert+(E). ■

We also observe that there is a map from the gauge group G(E) to the semigroup Pert+(E),
as stated in the following proposition.

Proposition 3.11. There is a multiplicative map from G(E) to Pert+(E) defined by

G(E) → Pert+(E),
u→ u∗ ⊗ u◦.

Remark 3.12. Although for an element ω ∈ Pert+(E) we have
∥∥Φ̃(ω)∥∥

cb
= ∥ω∥h = 1, the

completely bounded norm
∥∥Φ̃(ω1) − Φ̃(ω2)

∥∥
cb

and the Haagerup norm of ∥ω1 − ω2∥h for two

elements ω1, ω2 ∈ Pert+(E) usually are not equal.

Consider the 2× 2 Toeplitz system Toep2. Take ω1, ω2 ∈ Pert+(Toep2) as

ω1 = E11 ⊗ E◦
11 + E22 ⊗ E◦

22, ω2 = E12 ⊗ E◦
21 + E21 ⊗ E◦

12,

although ω1 ̸= ω2, we have Φ(ω1) = Φ(ω2). Indeed,

Φ(ω1) = Φ(ω2) :

(
a b
c a

)
7→
(
a 0
0 a

)
.

Therefore
∥∥Φ̃(ω1)− Φ̃(ω2)

∥∥
cb

is equal to 0 while ∥ω1 − ω2∥h is not.
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4 Gauge group and perturbation semigroup
of the Toeplitz system

The concept of truncated circle is introduced by Alain Connes and Walter D. van Suijlekom
in [4]. Recall that the canonical spectral triple on the circle is in the form of(

C∞(S1
)
, L2

(
S1
)
, D = −i

d

dt

)
as discussed in [15, Chapter 5]. Let {en}n∈Z be the set of eigenvectors ofD, we consider a spectral
truncation defined by the orthogonal projection Pn onto spanC{e1, e2, . . . , en} for some n > 0.
The truncated circle with respect to Pn is defined as(

PnC
∞(S1

)
Pn, PnL

2
(
S1
)
, PnDPn

)
.

Since Pn does not commute with the ∗-algebra C∞(S1
)
, PnC

∞(S1
)
Pn is only an operator system

rather than an algebra. In fact, if f ∈ C∞(S1
)
is a smooth function with Fourier coefficients

{an}n∈Z, then the truncation PnfPn can be written as a Toeplitz matrix:

PnfPn =



a0 a−1 · · · a−n+2 a−n+1

a1 a0 a−1 · · · a−n+2

... a1 a0
. . .

...

an−2

...
. . .

. . . a−1

an−1 an−2 · · · a1 a0

.

Hence it turns out that PnC
∞(S1

)
Pn is the Toeplitz operator system containing all the n × n

Toeplitz matrices, which we denote as Toepn.
One interesting question is what are the gauge group and perturbation semigroup of the

Toeplitz operator system Toepn. In this section, we will present the structure of gauge group
G(Toepn) and some properties of perturbation semigroup Pert(Toepn). Many properties of
Toepn are different from that of Mn(C), in this section, we will also show that the transpose
map on Toepn is a UCP map, which is absolutely wrong in the case of Mn(C). The readers can
refer to [7] for more details and other interesting behaviors about Toeplitz operator system.

4.1 Gauge group of the Toeplitz system

As is shown in [4], the C∗-algebra generated by Toepn is just Mn(C). The main goal of this
section is to figure out G(Toepn). One interesting phenomenon is that G(Toepn) is independent
of n. Before proving that we need the following lemma.

Lemma 4.1. Let U ∈ G(Toepn), then U is either a diagonal matrix or an anti-diagonal matrix.

Proof. We take a unitary matrix U = (uij)1≤i,j≤n ∈ U(Mn(C)) and a basis {τj}j=−n+1,...,n−1 of
the Toeplitz system Toepn given by 1’s on the j’th diagonal and 0’s elsewhere, i.e., for positive k
we have

τk =

n−k∑
i=1

Ei,i+k, τ−k =

n−k∑
i=1

Ei+k,i,

here Ei,j is the n × n unit matrix with 1 in (i, j)-entry and 0’s everywhere else. An element
U ∈ G(Toepn) if and only if U∗τjU ∈ Toepn for all j ∈ [−n + 1, n − 1]. We observe first that
when k > 0 the (j, l)-entry of U∗τkU is given by

(U∗τkU)j,l =
n−k∑
i=1

ui,juk+i,l, 1 ≤ j, l ≤ n, (4.1)
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and

Tr(U∗τkU) =
n∑

j=1

n−k∑
i=1

ui,juk+i,j .

Since U is a unitary matrix, we have
n∑

j=1
ui,juk+i,j = 0 for k > 0 and 1 ≤ i ≤ n − k. Thus we

have

Tr(U∗τkU) =
n∑

j=1

n−k∑
i=1

ui,juk+i,j = 0, k > 0.

Due to our assumption that U∗τkU ∈ Toepn, we must have all the diagonal entries of U∗τkU
are zeros:

n−k∑
i=1

ui,juk+i,j = 0, k > 0, 1 ≤ j ≤ n. (4.2)

Take k = n − 1 and j = 1 in formula (4.2), we have that u1,1un,1 = 0. However u1,1
and un,1 can not be both equal to 0, otherwise by equation (4.1), U∗τn−1U = 0. In fact,
the equation (4.1) implies that (U∗τn−1U)j,l = u1,jun,l, suppose if u1,1 = un,1 = 0, then
(U∗τn−1U)1,l = (U∗τn−1U)j,1 = 0 for all 1 ≤ j, l ≤ n. That is, all the entries in the first
row and the first column of U∗τn−1U are 0’s, since we assume the matrix U∗τn−1U is a Toeplitz
matrix, we conclude that (U∗τn−1U) = 0. This is a contradiction of the unitary of U .

Since u1,1 and un,1 can not both be equal to 0, we first assume that u1,1 = α ̸= 0 and un,1 = 0.
If we take k = n− 2 and j = 1 in formula (4.2), we obtain that

u1,1un−1,1 + u2,1un,1 = 0. (4.3)

Therefore we have un−1,1 = 0. We then take k = n − 3 and j = 1 in formula (4.2) again, we
obtain the equation

u1,1un−2,1 + u2,1un−1,1 + u3,1un,1 = 0, (4.4)

since u1,1 ̸= 0, un,1 = 0 and un−1,1 = 0, we obtain that un−2,1 = 0. By induction, take j = 1 and
k = n − 4, n − 5, . . . , 2, 1, we obtain that ui,1 = 0 for 1 < i ≤ n, namely, all the entries in the
first column of U are equal to 0 except that u1,1 = α ̸= 0. Thus we can write U in the matrix
form as

U =


α u1,2 u1,3 · · · u1,n
0 u2,2 u2,3 · · · u2,n
0 u3,2 u3,3 · · · u3,n
...

...
...

. . .
...

0 un,2 un,3 · · · un,n

,

and by a simple computation

U∗τn−1U =


0 αun,2 αun,3 · · · αun,n
0 u1,2un,2 u1,2un,3 · · · u1,2un,n
0 u1,3un,2 u1,3un,3 · · · u1,3un,n
...

...
...

. . .
...

0 u1,nun,2 u1,nun,3 · · · u1,nun,n

. (4.5)
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Now we show that u1,2 = u1,3 = · · · = u1,n = 0. Since the matrix (4.5) is a Toeplitz matrix, the
(2, 2)-entry element in (4.5) must be equal to 0, namely u1,2un,2 = 0. Suppose u1,2 ̸= 0, then
we must have un,2 = 0, which implies that the second column of (4.5) is 0. It then implies that
the (2, 3)-entry element in (4.5) is equal to 0, which implies un,3 = 0 and thus the third column
of (4.5) is 0. By induction, we obtain that un,1 = un,2 = un,3 = · · · = un,n−1 = un,n = 0, that
is, U∗τn−1U = 0, which is impossible. Therefore we must have u1,2 = 0, and we deduce that
all the entries in the second row of (4.5) are 0’s. Hence the only non-zero entry in (4.5) is the
(1, n)-entry and all the rest entries are 0’s. Namely,

U∗τn−1U = αun,nτn−1.

Thus we obtain that u1,2 = u1,3 = · · · = u1,n = 0. That is to say, the unitary matrix U is of the
form

U =

(
α 0

0 Ũ

)
, |α| = 1, Ũ ∈ U(Mn−1(C)).

Take a Toeplitz matrix T = (tij)1≤i,j≤n ∈ Toepn, we write T in the block form as

T =

(
x X

Y T̃

)
, T̃ ∈ Toepn−1,

here x = t11, X = (t12, . . . , t1n), and Y = (t21, . . . , tn1)
T. A simple computation shows that

U∗TU =

(
x αXŨ

αŨ∗Y Ũ∗T̃ Ũ

)
∈ Toepn,

which implies that Ũ∗T̃ Ũ ∈ Toepn−1. Apply the same argument to Ũ ∈ Toepn−1, we obtain

that the (n− 1)× (n− 1) unitary matrix Ũ is of the form

Ũ =

(
β 0

0 Û

)
, |β| = 1, Û ∈ U(Mn−2(C)),

apply the same argument to Û again, by induction we obtain that U is a diagonal matrix when
u1,1 ̸= 0.

On the other hand, when u1,1 = 0 and un,1 = α ̸= 0, the equation (4.3) then implies that
u2,1 = 0, and the equation (4.4) implies that u3,1 = 0, by induction, take k = n−4, n−5, . . . , 2, 1
and j = 1, we obtain that the first column of U are all zeros except un,1 ̸= 0. Namely the unitary
matrix U is of the form

U =


0 u1,2 · · · u1,n−1 u1,n
0 u2,2 · · · u2,n−1 u2,n
...

...
. . .

...
...

0 un−1,2 · · · un−1,n−1 un−1,n

α un,2 · · · un,n−1 un,n

,
and by a direct computation we can write the matrix U∗τn−1U as

U∗τn−1U =


0 0 · · · 0 0

u1,2α u1,2un,2 · · · u1,2un,n−1 u1,2un,n
...

...
. . .

...
...

u1,n−1α u1,n−1un,2 · · · u1,n−1un,n−1 u1,n−1un,n
u1,nα u1,nun,2 · · · u1,nun,n−1 u1,nun,n

.
Using a similar argument as in the case of u1,1 ̸= 0 and un,1 = 0, we can deduce that U is an
anti-diagonal matrix if u1,1 = 0 and un,1 ̸= 0. ■
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The gauge group G(Toepn) has a more explicit expression as given below.

Proposition 4.2. The gauge group G(Toepn) is generated by the diagonal matrices Uα,β and
anti-diagonal matrix V of the form

Uα,β =


α 0 0 · · · 0
0 β 0 · · · 0
0 0 αβ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · αn−2βn−1

, V =


0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
... . .

. ...
...

...
1 · · · 0 0 0

, |α| = |β| = 1. (4.6)

Proof. According to Lemma 4.1, any U ∈ G(Toepn) is either a diagonal matrix or an anti-
diagonal matrix. Suppose U is a diagonal matrix, then U can be expressed as

U =


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn


with |αi| = 1 for i = 1, 2, . . . , n. We then obtain

U∗τ1U =


0 α1α2 0 · · · 0
0 0 α2α3 · · · 0
...

...
. . . · · ·

...
0 0 0 · · · αn−1αn

0 0 0 · · · 0

,

since U∗τ1U ∈ Toepn, we must have α1α2 = α2α3 = · · · = αn−1αn. If we take α1 = α and
α2 = β, we must have αi = αi−2βi−1 for 3 ≤ i ≤ n, hence we obtain the unitary matrix Uα,β as
given in (4.6).

Now suppose if the unitary matrix W is an anti-diagonal matrix of the form

W =


0 0 · · · 0 α1

0 0 · · · α2 0
...

...
. . .

...
...

0 αn−1 · · · 0 0
αn 0 · · · 0 0

.

Using a similar argument we can show that

W =


0 0 · · · 0 α
0 0 · · · β 0
...

...
. . .

...
...

0 αn−3βn−2 · · · 0 0
αn−2βn−1 0 · · · 0 0

, α, β ∈ C and |α| = |β| = 1.

We denote this matrix W as Wα,β, and take V = W1,1. Observe that any Wα,β can be
expressed as the product of V and Uα,β, i.e.,

Wα,β = V Uα,β,

therefore the gauge group G(Toepn) is generated by Uα,β and V , with |α| = |β| = 1. ■
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Moreover, if we denote by ω = αβ, let

Ωω =


1 ω ω2 · · · ωn−1

ω 1 ω · · · ωn−2

ω2 ω 1 · · · ωn−3

...
...

...
. . .

...
ωn−1 ωn−2 ωn−3 · · · 1

,

and we denote by Γ: T 7→ TT the transposition action of T ∈ Toepn, we obtain that

U∗
α,βTUα,β = Ωω ⊙ T, (4.7)

U∗
α,βV

∗TV Uα,β = Ωω ⊙ Γ(T ), (4.8)

V ∗U∗
α,βTUα,βV = Ωω ⊙ Γ(T ), (4.9)

here Ωω ⊙ T denotes the Schur product of Ωω and T , that is, the elementwise product of Ωω

and T . Hence we obtain the following corollary.

Corollary 4.3. The group of UCPrank=1(Toepn) is isomorphic to the semidirect product of U(1)
and Z2, and the gauge group G(Toepn) is different from UCPrank=1(Toepn) by a phase factor,
that is,

UCPrank=1(Toepn) = U(1)⋊ Z2 (4.10)

and

G(Toepn) = U(1)× (U(1)⋊ Z2) . (4.11)

Moreover, We have the short exact sequence which is independent of n:

1 −→ U(1) −→ G(Toepn) −→ UCPrank=1(Toepn) −→ 1.

Proof. We first show that the group UCPrank=1(Toepn) is isomorphic to the semidirect prod-
uct of U(1) and Z2. In fact, according to the r.h.s.’s of equations (4.7)–(4.9), the group
UCPrank=1(Toepn) is characterized by Ωω and the transposition action Γ. We observe that
Γ ◦ Ωω ◦ Γ = Ωω, and if we equip the collection of matrices {Ωω}ω with Schur product, it is
obvious to see that {Ωω}ω is isomorphic to U(1), therefore we obtain the formula (4.10).

Since ω is determined by the product of α and β, while the matrix Uα,β is determined by α
and β, hence compared with UCPrank=1(Toepn), the gauge group G(Toepn) has one more U(1)-
factor, therefore we obtain the formula (4.11). ■

Remark 4.4. Although the transposition map is not completely positive on Mn(C), however,
it is unital completely positive on the Toeplitz system Toepn given by V ∗(·)V , that is to say, for
a general T ∈ Mn(C) we do not have V ∗TV = TT, while if T ∈ Toepn this equality does hold,
as is also discussed in [7].

4.2 Perturbation semigroup of the Toeplitz system

In this section, we shall characterize the semigroups Pert(Toepn) and Pert+(Toepn). We first
need to recall the definition of the vectorization of a matrix as is defined in [14].
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Definition 4.5 ([14, Section 2]). Let T ∈Mn×m(C), we define the vectorization vec(T ) of T as

vec : Mn×m(C) → Cnm,

T 7→
m∑
j=1

e
(m)
j ⊗ Te

(m)
j ,

here the tensor notation is in the sense of Kronecker product, corresponding to the standard

identification Cnm ∼= Cm ⊗ Cn, and e
(m)
j denotes the j−th basis element in Cm, i.e., e

(m)
j =

(0, . . . , 1, . . . , 0)T with the j-th entry is equal to 1 and 0’s otherwise.

For example, if T = (tij)1≤i,j≤3 ∈M3(C), then

vec:

t11 t12 t13
t21 t22 t23
t31 t32 t33

 7→ (t11, t21, t31, t12, t22, t32, t13, t23, t33)
T.

Remark 4.6. As it is shown in [14, Section 2] we have the formula

vec
(
AX BT

)
= (B ⊗A) vec(X), A ∈Mn×m(C), B ∈Mk×l(C), X ∈Mm×l(C).

We take a matrix ∆ ∈Mn2×(2n−1)(C) as

∆ =
(
vec(τ−n+1), vec(τ−n+2), . . . , vec(τ0), vec(τ1), vec(τ2), . . . , vec(τn−1)

)
.

Consider the semigroup homomorphism Φ: Pert(Toepn) → UCBH(Toepn) as is defined in Sec-
tion 3. We denote the image of ω ∈ Pert(Toepn) by φ, i.e., φ = Φ(ω) ∈ UCBH(Toepn). Take
{τi}−n+1≤i≤n−1 as the basis of Toepn, we can identify φ with a (2n − 1) × (2n − 1) matrix
W = (wij)−n+1≤i,j≤n−1 such that

φ(τj) =
n−1∑

i=−n+1

wijτi. (4.12)

If we regard the tensor product in the definition of Pert(Toepn) as Kronecker product, we
can then treat an element ω ∈ Pert(Toepn) as a n2 × n2 matrix, which we still denote as ω
without confusion. In the case of Toeplitz operator system Toepn, the C

∗-algebra generated by
Toepn is Mn(C). The opposite algebra Mn(C)◦ is the transposition of Mn(C), and an element
a◦ ∈Mn(C)◦ is just equal to aT. The relationship between ω and φ is described in the following
proposition.

Proposition 4.7. Let ω ∈ Pert(Toepn), then we have the equation

ω∆ = ∆W, (4.13)

here W ∈M2n−1(C) is the square matrix associated with Φ(ω) = φ ∈ UCBH(Toepn) defined by
equation (4.12), and W denotes the elementwise complex conjugation of W .

Proof. Let ω =
∑
ak ⊗ bTk ∈ Pert(Toepn). We observe that for −n+ 1 ≤ j ≤ n− 1, the j−th

column of ω∆ is equal to

∑
i

ai ⊗ bTi (vec(τj)) = vec

(∑
i

bTi τja
T
i

)
= vec

(∑
i

(aiτ−jbi)
T

)
= vec

(
φ(τ−j)

T
)
.
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The equation (4.12) implies that

vec
(
φ(τ−j)

T
)
=

n−1∑
i=−n+1

wi,−j vec(τ−i) =
n−1∑

i=−n+1

w−i,−j vec(τi).

Since φ is a Hermitian map, we conclude that wij = w−i,−j . Indeed, we observe that

φ(τj) = φ(τ−j)
∗ ⇒

∑
wijτi =

∑
w−i,−jτi ⇒ wij = w−i,−j ,

hence

vec
(
φ(τ−j)

T
)
=

n−1∑
i=−n+1

wij vec(τi), (4.14)

notice that the l.h.s. of (4.14) is the j-th column of ω∆, and the r.h.s. of (4.14) is the j-th
column of ∆W for −n+ 1 ≤ j ≤ n− 1, therefore we obtain the equation (4.13). ■

Remark 4.8. To simplify the expression we count the rows and columns of the (2n−1)×(2n−1)
matrix W from −n+1 to n−1. Since φ is a unital map, i.e., φ(τ0) = τ0, the 0−th column of W
is (0, . . . , 0, 1, 0, . . . , 0)T with 1 in the central entry and 0’s elsewhere.

Remark 4.9. It is not difficult to show that rank(∆) = 2n − 1 by a direct computation,
hence for each ω ∈ Pert(Toepn) there is a unique (2n − 1) × (2n − 1) matrix W satisfying the
equation (4.13). Especially, we have that ω∆ = ∆ if and only if Φ(ω) = Id ∈ UCP(Toepn).

The matrix ω ∈ Mn2(C) is not Hermitian in general. However, in [13] it is shown that we
can transform ω to become a Hermitian matrix.

Definition 4.10 ([13, Section 1]). Let T = (tij)1≤i,j≤n2 ∈ Mn2(C), we may write T in the

block form as T = (Tij)1≤i,j≤n, where Tij = (tijrs)1≤r,s≤n ∈ Mn(C). We define Γ: Mn2(C) →
Mn(Mn(C)) as follows:

Γ(T )ijrs = t[i,j],[r,s], i, j, r, s = 1, . . . , n,

here [i, j] = (i− 1)n+ j.

That is to say, we rearrange each row in T ∈Mn2(C) to become a new block and then reorder
all blocks together. For example, for n=2,

T =


t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

, and Γ(T ) =


t11 t12 t21 t22
t13 t14 t23 t24
t31 t32 t41 t42
t33 t34 t43 t44

.
Theorem 4.11 ([13, Theorems 1 and 2]). Let T : Mn(C) →Mn(C) be a linear map, ⟨T ⟩ be the
matrix representation of T with respect to the unit matrices Ei,j. The following are equivalent:

� T : Mn(C) →Mn(C) is completely positive (resp. Hermitian-preserving).

� There exist A1, . . . , As ∈Mn(C) such that ⟨T ⟩ =
∑s

i=1Ai⊗Ai (resp. ⟨T ⟩ =
∑s

i=1 ϵiAi⊗Ai

for ϵ1, . . . , ϵs ∈ {±1}).

� There exist A1, . . . , As ∈ Mn(C) and a s × s positive semidefinite (resp. Hermitian) ma-
trix (dij) such that ⟨T ⟩ =

∑s
i,j=1 dijAi ⊗Aj.
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� Γ(⟨T ⟩) is positive semidefinite (resp. Hermitian).

� Γ
(
⟨T ⟩T

)
is positive semidefinite (resp. Hermitian).

In our case, we notice that if we regard ω as a matrix in Mn2(C), then ω plays the role of ⟨T ⟩
above. Hence we have the following result:

Theorem 4.12. If ω =
∑
ai ⊗ b◦i ∈ Pert(Toepn) (resp. Pert

+(Toepn)), then we have

� Γ(ω) is a Hermitian (resp. positive semidefinite) n2 × n2 matrix,

� φ = Φ(ω) can be extended as a Hermitian-preserving (resp. completely positive) map from
Mn(C) to Mn(C), where Φ is defined as Φ(ω) : X 7→

∑
ai(X)bi for X ∈Mn(C), and hence

we obtain the following two semigroup homomorphisms:

Pert(Toepn)
Φ−−→ UCBH(Toepn),

Pert+(Toepn)
Φ−−→ UCP(Toepn).

Example 4.13. We now characterize the semigroup Pert(Toep2) and Pert+(Toep2). Since the
basis of Toep2 is {τ−1, τ0, τ1}, we take

∆ = (vec(τ−1), vec(τ0), vec(τ1)) =


0 1 0
1 0 0
0 0 1
0 1 0

.
Let φ ∈ UCBH(Toep2), then φ is determined by a 3× 3 matrix

W =

a 0 c

b 1 b
c 0 a

 ∈M3(C)

given by equation (4.12), more explicitly,

φ : Toep2 → Toep2,(
0 0
1 0

)
7→
(
b c
a b

)
,(

1 0
0 1

)
7→
(
1 0
0 1

)
,(

0 1
0 0

)
7→
(
b a

c b

)
.

Let

T =


0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 1

, I =


1 0 0
0 1 0
0 0 1
0 0 0

,
a direct calculation shows that ∆ = T I. Let ω be an element in Pert(Toepn) such that Φ(ω) = φ,
the Proposition 4.7 implies that

T−1 ω T I = I W,
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thus T−1 ω T can be expressed as

T−1 ω T =


a 0 c z1
b 1 b z2
c 0 a z3
0 0 0 z4


for some z1, . . . , z4 ∈ C, and therefore

ω =


1− z2 b b z2
−z1 a c z1
−z3 c a z3

−z2 − z4 + 1 b b z2 + z4

, Γ(ω) =


1− z2 b −z1 a
b z2 c z1

−z3 c −z2 − z4 + 1 b̄
a z3 b z2 + z4

.
According to Theorem 4.12, Γ(ω) is a Hermitian matrix; thus we must have z2, z4 ∈ R and
z3 = z1. Hence ω ∈ Pert(Toep2) if and only if ω and Γ(ω) are of the forms

ω =


1− z2 b b z2
−z1 a c z1
−z1 c a z1

1− z2 − z4 b b z2 + z4

, Γ(ω) =


1− z2 b −z1 a
b z2 c z1

−z1 c −z2 − z4 + 1 b̄
a z1 b z2 + z4


with z2, z4 ∈ R and z1 ∈ C. Moreover, if Γ(ω) is positive semidefinite then ω ∈ Pert+(Toepn).

We also obtain the positive definite matrix Γ(ω):

Γ(ω) =


1− z2 0 −z1 1

0 z2 0 z1
−z1 0 1− z2 − z4 0
1 z1 0 z2 + z4

.
In the case of Toeplitz system, since the C∗-algebra generated by Toepn is Mn(C), which is

a nuclear C∗-algebra, and since the Haagerup tensor norm is a C∗-cross norm [5, Corollary 2.2],
we conclude that ∥ω∥ = ∥ω∥h for an element ω ∈ Pert(Toepn). According to Proposition 3.10,
for ω ∈ Pert+(Toepn) we have ∥ω∥ = 1 . We then obtain the following proposition.

Proposition 4.14. Let φ ∈ UCBH(Toepn), W ∈ M2n−1(C) be the corresponding matrix, and
∆ =

(
vec(τi)

)
−n+1≤i≤n−1

∈Mn2×(2n−1)(C). A necessary condition for φ ∈ UCP(Toepn) is that∥∥∆W∥∥ ≤ ∥∆∥.

Proof. If φ ∈ UCP(Toepn), i.e., the map Toepn
φ−−→ Toepn is a UCP map, according to

Arveson’s extension theorem [1, 11], we can always extend φ to a UCP map φ̃ over Mn(C),
i.e., Mn(C)

φ̃−−→ Mn(C), and since any UCP map φ̃ over Mn(C) can be expressed as φ̃(X) =∑
V ∗
i XVi for finitely many Vi ∈ Mn(C), we can take ω =

∑
Vi ⊗ V ◦

i such that Φ(ω) = φ.
By Proposition 4.7 we have the equality ω∆ = ∆W . Hence∥∥∆W∥∥ = ∥ω∆∥ ≤ ∥ω∥ ∥∆∥,

and since ∥ω∥ = 1, we obtain that
∥∥∆W∥∥ ≤ ∥∆∥. ■
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A Operator systems

This appendix contains some basic definitions and results about operator systems. In our case we
only consider the concrete operator systems, i.e., E ⊂ B(H) for some Hilbert space H. We refer
the reader [2, 6, 11] for more details about operator systems.

Definition A.1. Let H be a Hilbert space, B(H) be the set of all bounded operators on H.
A concrete operator system is a (closed) linear subspace E of B(H). If E is closed under the
involution, i.e., x ∈ E implies x∗ ∈ E , then E is called an operator system. In this paper, we
always assume the identity element Id ∈ E ⊂ B(H).

Let H(n) be the direct sum of n copies of H, Mn(E) be the set of all n × n matrices with
entries in E . Since we have the C∗-isomorphism Mn(B(H)) ∼= B

(
H(n)

)
, thus we can identify

each element (xij) ∈ Mn(E) as an operator in B
(
H(n)

)
, and (xij) inherits a norm ∥ · ∥n from

B
(
H(n)

)
, thus Mn(E) turns out to be a normed vector space.

Let E ⊂ B(H) for be an operator system, if there is a linear map φ : E → E , then we define
φn : Mn(E) →Mn(E) by sending (xij) to (φ(xij)).

Definition A.2. Let E be an operator system, φ : E → E be a linear map, and φn be the
induced map φn : Mn(E) →Mn(E).

1. The map φ is called completely bounded if supn>0 ∥φn∥ <∞, and we set

∥φ∥cb = sup
n>0

∥φn∥.

2. The map φ is called n−positive if φn is positive, and φ is called completely positive if φn

is n−positive for all n > 0.

If a completely positive map φ preserves the unit, i.e., φ(Id) = Id, then φ is called a UCP
map(unital completely positive), and we denote the collection of all UCP maps over E by
UCP(E).
Theorem A.3 (Arveson’s extension theorem). Let A be a C∗-algebra, E an operator system
contained in A, and φ : E → B(H) a completely positive map. Then there exists a completely
positive map, ψ : A → B(H), extending φ.

According to Arveson’s extension theorem we can always extend a map φ ∈ UCP(E) to a map
ψ ∈ UCP(B(H)). In addition, if ψ is normal, according to Kraus, we can obtain a more explicit
description of ψ.

Definition A.4. We say a map ψ : B(H) → B(H) is normal if ψ is ultraweakly continu-
ous. Equivalently, for any trace class operator T ∈ B1(H), take a sequence or more generally
a net {xi}i∈I ⊂ B(H) and an x ∈ B(H), if Tr(T xi) → Tr(T x) then we have Tr(T ψ(xi)) →
Tr(T ψ(x)).

Theorem A.5 ([9, Theorem 3.3]). Any linear mapping T of B(H) into itself with ∥TB∥ ≤ ∥B∥,
which is completely positive and ultraweakly continuous, is of the form

TB =
∑
k∈K

A∗
kBAk with

∑
k∈K

A∗
kAk ≤ 1.

Theorem A.6 ([9, Theorem 4.1]). Any completely positive ultraweakly continuous linear map-
ping T of a von Neumann algebra U into itself with ∥TB∥ ≤ ∥B∥ is of the form

TB =
∑
k∈K

A∗
kBAk with

∑
k∈K

A∗
kAk ≤ 1.

Remark A.7. In Theorems A.5 and A.6 above, the sum is in the sense of ultraweakly conver-
gence for infinite K.
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B Haagerup tensor product

In this appendix, we review some fundamental results about Haagerup tensor product of operator
systems; we refer to [6, 11, 12] for more details.

Let H be a Hilbert space, B(H) the set of bounded operators over H, and let E , F ⊂ B(H)
be two operator systems. We denote by E ⊗ F the space of algebraic tensor product, i.e.,

E ⊗ F =

{
k∑

i=1

ai ⊗ bi | ai ∈ E , bi ∈ F , k ∈ N

}
.

We define the Haagerup tensor norm ∥x∥h of x ∈ E ⊗ F as

∥x∥h := inf
{∥∥∥∑ aia

∗
i

∥∥∥1/2∥∥∥∑ b∗i bi

∥∥∥1/2},
here the infimum runs over all the expressions of x =

∑
ai ⊗ bi.

Definition B.1. We denote by E ⊗h F the completion of E ⊗ F with respect to the Haagerup
tensor norm ∥ · ∥h.

Theorem B.2 ([11, Theorem 17.4]). Let E ⊂ E1 and F ⊂ F1 be operator systems. Then the
inclusion of E ⊗h F into E1 ⊗h F1 is a complete isometry.

Theorem B.3 ([12, Theorem 5.12]). Let A ⊂ B(H) and B ⊂ B(K) be C∗-algebras. We have
a natural completely isometric embedding

J : A⊗h B → CB(B(K,H))

defined by

J(a⊗ b) : T → aTb,

here CB (B(K,H)) denotes the collection of all the completely bounded maps over B(K,H).

According to [5] the Haagerup tensor norm is a C∗-cross norm:

Theorem B.4 ([5, Corollary 2.2]). Suppose A and B are C∗-algebras. For any a ∈ A, b ∈ B,
∥a⊗ b∥h = ∥a∥ ∥b∥.
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