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Abstract. We prove several de Finetti theorems for the unitary dual group, also called
the Brown algebra. Firstly, we provide a finite de Finetti theorem characterizing R-diagonal
elements with an identical distribution. This is surprising, since it applies to finite sequences
in contrast to the de Finetti theorems for classical and quantum groups; also, it does not
involve any known independence notion. Secondly, considering infinite sequences in W ∗-
probability spaces, our characterization boils down to operator-valued free centered circular
elements, as in the case of the unitary quantum group U+

n . Thirdly, the above de Finetti
theorems build on dual group actions, the natural action when viewing the Brown algebra as
a dual group. However, we may also equip the Brown algebra with a bialgebra action, which
is closer to the quantum group setting in a way. But then, we obtain a no-go de Finetti
theorem: invariance under the bialgebra action of the Brown algebra yields zero sequences,
in W ∗-probability spaces. On the other hand, if we drop the assumption of faithful states
in W ∗-probability spaces, we obtain a non-trivial half a de Finetti theorem similar to the
case of the dual group action.

Key words: de Finetti theorem; distributional invariance; exchangeable; Brown algebra;
unitary dual group; R-diagonal elements; free circular elements
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1 Introduction

In this work, we provide de Finetti theorems for the unitary dual group, also called the Brown
algebra or the Brown–Glockner–von Waldenfels algebra. De Finetti theorems have a long tradi-
tion in probability theory. In a nutshell, the aim is to characterize some notion of independence
and a distribution law by distributional symmetries of a sequence of random variables. The
question is how a symmetry object on the one side corresponds to a distributional statement on
the other side.

This paper is a contribution to the Special Issue on Non-Commutative Algebra, Probability and Analysis in Ac-
tion. The full collection is available at https://www.emis.de/journals/SIGMA/non-commutative-probability.html
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More precisely, the classical de Finetti theorem states the following: A sequence (xi)i∈N of
real-valued random variables is (conditionally) independent and identically distributed if and
only if it is exchangeable, i.e., if and only if for all n ∈ N the distribution of (x1, . . . , xn) is invari-
ant under permutation. Hence, i.i.d. sequences are characterized by the action of the symmetric
group Sn and we may say that this is the distributional symmetry of classical independence.

Now, strengthenings on the side of symmetries – for instance by passing to groups contain-
ing Sn – implies certain distribution laws on the side of the sequence. Moreover, we may ask
for de Finetti theorems for other types of independences. Such de Finetti theorems have been
studied in various contexts going beyond the usage of groups as symmetry objects or classical
independence from probability theory.

1.1 Overview on some de Finetti theorems in free probability theory

Let us briefly sketch some de Finetti theorems in free probability theory. Let (xi)i∈N be a se-
quence of random variables in a noncommutative W ∗-probability space satisfying certain as-
sumptions specified below. We have

Assumptions on (xi) Distributional properties Symmetry object Ref.

xi = x∗i , xixj = xjxi class. indep. symm. group Sn [9]

or spreadability

xi = x∗i , xixj = xjxi class. indep., R-Gaussian orth. group On [10]

xixj = xjxi class. indep., C-Gaussian unitary group Un [10]

xi = x∗i free indep. symm. qu. group S+
n [19]

or qu. spreadability [8]

xi = x∗i free indep., semicircular orth. qu. group O+
n [2]

no assumption free indep., circular unitary qu. group U+
n [7]

xi = x∗i Boolean indep. symm. qu. semigr. [21]

or Bool. spreadability [22]

xi = x∗i Boolean indep., Bernoulli orth. qu. semigr. [23]

xi = x∗i monotone indep. mon. spreadability [22]

xi =
(
xli, x

r
i

)
bi-free indep. strongly qu. bi-invar. [11]

Let us comment on the above table. Firstly, the classical results are well-known, an exposition
may be found in [17]. Note that exchangeability, as a characterization of i.i.d. sequences, may
be relaxed to spreadability, i.e., the distribution of (xi1 , . . . , xin) needs to be the same as that
of (x1, . . . , xn) for all i1 < · · · < in and all n.

In the free case, Köstler and Speicher [19] proved that free independence is characterized
by quantum exchangeability using the quantum analog of the symmetric group, namely Wang’s
quantum permutation group S+

n . This quantum symmetry has been relaxed to quantum spread-
ability by Curran [8] building on So ltan’s quantum families of maps [30]. On the other hand, the
free de Finetti theorem has been strengthened in [2] to several other quantum groups contain-
ing S+

n , for instance to O+
n , but also to H+

n and B+
n . Note that in free probability the semicircular

distribution plays exactly the role of the real Gaussian in classical probability theory, for in-
stance in terms of central limit theorems [28]. The non-selfadjoint situation has been treated
by Curran [7]. In [2], there are also half-liberated versions of de Finetti theorems. Liu showed
that intermediate quantum groups do not necessarily give strengthenings of the distributional
properties [23].
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For Boolean independence, one has to employ quantum semigroup versions of the above
quantum groups, see [15, 21]. The crucial feature is that all algebras are non-unital. For
instance, the relation

∑
k uik = 1 in C(S+

n ) is replaced by
∑

k uikP = P for some projection P .
Again, the Bernoulli distribution is the correct analog of the real Gaussian. There is no unitary
version of a Boolean de Finetti theorem.

As for monotone independence, Liu [22] proved a de Finetti theorem which adapts Curran’s
quantum spreadability to the monotone situation. There is no kind of quantum exchangeability
for monotone independence and hence no quantum group like object involved. Also, there are
no strengthenings to distributional descriptions of “Gaussians”.

For bi-free independence, Freslon and the fifth author gave a de Finetti theorem [11]. Here,
we do not consider single variables xi but rather pairs

(
xli, x

r
i

)
. The symmetry is basically given

by the quantum permutation group S+
n , but the action is more complicated. Moreover, the

de Finetti theorem requires some technical assumption (the splitting property) which hopefully
may be removed someday. Again, there is no “Gaussian” version of this de Finetti theorem.

1.2 The role of combinatorics in the proofs: partitions of sets

For the proofs of the above de Finetti theorems, a major role is played by the combinatorics
underlying the respective independence concepts and the other distributional properties. More
precisely, the proofs mainly go by decomposing the functional φ of the noncommutative prob-
ability space into cumulants indexed by partitions of sets. Then, both the independence as
well as the distribution (such as “Gaussianity”) are reflected by the choice of the partitions.
On the other hand, the algebraic relations of the quantum algebraic objects are also described
by partitions. This provides the link and is the essence in the proofs of all de Finetti theo-
rems.

We recall that classical independence is governed by all partitions of sets, the real Gaussian
arises from a restriction to pair partitions, and in the complex case we have to involve two colors
for the points of the partitions. The groups Sn, On and Un obey exactly the same combinatorics.
As for free independence and the corresponding quantum groups, all we have to do is to restrict
to noncrossing (also called planar) partitions, in the Boolean case we use interval partitions,
in the monotone case there are linearly ordered partitions, and bi-noncrossing partitions in the
bi-free case.

1.3 Different kinds of actions

Secondly, an important feature of a de Finetti theorem is to specify the kind of action. While we
have multiplicative actions in the classical and the free case, we must restrict to linear actions in
the case of Boolean and bi-free independence. Note that for both free independence and bi-free
independence, the symmetry object is the quantum permutation group S+

n . However, in the
first case, the action is a multiplicative one whereas in the second case, it is only linear (and also
twisted). Thus, the right choice of the kind of action is an important ingredient in the precise
formulation of de Finetti theorems.

1.4 Further reading

Besides the above mentioned articles related to de Finetti theorems, let us also mention the
work by Köstler on various exchangeabilities [13, 14, 18], and various de Finetti theorems in
quantum information theory [1, 3, 20] or quantum mechanics [6, 16]. See also [24, 29] for further
de Finetti theorems in the context of compact quantum groups.
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2 Main results

In the present article, we give a number of de Finetti theorems for the unitary dual group, also
called the Brown algebra, answering the question:

Which distributional symmetry is described by the unitary dual group as the symmetry
object?

Recall that the Brown algebra [4, 12] is the universal complex ∗-algebra Pol(Unc
n ) generated

by elements ujk, j, k ∈ {1, . . . , n} such that

n∑
l=1

u∗ljulk =
n∑

l=1

ujlu
∗
kl = δjk1,

which is equivalent to the matrix u = (ujk)1≤j,k≤n being unitary, i.e., u∗u = uu∗ = 1. See
also [25, 32] for more on the Brown algebra, also called the Brown–Glockner–von Waldenfels
algebra. While this algebra does not give rise to a compact matrix quantum group (since
ut = (uji) is not invertible [33, Non-Example 4.1]), imposing the additional relation ut(ut)∗ =
(ut)∗ut = 1 we obtain the algebra Pol(U+

n ) of Wang’s free unitary quantum group U+
n [33]. Now,

U+
n is a compact matrix quantum group with comultiplication

∆: Pol
(
U+
n

)
→ Pol

(
U+
n

)
⊗min Pol

(
U+
n

)
to the tensor product, and Unc

n is a dual group with a map to the free product:

∆: Pol(Unc
n ) → Pol(Unc

n ) ⊔ Pol(Unc
n ).

Since we have a canonical ∗-homomorphism from Pol(Unc
n ) to Pol(U+

n ) mapping generators
to generators, one is tempted to view U+

n as a “subgroup” of Unc
n . One could thus expect

a strengthening of Curran’s de Finetti theorem [7] for U+
n . However, our research reveals a more

complex situation.

2.1 Finite de Finetti theorems for dual group actions

Firstly, note that while the unitary quantum group U+
n possesses a Haar state, by a gen-

eral theorem by Woronowicz, this is not the case for the unitary dual group Unc
n . How-

ever, the unitary dual group admits a Haar trace as shown by the second author and Ul-
rich [5]. Now, due to the special nature of this Haar trace, we may even prove a finite
de Finetti theorem for the unitary dual group, in contrast to the situation for U+

n ; here,
we consider dual group actions, i.e., actions going into the free product of algebras, see Sec-
tion 3.7.

Theorem (finite de Finetti theorem for dual group actions, Theorem 4.2). Let (x1, . . . , xn) be
a finite sequence of random variables in a noncommutative probability space. The following are
equivalent:

1. The family (x1, . . . , xn) is composed of R-diagonal elements such that the joint free cumu-
lants are zero except those of type κ2r(x

∗
i1
, xi1 , . . . , x

∗
ir
, xir) and κ2r(xi1 , x

∗
i2
, xi2 , . . . , x

∗
ir
, xir ,

x∗i1) for all r ∈ N. Moreover, these cumulants depend only on the length 2r.

2. The family (x1, . . . , xn) is invariant under the dual group action of Unc
n .

In case the underlying noncommutative probability space in the above theorem is tracial, the
above characterization (1) may be replaced by (see Proposition 4.6):
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(1′) The family (x1, . . . , xn) has the same ∗-distribution as (u1x, . . . , unx) where (u1, . . . , un)
is a freely uniform unit vector, x is self-adjoint and (u1, . . . , un) and x are ∗-free.

And in case we are dealing with a tracial W ∗-probability space such that
∑n

i=1 x
∗
ixi has trivial

kernel, the above element x is of the form (see Corollary 4.7)

x =

√√√√ n∑
i=1

x∗ixi.

2.2 Infinite de Finetti theorems for dual group actions

Secondly, we may pass to infinite de Finetti theorems. The above theorem has a direct analog
in the infinite situation replacing (x1, . . . , xn) by an infinite sequence (xi)i∈N, see Theorem 5.2.
However, passing to W ∗-probability spaces, we obtain a characterization of free centered circular
elements, just like in the case of the unitary quantum group U+

n , compare with Curran’s result [7].

Theorem (infinite de Finetti theorem for dual group actions on W ∗-prob. spaces, Theorem 5.7).
Let (xi)i∈N be an infinite sequence of random variables in someW ∗-probability space (M,φ). The
following are equivalent:

1. There exists some v ∈M such that (xi)i∈N is a B-valued free centered circular family whose
elements have identical variances

B ∋ b 7→ E(xibx
∗
i ) = φ(xibx

∗
i )1M and B ∋ b 7→ E(x∗i bxi) = φ(b)v,

where E is the conditional expectation from M to W ∗(v).

2. The distribution of (xi)i∈N is invariant under the dual group action of Unc
n .

In this case, the sequence
(
1
n

∑n
j=1 x

∗
jxj
)
n∈N strongly converges to v.

In case the underlying W ∗-probability space is tracial, the above characterization (1) may be
replaced by (see Proposition 5.8):

(1′) The sequence (xi)i∈N has the same ∗-distribution as (cix)i∈N where (ci)i∈N is a sequence
of free circular variables, x is self-adjoint and (ci)i∈N and x are ∗-free.

See also the version Corollary 5.9 of Proposition 5.8.

2.3 Infinite de Finetti theorems for bialgebra actions

Thirdly, instead of considering actions going into the free product of algebras (dual group ac-
tions), we may also consider actions going to the tensor product of algebras (bialgebra actions).
In a way, these bialgebra actions are closer to the actions of quantum groups such as U+

n ; on the
other hand, they are less “natural” from the perspective of dual groups. Surprisingly, we have
a no-go theorem for bialgebra actions in case we consider W ∗-probability spaces with faithful
states.

Theorem (no-go de Finetti theorem for bialgebra actions, Theorem 6.3). The joint ∗-distribu-
tion of an infinite sequence (xi)i∈N of random variables in someW ∗-probability space is invariant
under the ∗-bialgebraic action of Unc if and only if xi = 0 for all i ∈ N.

However, if we omit the assumption on the state being faithful, we do obtain some de Finetti
theorem, at least “half” of it, characterizing only one direction.



6 I. Baraquin, G. Cébron, U. Franz, L. Massen and M. Weber

Proposition (half a de Finetti theorem for bialgebra actions, Proposition 6.5). Let (xi)i∈N be
an infinite sequence in a W ∗-probability space (M,ψ) such that ψ is not necessarily faithful.
Suppose, there is a W ∗-subalgebra 1 ∈ B ⊆ M and a conditional expectation E : M → B such
that (xi)i∈N is a B-valued free centered circular family whose elements have identical variances

B ∋ b 7→ θ(b) = E(xibx
∗
i ) ∈ B and B ∋ b 7→ η(b) = E(x∗i bxi) = 0

for all i ∈ N. Then the joint distribution of (xi)i∈N is invariant under the ∗-bialgebraic action
of Unc.

3 Preliminaries

3.1 Partitions of sets

For any integer k ≥ 1, let us denote the set {1, 2, . . . , k} by [k].
We recall that π = {V1, V2, . . . , Vr} is a partition of [k] if and only if the blocks Vi’s are

pairwise disjoint (non empty) subsets of [k] such that V1 ∪ V2 ∪ · · · ∪ Vr = [k]. Moreover, the
partition π is called noncrossing if for any two distinct blocks V and W of π one cannot find four
points 1 ≤ p < q < r < s ≤ k such that {p, r} ⊂ V and {q, s} ⊂ W . The set of all noncrossing
partitions of [k] is denoted by NC(k). This is a partially ordered set with the reversed refinement
order.

1 2 3 4 5 1 2 3 4 5

Figure 1. A crossing partition on the left and a noncrossing one on the right.

Definition 3.1 ([28, Definition 9.14]). Let π, σ ∈ NC(k) be two noncrossing partitions, we write
π ⪯ σ if each block of π is contained in one of the blocks of σ.

This partial order induces a lattice structure on NC(k). The maximal element of NC(k) with
respect to this partial order is the partition consisting of only one block, denoted by 1k, and the
minimal element is the partition with k blocks, denoted by 0k.

Definition 3.2 ([28, Definition 9.15]). The join of two partitions π and σ, denoted by π ∨ σ, is
the minimal element τ in NC(k) such that π ⪯ τ and σ ⪯ τ .

The meet of two partitions π and σ, denoted by π ∧ σ, is the maximal element τ in NC(k)
such that τ ⪯ π and τ ⪯ σ.

3.2 Noncommutative probability spaces, cumulants and freeness

Definition 3.3 ([26, Definition 1.12]). A noncommutative probability space (A,φ) consists of
a unital ∗-algebra A and a state φ : A→ C, i.e., a unital positive linear functional. An element
a ∈ A is called a noncommutative random variable.

If A is a von Neumann algebra and φ is a faithful normal state, then (A,φ) is called a W ∗-
probability space.

Note that we do not assume that φ is a trace on A.

Definition 3.4 ([28, Definition 4.8]). Let (A,φ) be a noncommutative probability space, and
(xi)i∈N be an infinite sequence of noncommutative random variables in (A,φ). Let Qn =
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C⟨t1, t∗1, . . . , tn, t∗n⟩ denote the unital ∗-algebra of noncommutative polynomials in n variables
with complex coefficients. Then

φx = φ(x1,...,xn) : Qn → C,
p 7→ φ (p(x))

is the joint ∗-distribution of x = (x1, . . . , xn), where p 7→ p(x) is the canonical morphism from Qn

to A.

Definition 3.5 ([28, Definition 5.3]). Let (A,φ) be a noncommutative probability space and
let I be a fixed index set. Let, for each i ∈ I, Ai ⊂ A be a unital subalgebra. The subalgebras
(Ai)i∈I are called freely independent if

φ(a1a2 . . . ak) = 0,

whenever we have the following:

� k is a positive integer,

� aj ∈ Ai(j) for all 1 ≤ j ≤ k,

� φ(aj) = 0 for all 1 ≤ j ≤ k,

� neighboring elements are from different subalgebras, i.e.,

i(1) ̸= i(2) ̸= · · · ≠ i(k − 1) ̸= i(k).

If the unital ∗-subalgebras Ai generated by the random variable ai are freely independent, then
we call (ai)i∈I ∗-freely independent, or ∗-free.

Definition 3.6 ([28, Definition 11.3]). Let (A,φ) be a noncommutative probability space. The
corresponding free cumulants (κπ)π∈NC are, for each n ∈ N, π ∈ NC(n), multilinear functionals

κπ : An → C,
(a1, . . . , an) 7→ κπ[a1, . . . , an],

which are defined as follows

κπ[a1, . . . , an] :=
∑

σ∈NC(n)
σ⪯π

φσ[a1, . . . , an]µ(σ, π),

where µ is the Möbius function on the lattice NC(n) and

φσ[a1, . . . , an] =
∏
V ∈σ

φV [a1, . . . , an] :=
∏
V ∈σ

V={v1<···<vl}

φ(av1 · · · avl).

We denote κ1n by κn.

Proposition 3.7 ([28, Definition 11.4]). The free cumulants are also determined by the moment
cumulant formula:

φ(a1 · · · an) =
∑

π∈NC(n)

κπ[a1, . . . , an].

It is possible to compute the free cumulants of products, thanks to the following formula.
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Theorem 3.8 ([28, Theorem 11.12 and proof of Proposition 11.25]). For all a1, . . . , a2m ∈ A,
we have

κn(a1a2, . . . , a2n−1a2n) =
∑

π∈NC(2n)
π∨σ=12n

κπ[a1, . . . , a2n],

with σ = {(1, 2), . . . , (2n− 1, 2n)}. Moreover, a partition π ∈ NC(2n) such that π ∨ σ = 12n has
the following property:

{(1, 2n), (2, 3), . . . , (2n− 2, 2n− 1)} ⪯ π.

3.3 R-diagonal elements

Notation 3.9. A tuple (x1, . . . , xn) with entries from a set with two elements {a, b} is said to
be alternating (in a and b), if n is even and xi ̸= xi+1 for all i = 1, . . . , n− 1.

Definition 3.10 ([28, Definition 15.3]). Let (A,φ) be a noncommutative probability space.
A random variable a ∈ A is called R-diagonal if for all n ∈ N we have that κn(a1, . . . , an) = 0
whenever the arguments a1, . . . , an ∈ {a, a∗} are not alternating in a and a∗.

Example 3.11. Let us recall that a random variable c ∈ A is called circular when the only
non-vanishing cumulants are

κ2(c, c
∗) = κ2(c

∗, c) = 1.

Thus, a circular element is an R-diagonal element.

Definition 3.12 ([28, Definition 1.12]). Let (A,φ) be a noncommutative probability space.
A random variable u ∈ A is called Haar unitary if u is a unitary in A and all ∗-moments of the
form φ(uk), k ∈ Z, vanish unless k = 0.

Proposition 3.13 ([28, Proposition 15.1]). The alternating ∗-cumulants of a Haar unitary u
are given by

κ2n(u, u∗, . . . , u, u∗) = κ2n(u∗, u, . . . , u∗, u) = (−1)n−1Cn−1,

where Cn denote the n-th Catalan number. All the other ∗-cumulants of u vanish. Thus any
Haar unitary element is an R-diagonal element.

Lemma 3.14 ([28, Proposition 15.8]). Let {ai}i∈I and {bj}j∈J be ∗-free. We assume that, for
all m ≥ 1, (i1, . . . , im) ∈ Im, and e = (e1, . . . , em) ∈ {∅, ∗}m the free cumulant

κm
(
ae1i1 , . . . , a

em
im

)
is vanishing whenever e is not alternating.

Then, for all m ≥ 1, (i1, . . . , im) ∈ Im, (j1, . . . , jm) ∈ Jm and e = (e1, . . . , em) ∈ {∅, ∗}m the
free cumulant

κm
(
(ai1bj1)e1 , . . . , (aimbjm)em

)
is vanishing whenever e is not alternating.

Proof. In [28], only the case of one a and one b is considered. However, the proof works mutatis
mutandis with families {ai}i∈I and {bj}j∈J . ■
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3.4 Operator-valued cumulants

Let us recall the definition and some basic facts about operator-valued cumulants, see [26,
Chapter 9].

Definition 3.15 ([26, Definitions 9.4 and 9.7]). A conditional expectation E : A → B from
a unital ∗-algebra A onto a ∗-subalgebra 1 ∈ B ⊆ A is defined as a unit-preserving linear map
which has the bimodule property E(b1ab2) = b1E(a)b2, for all b1, b2 ∈ B and a ∈ A. In such
a case we say that (A,E) is a B-valued probability space. The B-valued cumulants of E are
defined implicitly via the formula

E(a1 · · · an) =
∑

π∈NC(n)

κEπ [a1, . . . , an].

Here the arguments of κEπ are distributed according to the blocks of π, and the cumulants
inside κEπ are nested according to the nesting of the block of π, see [26, Chapter 9] for details
and examples. We denote κE1n by κEn .

Note that the bimodule property for E implies that κEn is a map on the B-module tensor
product A⊗B A⊗B · · · ⊗B A.

Example 3.16. The cumulants
(
κEn
)
n≥1

of a B-valued centered circular element c are of the
form

κEn
(
b0c

e1b1, c
e2b2, . . . , c

enbn
)

=


b0η(b1)b2 if n = 2 and (e1, e2) = (∗,∅),

b0θ(b1)b2 if n = 2 and (e1, e2) = (∅, ∗),

0 else

with η(b) = κE2 (c∗b, c) and θ(b) = κE2 (cb, c∗). The cumulants κEπ
[
b0x

e1
1 b1, . . . , x

ek
1 bk

]
appearing

in the sum above are uniquely determined by η(b) = κE2 (x∗1b, x1) and θ(b) = κE2 (x1b, x
∗
1).

More generally, we said that a sequence (xi)i∈N is a B-valued free circular family with common
covariance if their cumulants are of the form

κEn
(
b0x

e1
i(1)b1, x

e2
i(2)b2, . . . , x

en
i(n)bn

)
=


b0η(b1)b2 if n = 2, i(1) = i(2) and (e1, e2) = (∗,∅),

b0θ(b1)b2 if n = 2, i(1) = i(2) and (e1, e2) = (∅, ∗),

0 else,

with η(b) = κE2 (x∗1b, x1) and θ(b) = κE2 (x1b, x
∗
1). Note that a sequence (xi)i∈N is a B-valued free

circular family with common covariance if and only if

E
(
b0x

e1
i1
b1 · · ·xekik

)
=


∑

π∈NCe
2(k), π⪯ker i

κEπ
[
b0x

e1
1 b1, . . . , x

ek
1 bk

]
if k even,

0 if k odd,

where NCe
2(k) = {π ∈ NC2(k);∀{s, t} ∈ π, es ̸= et} and ker i is the partition obtained by forming

blocks consisting in equal indices in i = (i1, . . . , ik).

3.5 Conditional expectations of free algebras

Given two unital ∗-algebras A and B, the free product A ⊔ B is the unique unital ∗-algebra
with ∗-homomorphisms iA : A→ A⊔B and iB : B → A⊔B such that, for all ∗-homomorphisms
f : A → C and g : B → C, there exists a unique ∗-homomorphism f ⊔ g : A ⊔ B → C such that
f = (f ⊔ g) ◦ iA and g = (f ⊔ g) ◦ iB.
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Let (A1, φ1) and (A2, φ2) be two unital ∗-algebras endowed with a state and consider the
unital ∗-algebra A1 ⊔ A2 with the state φ = φ1 ∗ φ2. Following [26, Exercise 18], let us define
a conditional expectation from A1 ⊔ A2 to A1. By setting Ao

i = Ai ∩ kerφi, we have the
decomposition

A1 ⊔A2 = C1 ⊕
∞⊕
n=1

⊕
i1 ̸=i2 ̸=···̸=in∈{1,2}

Ao
i1 ⊗ · · · ⊗Ao

in .

Let us define the linear map Eφ
φ1 : A1 ⊔ A2 → A1 to be the identity on A1 = C1 ⊕ Ao

1 and zero
on all remaining summands. Similarly, let us define Eφ

φ2 : A1 ⊔ A2 → A2 to be the identity on
A2 = C1 ⊕Ao

2 and zero on all remaining summands.

Proposition 3.17. The linear maps Eφ
φi : A1 ⊔ A2 → Ai are two conditional expectations pre-

serving φ, in the sense that φ ◦ Eφ
φi = φ.

Proof. The bimodule property is a direct consequence of the definition. We have φ(a) =
φ ◦ Eφ

φi(a) if a ∈ Ai = C1 ⊕ Ao
i (because Eφ

φi(a) = a) and we have φ(a) = 0 = φ ◦ Eφ
φi(a) for a

in any other of the summands, because of freeness of A1 from A2. ■

Remark 3.18. As in [26, Theorem 19], it is possible to prove general formulas for calculating
such conditional expectations:

∀p ≥ 1, ∀a1, . . . , ap ∈ A1, ∀b1, . . . , bp ∈ A2,

Eφ
φ2

[a1b1 · · · apbp] =
∑

π∈NC(p)

κφ1
π [a1, . . . , ap]

∏
V ∈K(π)
V ̸=Vlast

(φ2)V [b1, . . . , bp]
→∏

v∈Vlast

bv,

Eφ
φ1

[b1a1 · · · bpap] =
∑

π∈NC(p)

κφ2
π [b1, . . . , bp]

∏
V ∈K(π)
V ̸=Vlast

(φ1)V [a1, . . . , ap]
→∏

v∈Vlast

av,

where K(π) denotes the Kreweras complement of π (see [28, Definition 9.21]), Vlast is the block

of the noncrossing partition K(π) containing the uttermost right point and
→∏

v∈Vlast

xv is the non-

commutative product where the v’s are taken in increasing order.

In particular, we have:

Corollary 3.19. Let n ∈ N and x = (x1, . . . , xn) be a family of random variables in a noncom-
mutative probability space (A,φ). On the free product of the Brown algebra Pol(Unc

n ) and Qn we

have the conditional expectation Ehn∗φx

hn
. Thus Ehn∗φx

hn
◦ αn is a map from Qn to Pol(Unc

n ).

We have also nice formulas for the operator-valued cumulants κEm with E = Eφ
φi , given by

the following theorem.

Theorem 3.20 ([27, Theorem 3.6]). Let A and B be two free subalgebras of a noncommutative
probability space (M,φ). We assume that there exists a φ-preserving conditional expectation
E : M → B and that φ|B is non-degenerate (in the sense that 0 is the unique b1 ∈ B such that
φ(b1b2) = 0 for all b2 ∈ B). Then, for all m ≥ 1 and all a1, . . . , am ∈ A, b0, b1, . . . , bm ∈ B, we
have

κEm(b0a1b1, . . . , am−1bm−1, ambm) = κφm(a1, . . . , am)φ(b1) · · ·φ(bm−1)b0bm.

Corollary 3.21. Let (A,φ1) and (B,φ2) be two noncommutative probability spaces and consider
the conditional expectation E := Eφ

φ2 : A ⊔B → B. Then, for all m ≥ 1 and all a1, . . . , am ∈ A,
b0, b1, . . . , bm ∈ B, we have

κEm(b0a1b1, . . . , am−1bm−1, ambm) = κφ1
m (a1, . . . , am)φ2(b1) · · ·φ2(bm−1)b0bm.
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3.6 Two structures on the Brown algebra

Definition 3.22 ([4, 12]). Let n ≥ 1. Denote by Pol(Unc
n ) the universal unital ∗-algebra with n2

generators ujk, 1 ≤ j, k ≤ n and the relations

n∑
ℓ=1

ujℓu
∗
kℓ = δjk1 =

n∑
ℓ=1

u∗ℓjuℓk.

This algebra is called the Brown algebra or Brown–Glockner–von Waldenfels algebra.

For ∗-homomorphisms f : A → C and g : B → D, we denote by f ⊔̄g the ∗-homomorphism
(iC ◦ f) ⊔ (iD ◦ g) : A ⊔ B → C ⊔D, whereas, as above, f ⊔ g : A ⊔ B → C denotes the unique
∗-homomorphism such that f = (f ⊔g)◦iA and g = (f ⊔g)◦iB, in case f : A→ C and g : B → C
are given. Recall that iA denotes iA : A→ A ⊔B.

Definition 3.23 ([32]). A dual group in the sense of Voiculescu is composed of a unital ∗-
algebra A and three unital ∗-homomorphisms ∆: A → A ⊔ A, δ : A → C and Σ: A → A such
that

� ∆ is a coassociative coproduct, i.e., (idA⊔̄∆) ◦ ∆ = (∆⊔̄idA) ◦ ∆,

� δ is a counit, i.e., (δ⊔̄idA) ◦ ∆ = idA = (idA⊔̄δ) ◦ ∆,

� Σ is a coinverse, i.e., (Σ ⊔ idA) ◦ ∆ = δ(·)1A = (idA ⊔ Σ) ◦ ∆.

Lemma 3.24 ([32]). The Brown algebra Pol(Unc
n ) is a dual group when it is endowed with the

following ∗-homomorphisms:

� the coproduct ∆ defined on the generators by ∆(uij) =
∑n

k=1 u
(1)
ik u

(2)
kj ,

� the counit δ given on the generators by δ(uij) = δij,

� the coinverse Σ given by Σ(uij) = u∗ji.

Remark 3.25. The Hopf ∗-algebra Pol(U+
n ) of the quantum unitary group U+

n defined by
Wang [33] is obtained by dividing Pol(Unc

n ) by the ideal generated by the relations

n∑
ℓ=1

uℓju
∗
ℓk = δjk1 =

n∑
ℓ=1

u∗jℓukℓ.

In order to distinguish the two algebras Pol(Unc
n ) and Pol(U+

n ), we will denote the generators
of the former by ujk, and the generators of the latter by wjk, 1 ≤ j, k ≤ n. Denote the
canonical quotient map by π : Pol(Unc

n ) → Pol(U+
n ), π(ujk) = wjk; this map can be viewed as

the restriction homomorphism of the inclusion U+
n ⊆ Unc

n in some sense. But note that Unc
n is

not a quantum group.

Note that quantum groups always have a Haar state, but this is not true for dual groups [5].
The second author and Ulrich also define a weaker notion: the Haar trace, and prove that the
Brown algebra admits a Haar trace with respect to the free product of states (this is also the
state McClanahan used in [25]).

Let us recall the description of the cumulants of the uij ’s with respect to the free Haar trace
in [5].

Proposition 3.26 ([5, Corollary 2.8]). The free cumulants of the noncommutative random
variables (uij)1≤i,j≤n and ((u∗)ij)1≤i,j≤n := (u∗ji)1≤i,j≤n in (Pol(Unc

n ), hn) are given as follows.
Let

1 ≤ i1, k1, . . . , im, km ≤ n and (e1, . . . , em) ∈ {∅, ∗}m.
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If the indices are cyclic, i.e., i1 = km and ij = kj−1 for 2 ≤ j ≤ m, m is even and the ej are
alternating, we have

κhn
m

[(
ue1
)
i1k1

, . . . ,
(
uem

)
imkm

]
= n1−m(−1)m/2−1Cm/2−1,

where, as before, Cn denotes the n-th Catalan number. Otherwise, the left-hand side is equal to
zero.

We will denote the reduced and universal C∗-algebras and the von Neumann algebras asso-

ciated to U+
n and Unc

n by Cr(U
+/nc
n ), Cu(U

+/nc
n ), and V N(U

+/nc
n ). Here the reduced C∗-algebra

of Unc
n is defined as the closure of the image of Pol(Unc

n ) under the GNS-representation w.r.t. to
the Haar trace defined in [5], and we set V N(Unc

n ) = Cr(U
nc
n )′′.

3.7 Dual group actions

Note that the Brown algebra Pol(Unc
n ) is both an involutive bialgebra (but not a Hopf ∗-algebra

for n > 1), cf. [12], and a dual group (in the sense of Voiculescu [32]), so we can consider two
kinds of actions.1

Note that a coaction of Pol(Unc
n ) as a bialgebra induces also a coaction of Pol(U+

n ), so we can
exploit the results of [7], see Section 6.

Definition 3.27. An action of the dual group G = (Pol(G),∆, δ,Σ) on the unital ∗-algebra M
is a morphism α : M → Pol(G) ⊔M satisfying

(∆⊔̄idM ) ◦ α = (idPol(G)⊔̄α) ◦ α and (δ⊔̄idM ) ◦ α = idM .

Define Qn as the ∗-algebra of noncommutative polynomials with n variables and complex
coefficients. Define αn : Qn → Pol(Unc

n ) ⊔Qn as the unital ∗-homomorphism satisfying

αn(ti) =
n∑

j=1

uijtj

and the corresponding fixed point algebra

Qfix
n := {p ∈ Qn | αn(p) = p}.

It is straightforward to prove that αn is a dual action of Pol(Unc
n ) on Qn, and thus we have the

following lemma.

Lemma 3.28. The Brown algebra acts as a dual group on the algebra Qn of noncommutative
polynomials with n variables and complex coefficients.

Proposition 3.29. We have

Qfix
n = C

〈
n∑

j=1

t∗j tj

〉

and more generally, if φn is a non-degenerate state on Qn, we have

Ehn∗φn
φn

◦ αn(Qn) = Qfix
n = C

〈
n∑

j=1

t∗j tj

〉
.

1Terminology: an action of Unc
n or U+

n is a coaction of (one of) their algebras Pol(U
nc/+
n ), C(U

nc/+
n ).
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Proof. “C
〈∑n

j=1 t
∗
j tj
〉
⊆ Qfix

n ”: It follows from the relations of Pol(Unc
n ) that

αn

(
n∑

j=1

t∗j tj

)
=

n∑
j=1

n∑
k=1

n∑
l=1

t∗ku
∗
jkujltl =

n∑
k=1

n∑
l=1

t∗kδkltl =
n∑

k=1

t∗ktk.

Hence we have
∑n

j=1 t
∗
j tj ∈ Qfix

n .

“Qfix
n ⊆ Ehn∗φn

φn ◦ αn(Qn)”: Let x ∈ Qfix
n . Then we have

Ehn∗φn
φn

◦ αn(x) = Ehn∗φn
φn

(x) = κhn
1 [1] · x = x.

“Ehn∗φn
φn ◦αn(Qn) ⊆ C

〈∑n
j=1 t

∗
j tj
〉
”: We want to compute the moments of (αn(t1), . . . , αn(tn))

with respect to Ehn∗φn
φn . In order to do so, we will compute their free cumulants. We set E :=

Ehn∗φn
φn . Let m ≥ 1, (i1, . . . , im) ∈ [n]m, e = (e1, . . . , em) ∈ {∅, ∗}m and b1, . . . , bm−1 ∈ Qfix

n . We
can use Corollary 3.21 in order to compute

κEm
(
α
(
te1i1
)
b1, . . . , bm−1α

(
temim
))

=
∑

k1,...,km∈[n]m
κhn
m

(
ue1i1k1 , . . . , u

em
imkm

)
× (∗).

Thanks to the data of the free cumulants of the (uij) (given by Proposition 3.26), we see that
all the terms of the sum are vanishing if e is not alternating.

Let us examine the case where m = 2r and e = (∅, ∗, . . . ,∅, ∗) is alternating,

κEm
(
α
(
te1i1
)
b1, . . . , bm−1α

(
temim
))

=
∑

k1,...,k2r∈[n]2r
κhn
m

(
ui1k1 , . . . , u

∗
imkm

)
φ
(
tk1b1t

∗
k2

)
φ(b2) · · ·φ

(
tk2r−1b2r−1t

∗
k2r

)
= (−1)r−1n1−2rCr−1δi1=i2r,i2=i3,...

×
∑

k1=k2,k3=k4,...∈[n]2r
φ
(
tk1b1t

∗
k2

)
φ(b2) · · ·φ

(
tk2r−1b2r−1t

∗
k2r

)
.

Similarly, if m = 2r and e = (∗,∅, . . . , ∗,∅) is alternating, we have

κEm
(
α
(
te1i1
)
b1, . . . , bm−1α

(
temim
))

= (−1)r−1n1−2rCr−1δi1=i2,i3=i4,...

∑
k1=k2r,k2=k3,...∈[n]2r

t∗k1tk2rφ(b1)φ
(
tk2b2t

∗
k3

)
· · ·φ(b2r−1).

Finally, we have shown that the maps

(b1, . . . , bm−1) 7→ κEm
(
α
(
te1i1
)
b1, . . . , bm−1α

(
temim
))
,

leave C
〈∑n

j=1 t
∗
j tj
〉

invariant. This means that the moments of (αn(t1), . . . , αn(tn)) w.r.t. E =

Ehn∗φn
φn are in C

〈∑n
j=1 t

∗
j tj
〉
, which implies that Ehn∗φn

ϕn
◦ αn takes values in C

〈∑n
j=1 t

∗
j tj
〉
. ■

4 Finite de Finetti theorems for dual group actions

In this section, we first consider the case of finite sequences: surprisingly, unlike in the quantum
group situation, we are able to prove a finite de Finetti theorem for the dual group action
of Pol(Unc

n ). Also, when restricting to the tracial case, we will give a refined characterization in
terms of freely uniform unit vectors.
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4.1 Invariance for finite sequences in the general case

Definition 4.1. The n-tuple (x1, . . . , xn) of random variables in a noncommutative probability
space (A,φ) is called invariant under Unc

n , whenever its distribution is invariant under the

action αn, i.e., φx1Unc
n

= Ehn∗φx

hn
◦ αn or more precisely

∀m ≥ 1, ∀(i1, . . . , im) ∈ [n]m, ∀e = (e1, . . . , em) ∈ {∅, ∗}m,

φ
(
xe1i1 · · ·x

em
im

)
1Unc

n
= Ehn∗φx

hn
◦ αn

(
te1i1 · · · t

em
im

)
. (4.1)

Here comes our finite de Finetti theorem for the dual group action of Pol(Unc
n ).

Theorem 4.2. Let n be a natural integer and (x1, . . . , xn) be a family of random variables in
a noncommutative probability space (A,φ). The following are equivalent:

1. The family (x1, . . . , xn) is composed of R-diagonal elements such that the joint free cumu-
lants are zero except those of type κ2r(x

∗
i1
, xi1 , . . . , x

∗
ir
, xir) and κ2r(xi1 , x

∗
i2
, xi2 , . . . , x

∗
ir
, xir ,

x∗i1) for all r ∈ N. Moreover, these cumulants depend only on the length 2r.

2. The family (x1, . . . , xn) is invariant under the dual group action αn.

3. We have φx = (hn ∗ φx) ◦ αn.

Proof. Implication (3) → (1): Let m ≥ 1, i = (i1, . . . , im) ∈ [n]m, e = (e1, . . . , em) ∈ {∅, ∗}m.
We compute

κφm
(
xe1i1 , . . . , x

em
im

)
= κφx

m

(
te1i1 , . . . , t

em
im

)
= κhn∗φx

m

(
αn

(
te1i1
)
, . . . , αn

(
temim
))

=
∑

k1,...,km∈[n]

κhn∗φx
m

((
ui1k1tk1

)e1 , . . . , (uimkmtkm
)em),

where we used φx = (hn ∗ φx) ◦ αn for the second equality. By Proposition 3.26, the free
cumulants κhn

m

(
ue1i1k1 , . . . , u

em
imkm

)
vanish if e is not alternating. Moreover, the elements {uik}

and {tk} are by construction ∗-free with respect to (Pol(Unc
n ) ⊔Qn, hn ∗φx). Thus Lemma 3.14

implies that all the terms in the above sum are vanishing if e is not alternating.
Let us examine the case where m = 2r and e = (∅, ∗, . . . ,∅, ∗) is alternating, the case

e = (∗,∅, . . . , ∗,∅) being similar. By using Theorem 3.8, we have

κφm(xi1 , . . . , x
∗
im) =

∑
k1,...,km∈[n]

κhn∗φx
m (ui1k1tk1 , . . . , t

∗
kmu

∗
imkm)

=
∑

k1,...,km∈[n]

∑
π∈NC(2m)
π∨σ=12m

κhn∗φx
π (ui1k1 , tk1 , . . . , t

∗
km , u

∗
imkm),

with σ = {{1, 2}, . . . , {2m− 1, 2m}}.
Since the elements {uik} and {tk} are ∗-free, their mixed cumulants vanish and hence only

such partitions π ∈ NC(2m) contribute to the above sum for which each of their blocks connects
elements only from {uik, u∗ik} or only from {tk, t∗k}. For such a partition π ∈ NC(2m), we
denote by πu ∈ NC(m) the subpartition of π corresponding to the elements {uik, u∗ik} and by
πt ∈ NC(m) the subpartition of π corresponding to the elements {tk, t∗k}.

Then the non-zero mixed cumulants can be written as

κhn∗φx
π (ui1k1 , tk1 , . . . , t

∗
km , u

∗
imkm) = κhn

πu
(ui1k1 , . . . , u

∗
imkm)κφx

πt
(tk1 , . . . , t

∗
km).

Moreover, Theorem 3.8 tells us that

{(1, 2m), (2, 3), . . . , (2m− 2, 2m− 1)} ⪯ π
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in all the terms of the above sum. Thus, thanks to the data of the free cumulants of the (uij) given
by Proposition 3.26, all the terms κhn

πu
(ui1k1 , . . . , u

∗
imkm

) are vanishing unless i1 = im, i2 = i3, . . .

and k1 = k2, k3 = k4, . . . . Moreover, in this particular case, the value of κhn
πu

(ui1k1 , . . . , u
∗
imkm

)
does not depend on the indices i1, . . . , il.

Implication (1) → (2): We set E := Ehn∗φx

hn
. Let m ≥ 1, (i1, . . . , im) ∈ [n]m, e =

(e1, . . . , em) ∈ {∅, ∗}m. We can use Corollary 3.21 in order to compute

κEm
(
αn

(
te1i1
)
, . . . , αn

(
temim
))

=
∑

k1,...,km∈[n]m
κEm
((
ui1k1tk1

)e1 , . . . , (uimkmtkm
)em)

=
∑

k1,...,km∈[n]m
κφx
m

(
te1k1 , . . . , t

em
km

)
× (∗)

=
∑

k1,...,km∈[n]m
κφm
(
xe1k1 , . . . , x

em
km

)
× (∗),

where the term (∗) depends on i, e, and k1, . . . , km. By assumption the cumulants κφm
(
xe1k1 , . . . ,

xemkm
)

vanish if e is not alternating and the same holds for κEm
(
αn(te1i1 ), . . . , αn(temim )

)
by the above

equation.

Let us examine the case where m = 2r and e = (∅, ∗, . . . ,∅, ∗) is alternating.

κEm(α(ti1), . . . , α(t∗im))

=
∑

k1,...,k2r∈[n]2r
κφx
m (tk1 , . . . , t

∗
km)hn(u∗i2k2ui3k3) · · ·hn(u∗i2r−2k2r−2

ui2r−1k2r−1)ui1k1u
∗
i2rk2r

= κφx
m (t1, . . . , t

∗
1)

∑
k1=k2r,

k2=k3,...∈[n]2r

hn(ui3k3u
∗
i2k2) · · ·hn(ui2r−1k2r−1u

∗
i2r−2k2r−2

)ui1k1u
∗
i2rk2r

= κφx
m (t1, . . . , t

∗
1)δi1=i2r,i2=i3,...1Unc

n
= κφx

m (ti1 , . . . , t
∗
im)1Unc

n
.

Here, the first equation follows again from Corollary 3.21. Moreover, we used our assumptions
on the cumulants κφx

m for the second and fourth equation. In addition, the second equation uses
the traciality of hn.

Similarly, if m = 2r and e = (∗,∅, . . . , ∗,∅) is alternating, we have

κEm(αn(t∗i1), . . . , αn(tim)) = κφx
m (t∗i1 , . . . , tim)1Unc

n
.

Finally, we have shown that the equality

κEm
(
αn

(
te1i1
)
, . . . , αn

(
temim
))

= κφx
m

(
te1i1 , . . . , t

em
im

)
1Unc

n

is always true, which means that E ◦ αn = φx1Unc
n

.

Implication (2) → (3): If Ehn∗φx

hn
◦ αn = φx1Unc

n
, we have just to apply hn in order to get

(hn ∗ φx) ◦ αn = φx. ■

In direct comparison with Curran’s de Finetti theorem [7] for the unitary quantum group U+
n ,

we observe that our de Finetti theorem has a characterization of distributional invariance of finite
sequences – whereas in Curran’s de Finetti theorem, we only have a characterization of infinite
sequences.

Example 4.3. Let us give several examples of sequence that satisfy the conditions of the de
Finetti Theorem 4.2.
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1. As a finite sequence, we can take the elements of the first column of the matrix of generators
of Pol(Unc

n ), i.e., xi = ui1, i = 1, . . . , n, equipped with the Haar trace of Unc
n . It follows

from Proposition 3.26 that the distribution of (xi)i=1,...,n satisfies the first condition of
Theorem 4.2 and consequently is invariant under the dual group action αn.

2. A sequence of free centered circular elements is invariant under the dual group action of
Pol(Unc

n ). Conversely, if the xi’s are invariant and free, then they are circular, because
freeness implies vanishing of all cumulants κ2r(x

∗
i1
, xi1 , . . . , x

∗
ir
, xir) and κ2r(xi1 , x

∗
i2
, xi2 , . . . ,

x∗ir , xir , x
∗
i1

) unless r = 1.

3. If the distribution of (ui)i=1,...,n is invariant under the dual group action αn, and x is ∗-free
from (ui)i=1,...,n, then (uix)i=1,...,n is invariant under the dual group action αn. Indeed,
Lemma 3.14 says that the free cumulants

κn
(
(ui(1)x)e1 , . . . , (ui(n)x)en

)
is vanishing if (e1, . . . , en) is not alternating, and, in the case where (e1, . . . , en) is alter-
nating, Theorem 3.8 allows to says that the joint free cumulants are zero except those of
type κ2r(x

∗
i1
, xi1 , . . . , x

∗
ir
, xir) or those of type κ2r(xi1 , x

∗
i2
, xi2 , . . . , x

∗
ir
, xir , x

∗
i1

). Moreover,
these cumulants depend only on the length 2r.

4. If (xi)i=1,...,n is ∗-free from (uij)i,j=1,...,n ∈ Unc
n , then the distribution of the tuple(

n∑
j=1

uijxj

)
i=1,...,n

is invariant under the dual group action αn. Indeed, the distribution of
(∑n

j=1 uijxj
)
i=1,...,n

is given by (hn ∗ φx) ◦ αn, and

(hn ∗ ((hn ∗ φx) ◦ αn)) ◦ αn = (hn ∗ hn ∗ φx) ◦ ((idPol(Unc
n )⊔̄αn) ◦ αn)

= (hn ∗ hn ∗ φx) ◦ ((∆⊔̄idQ) ◦ αn) = (hn ∗ φx) ◦ αn,

which means that the last condition of Theorem 4.2 is satisfied.

4.2 Invariance for finite sequences in the tracial case

Let us now refine Theorem 4.2 in the case when our probability space (A,φ) is tracial. We
prepare the statement with the following proposition.

Proposition 4.4. The ∗-distribution of a family (x1, . . . , xn) of random variables in a noncom-
mutative tracial probability space (A,φ) which is invariant under the dual action αn is uniquely
determined by the distribution of

∑n
i=1 x

∗
ixi.

Proof. Note first that by Theorem 4.2, the ∗-distribution of (x1, . . . , xn) is uniquely determined
by the sequences of cumulants (αm)m≥1, and (βm)m≥1 where

αm := κ2m(x∗i1 , xi1 , . . . , x
∗
im , xim), m ≥ 1

and

βm := κ2m(xi1 , . . . , x
∗
im , xim , x

∗
i1), m ≥ 1.

However, by traciality, we have that (αm)m≥1 = (βm)m≥1.
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Thanks to Theorem 3.8, let us compute,

κm

(
n∑

i=1

x∗ixi, . . . ,
n∑

i=1

x∗ixi

)
=

n∑
i1,...,im=1

κ2m(x∗i1xi1 , . . . , x
∗
imxim)

=
n∑

i1,...,im=1

∑
π∈NC(2m)
π∨σ=12m

κπ(x∗i1 , xi1 , . . . , x
∗
im , xim),

with σ = {{1, 2}, . . . , {2m− 1, 2m}}. Exactly as in the proof of [28, Proposition 15.6], all the
cumulants appearing in the sum are of the form αr (or βr which is in our tracial case the same
as αr) for r ≤ m. In fact, by taking out the term π = 12m, we have more precisely

κm

(
n∑

i=1

x∗ixi, . . . ,
n∑

i=1

x∗ixi

)
= nmαm +

n∑
i1,...,im=1

∑
π∈NC(2m)\{12m}

π∨σ=12m

κπ(x∗i1 , xi1 , . . . , x
∗
im , xim),

where all the cumulants appearing in last sum are of the form αr for r < m. This formula can
be inductively resolved for (αm)m≥1 in terms of the cumulants of

∑n
i=1 x

∗
ixi, which shows that

the ∗-distribution of (x1, . . . , xn) is uniquely determined by the distribution of
∑n

i=1 x
∗
ixi. ■

Proposition 4.5. Let us consider the ∗-algebra Snc
n−1 defined by the quotient of Qn by the

relation
∑n

i=1 t
∗
i ti = 1. There exists a unique tracial ∗-distribution on Snc

n−1 which is invariant
under the dual action αn.

Proof. The uniqueness is due to the last proposition. The existence is due to the fact that
the ∗-distribution of the first column (ui1)1≤i≤n is such an example of ∗-distribution, see Exam-
ple 4.3. ■

When the ∗-distribution of a family (x1, . . . , xn) such that
∑n

i=1 x
∗
ixi = 1 follows this par-

ticular ∗-distribution, we say that it is a freely uniform unit vector of random variables. For
example, the elements of one of the columns of the matrix of generators of Pol(Unc

n ), i.e., xi = uik,
i = 1, . . . , n and k fixed, equipped with the Haar trace of Unc

n , is a freely uniform unit vector.
We will now prove two versions of a finite de Finetti theorem for tracial probability spaces

(A,φ).

Proposition 4.6. Let (x1, . . . , xn) be random variables in a tracial probability space (A,φ).
Then the following statements are equivalent.

1. The ∗-distribution of (x1, . . . , xn) is invariant under the dual action αn.

2. The tuple (x1, . . . , xn) has the same ∗-distribution as (u1x, . . . , unx) where (u1, . . . , un) is
a freely uniform unit vector, x is self-adjoint and (u1, . . . , un) and x are ∗-free.

In this case, x2 and
∑n

i=1 x
∗
ixi are identically distributed. More generally, the distribution of x

can be taken as any distribution such that x2 and
∑n

i=1 x
∗
ixi are identically distributed.

Proof. Implication (2) → (1): It is just an application of Example 4.3.
Implication (1) → (2): By enlarging (A,φ) if necessary, we consider a freely uniform unit

vector (u1, . . . , un) and a self-adjoint variable x, free from (u1, . . . , un), and such that x2 and∑n
i=1 x

∗
ixi are identically distributed. Thanks to Example 4.3, the family (u1x, . . . , unx) is

invariant under the dual action αn and the distribution of
∑n

i=1(uix)∗uix = x2 is the one of∑n
i=1 x

∗
ixi. As a consequence of Proposition 4.4, the families (u1x, . . . , unx) and (x1, . . . , xn)

have the same ∗-distribution. ■
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If the square root
√∑n

i=1 x
∗
ixi exists, for example in a tracial C∗-probability space (A,φ),

the distribution of x can be taken as the distribution of
√∑n

i=1 x
∗
ixi.

Corollary 4.7. Let (x1, . . . , xn) be random variables in a tracial W ∗-probability space (A,φ)
such that

∑n
i=1 x

∗
ixi has a trivial kernel. Then the following statements are equivalent.

1. The ∗-distribution of (x1, . . . , xn) is invariant under the dual action αn.

2. We have the decomposition (x1, . . . , xn) = (u1x, . . . , unx) where (u1, . . . , un) is a freely
uniform unit vector in A, which is ∗-free from x :=

√∑n
i=1 x

∗
ixi.

Proof. Implication (2) → (1): It is just an application of Example 4.3.

Implication (1) → (2): The fact that x =
√∑n

i=1 x
∗
ixi has a trivial kernel implies that we

can invert it (in the algebra of affiliated operators) and we can define ui := xi ·x−1 in such a way
that xi = uix. It remains to prove that ui and x are ∗-free with the ∗-distribution announced.

Let (ũ1x̃, . . . , ũnx̃) be the realization of the ∗-distribution of (x1, . . . , xn) (not necessarily in A)
appearing in Proposition 4.6 with x̃ positive. But this means that the von Neumann algebra
generated by (x1, . . . , xn) is isomorphic to the von Neumann algebra generated by (ũ1x̃, . . . , ũnx̃)
via the mapping xi 7→ ũix̃. We extend this mapping to the algebra of affiliated operators (not
necessarily bounded). The image of x is

√∑n
i=1(ũix̃)∗ũix̃ = x̃ and the image of ui = xi · x−1

is ũix̃ · x−1. As a consequence, the ∗-distribution of (u1, . . . , un, x) is the ∗-distribution of
(ũ1, . . . , ũn, x̃): they are bounded, and (u1, . . . , un) is a freely uniform unit vector in A, which
is ∗-free from x :=

√∑n
i=1 x

∗
ixi. ■

Note that the condition on the kernel
∑n

i=1 x
∗
ixi can not be avoided if we want to define the

unit vector (u1, . . . , un) in A. For example, the vector (0, 0, . . . , 0) is invariant under the dual
action αn even if the tracial W ∗-probability space (A,φ) does not contain any freely uniform
unit vector (u1, . . . , un).

5 Infinite de Finetti theorems for dual group actions

We now turn to the characterization of infinite sequences, building on our finite de Finetti
Theorem 4.2. We will prove several variants: a general case, as a direct consequence of our finite
de Finetti theorem; a version adapted to von Neumann algebras, i.e., to W ∗-probability spaces;
and, as in the previous section, a strengthening in the tracial case.

5.1 Invariance for infinite sequences in the general case

Definition 5.1. Let (xi)i∈N be a sequence of random variables in a noncommutative probability
space (A,φ). The distribution φx of (xi)i∈N is said to be invariant under the dual action of Unc,
if, for any n ≥ 1, (x1, . . . , xn) is invariant under αn.

As a direct consequence of our finite de Finetti Theorem 4.2, we obtain the following char-
acterization of infinite sequences under the action of the Brown algebra.

Theorem 5.2. Let (xi)i∈N be a sequence of random variables in a noncommutative probability
space (A,φ). The following are equivalent:

1. The distribution φx of (xi)i∈N is invariant under the dual action of Unc.

2. The sequence (xi)i∈N is composed of R-diagonal elements such that the joint free cumulants
are zero except those of type κ2r(x

∗
i1
, xi1 , . . . , x

∗
ir
, xir) and κ2r(xi1 , x

∗
i2
, xi2 , . . . , x

∗
ir
, xir , x

∗
i1

).
Moreover, these cumulants depend only on the length 2r.
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Proof. The equivalence between the first two conditions is a direct consequence of Theorem 4.2.
If the first condition is true, for any n ≥ 1, (x1, . . . , xn) is invariant under αn. As a conse-

quence, for any n ≥ 1, the second condition holds for (x1, . . . , xn), which implies that the second
condition is true since n can be as large as wanted.

Conversely, if the second condition is true, we have in particular that, for any n ≥ 1,
(x1, . . . , xn) is invariant under αn. ■

5.2 A technical lemma on actions on infinitely many variables

We extend the action αn from Definition 3.27 to the infinite situation as follows. Let (xi)i∈N be
a sequence of random variables in a noncommutative probability space (A,φ). Define Q∞ as the
∗-algebra of noncommutative polynomials with infinitely many variables (tj)j≥1 and complex
coefficients.

Define βn : Q∞ → Pol(Unc
n ) ⊔Q∞ as the unital ∗-homomorphism satisfying

βn(ti) =


n∑

j=1

uijtj if 1 ≤ i ≤ n,

ti if i > n.

Lemma 5.3. If the distribution φx of (xi)i∈N is invariant under the dual action of Unc, then,
for all n ≥ 1,

Ehn∗φx

hn
◦ βn = φx.

Proof. We want to prove that for all m ≥ 1, (i1, . . . , im) ∈ Nm, e = (e1, . . . , em) ∈ {∅, ∗}m, we
have

Ehn∗φx

hn

[
βn
(
te1i1
)
· · ·βn

(
temim
)]

= φx

[
te1i1 · · · t

em
im

]
.

Set N := max(n, i1, . . . , im). We define (vij)1≤i,j≤N by

vij =

{
uij if 1 ≤ i, j ≤ n,

δij1Pol(Unc
n ) if max{i, j} > n

in such a way that, for all i ∈ [N ], we have

βn(ti) =

N∑
k=1

viktk.

We set E := Ehn∗φx

hn
. Let m ≥ 1, (i1, . . . , im) ∈ [N ]m, e = (e1, . . . , em) ∈ {∅, ∗}m. We can use

Corollary 3.21 in order to compute

κEm
(
βn
(
te1i1
)
, . . . , βn

(
temim
))

=
∑

k1,...,km∈[N ]m

κEm
((
vi1k1tk1

)e1 , . . . , (vimkmtkm
)em)

=
∑

k1,...,km∈[N ]m

κφx
m

(
te1k1 , . . . , t

em
km

)
× (∗).

Using the particular form of the free cumulants κφx
m

(
te1k1 , . . . , t

em
km

)
, given by Theorem 4.2, we see

that all the terms of the sum are vanishing if e is not alternating.
Let us examine the case where m = 2r and e = (∅, ∗, . . . ,∅, ∗) is alternating.

κEm(βn(ti1), . . . , βn(t∗im))
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=
∑

k1,...,k2r∈[N ]2r

κφx
m (tk1 , . . . , t

∗
km)hn(v∗i2k2vi3k3) · · ·hn(v∗i2r−2k2r−2

vi2r−1k2r−1)vi1k1v
∗
i2rk2r

= κφx
m (t1, . . . , t

∗
1)

∑
k1=k2r,

k2=k3,...∈[N ]2r

hn(vi3k3v
∗
i2k2) · · ·hn(vi2r−1k2r−1v

∗
i2r−2k2r−2

)vi1k1v
∗
i2rk2r

= κφx
m (t1, . . . , t

∗
1)δi1=i2r,i2=i3,...1Unc

n
= κφx

m (ti1 , . . . , t
∗
im)1Unc

n
.

Similarly, if m = 2r and e = (∗,∅, . . . , ∗,∅) is alternating, we have

κEm(βn(ti1), . . . , βn(t∗im)) = κφx
m (ti1 , . . . , t

∗
im)1Unc

n
.

Finally, we have shown that the equality

κEm
(
βn
(
te1i1
)
, . . . , βn

(
temim
))

= κφx
m

(
te1i1 , . . . , t

em
im

)
1Unc

n

is always true, which means that E ◦ βn = φx1Unc
n
. ■

5.3 Invariance for infinite sequences for von Neumann algebras

We now put more structure on our noncommutative probability space, passing to W ∗-probability
spaces, and we prove a de Finetti theorem in this situation.

Let (xi)i∈N be an infinite sequence of random variables in some W ∗-probability space (M,φ)
with faithful state. Set B0 := W ∗(x1, x2, . . . ). More generally, we set

Bn := W ∗

(
n∑

j=1

x∗jxj , xn+1, xn+2, . . .

)
.

We have Bn+1 ⊂ Bn, and we set

B∞ :=
⋂
n≥1

Bn.

We define (β̃n(xi))i≥1 elements of the W ∗-probability space (W ∗(Unc
n ) ∗ B0, hn ∗ φ) by

β̃n(xi) =


n∑

j=1

uijxj if 1 ≤ i ≤ n,

xi if i > n.

By [31, Theorem IX.4.2], there exists a unique φ-preserving conditional expectation

Ehn∗φ
φ : W ∗(Unc

n ) ∗ B0 → B0.

Lemma 5.4. We set E := Ehn∗φ
φ . For all n ≥ 1, m ≥ 1, (i1, . . . , im) ∈ Nm, (e1, . . . , em) ∈

{∅, ∗}m and b1 . . . bm ∈ Bn,

κEm
[
β̃n(xi1)e1b1, . . . , bm−1β̃n(xim)em

]
is in Bn. In the case where n ≥ max(i1, . . . , im), we have more precisely the following:

� If e is not alternating, the cumulant is vanishing.

� If m is even and e = (∅, ∗, . . . ,∅, ∗), we have

κEm
(
β̃n(xi1)b1, . . . , bm−1β̃n(xim)∗

)
= (−1)m/2−1n1−m/2Cm/2−1δi1=im,i2=i3,...φ(x1b1x

∗
1)φ(b2) · · ·φ(x1bm−1x

∗
1).
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� If m is even and e = (∗,∅, . . . , ∗,∅), we have

κEm
(
β̃n(xi1)∗b1, . . . , bm−1β̃n(xim)

)
= (−1)m/2−1n−m/2Cm/2−1δi1=i2,i3=i4,...

× φ(b1)φ(x1b2x
∗
1) · · ·φ(x1bm−2x

∗
1)φ(bm−1)

n∑
j=1

x∗jxj .

Proof. Set N := max(n, i1, . . . , im). We define (vij)1≤i,j≤N by

vij =

{
uij if 1 ≤ i, j ≤ n,

δij1Pol(Unc
n ) if max{i, j} > n

in such a way that, for all i ∈ [N ], we have

β̃n(xi) =
N∑
k=1

vikxk.

We can use Corollary 3.21 in order to compute

κEm
(
β̃n(xi1)e1b1, . . . , bm−1β̃n(xim)em

)
=

∑
k1,...,km∈[N ]m

κhn
m

(
ve1i1k1 , . . . , v

em
imkm

)
× (∗),

where the term (∗) is dependent of i, e, b1, . . . , bm−1 and k1, . . . , km. We know the free cumulants
of (uij)1≤i,j≤n (given by Proposition 3.26), and we deduce that the free cumulants of (vij)1≤i,j≤n

are vanishing except if m = 1 or if m is even with e alternating. It yields that all the terms of
the sum are vanishing except if m = 1 or if m is even with e alternating.

Let us examine the case where m = 1:

appaEm
(
β̃n(xi1)

)
=
∑

k1∈[N ]

κhn
m (vi1k1)xk1 =

{
0 if 1 ≤ i1 ≤ n,

xi1 if i1 > n.

Let us examine the case where m = 2r and e = (∅, ∗, . . . ,∅, ∗) is alternating,

κEm
(
β̃n(xi1)b1, . . . , bm−1β̃n(xim)∗

)
=

∑
k1,...,km∈[N ]m

κhn
m (vi1k1 , . . . , v

∗
imkm)φ(xk1b1x

∗
k2)φ(b2) · · ·φ(xkm−1bm−1x

∗
km)1M .

Finally, if m = 2r and e = (∗,∅, . . . , ∗,∅) is alternating, we have

κEm
(
β̃n(xi1)∗b1, . . . , bm−1β̃n(xim)

)
=

∑
k1,...,km∈[N ]m

κhn
m (v∗i1k1 , . . . , vimkm)φ(b1)φ(xk2b2x

∗
k3) · · ·φ(bm−1)x

∗
k1xkm ,

which is vanishing if i1 > n or im > n. When 0 ≤ i1, im ≤ n, k1 must equal km and we have

κEm
(
β̃n(xi1)∗b1, . . . , bm−1β̃n(xim)

)
=

n∑
k=1

x∗kxk
∑

k2,...,km−1∈[N ]m

κhn
m (v∗i11, vi1k2 , . . . , v

∗
im−1km−1

, vim1)

× φ(b1)φ(xk2b2x
∗
k3) · · ·φ(bm−1).

In all cases, the cumulant κEm
(
β̃n(xi1)e1b1, . . . , bm−1β̃n(xim)em

)
belongs to Bn.
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Whenever n ≥ max(i1, . . . , im) (or equivalently N = n), we can pursue the computation. In
the case where m = 2r and e = (∅, ∗, . . . ,∅, ∗) is alternating, we have

κEm
(
β̃n(xi1)b1, . . . , bm−1β̃n(xim)∗

)
=

∑
k1,...,km∈[n]m

κhn
m (ui1k1 , . . . , u

∗
imkm)φ(xk1b1x

∗
k2)φ(b2) · · ·φ(xkm−1bm−1x

∗
km)

= (−1)m/2−1n1−mCm/2−1δi1=im,i2=i3,...

×
∑

k1=k2,k3=k4,...∈[n]m
φ(xk1b1x

∗
k2)φ(b2) · · ·φ(xkm−1bm−1x

∗
km)

= (−1)m/2−1n1−m/2Cm/2−1δi1=im,i2=i3,...φ(x1b1x
∗
1)φ(b2) · · ·φ(x1bm−1x

∗
1).

Similarly, if m = 2r and e = (∗,∅, . . . , ∗,∅) is alternating, we have

κEm
(
β̃n(xi1)∗b1, . . . , bm−1β̃n(xim)

)
= (−1)m/2−1n1−mCm/2−1δi1=i2,i3=i4,...

×
∑

k1=km,k2=k3,...∈[n]2r
x∗k1xkmφ(b1)φ(xk2b2x

∗
k3) · · ·φ(bm−1)

= (−1)m/2−1n−m/2Cm/2−1δi1=i2,i3=i4,...

× φ(b1)φ(x1b2x
∗
1) · · ·φ(x1bm−2x

∗
1)φ(bm−1)

n∑
j=1

x∗jxj . ■

During the rest of this section, we assume that the distribution φx of (xi)i∈N is invariant
under the dual action of Unc. Thanks to Lemma 5.3, the ∗-distribution of

(
β̃n(xj)

)
j≥1

and the

∗-distribution of (xj)j≥1 are the same, which means that we can extend β̃n to a homomorphism
from B0 to W ∗(Unc

n ) ∗ B0 such that (hn ∗ φ) ◦ β̃n = φ.

Lemma 5.5. The linear map En := Ehn∗φ
φ ◦ β̃n is a φ-preserving conditional expectation from

B0 to Bn.

Proof. We have φ ◦ Ehn∗φ
φ ◦ β̃n = hn ∗ φ ◦ β̃n = φ. Moreover, because

n∑
j=1

x∗jxj =

n∑
j=1

β̃n(xj)
∗β̃n(xj), xn+1 = β̃n(xn+1), xn+2 = β̃n(xn+2), . . . ,

we know that β̃n is the identity on Bn, and we can write the bimodule property: for all a ∈ B0,
and b1, b2 ∈ Bn,

Ehn∗φ
φ ◦ β̃n[b1ab2] = Ehn∗φ

φ

[
b1β̃n(a)b2

]
= b1E

hn∗φ
φ

[
β̃n(a)

]
b2.

It remains to prove that En takes value in Bn, which is true because

Ehn∗φ
φ ◦ β̃n

[
(xi1)e1 · · · (xim)em

]
= Ehn∗φ

φ

[
β̃n(xi1)e1 · · · β̃n(xim)em

]
∈ Bn,

thanks to Lemma 5.4. ■

Proposition 5.6 ([7, Proposition 4.7]). For any x ∈M , the sequence En[x] converges in strong
topology to a conditional expectation E : B0 → B∞. Moreover, for all m ≥ 1, a1, . . . , am ∈ M ,
we have

lim
n→∞

κEn
m (a1, . . . , am) = κEm(a1, . . . , am).
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Here comes our infinite de Finetti theorem in the case of von Neumann algebras, i.e., for
W ∗-probability spaces.

Theorem 5.7. Let (xi)i∈N be an infinite sequence of random variables in some W ∗-probability
space (M,φ). The following are equivalent:

1. There exists v ∈ M such that, setting E : M → B the conditional expectation from M
to B := W ∗(v), (xi)i∈N is a B-valued free centered circular family whose elements have
identical variances

B ∋ b 7→ E(xibx
∗
i ) = φ(xibx

∗
i )1M and B ∋ b 7→ E(x∗i bxi) = φ(b)v.

2. The distribution φx of (xi)i∈N is invariant under the dual action of Unc.

In this case, the sequence
(
1
n

∑n
j=1 x

∗
jxj
)
n∈N strongly converges to v.

Proof. Implication (1) → (2): First of all, the variables x∗jxj are freely independent and iden-

tically distributed with respect to E. As a consequence, the normalized sum
(
1
n

∑n
j=1 x

∗
jxj
)
n

strongly converges to E[x∗ixi] = v thanks to the free law of large number.
Now the strategy is the following: we will consider a sequence of variables which are invariant

under the dual action of Unc, and which converges in distribution to (xi)i∈N.

More precisely, let us consider
(
β̃n(xi)

)
i∈N. We set E := Ehn∗φ

φ . For all n ≥ 1, m ≥ 1,
(i1, . . . , im) ∈ Nm and b1 . . . bm ∈ B∞, Lemma 5.4 gives us the exact value of

κEm
[
β̃n(xi1)e1b1, . . . , bm−1β̃n(xim)em

]
in the case where n ≥ max(i1, . . . , im). By letting n tend to ∞, we get 0 if m ̸= 2, or if e1 = e2.
The only non-vanishing cases are

lim
n→∞

κE2
[
β̃n(xi1)b, β̃n(xi2)∗

]
= δi1,i2φ(x1bx

∗
1) = κE2 [xi1b, x

∗
i2 ]

and

lim
n→∞

κE2
[
β̃n(xi1)∗b, β̃n(xi2)

]
= δi1,i2φ(b)v = κE2 [x∗i1b, xi2 ].

As a consequence, we can say that the free cumulants κEm of
(
β̃n(xi)

)
i∈N under E = Ehn∗φ

φ

converge strongly to the free cumulant κEm of (xi)i∈N under E. Moreover, by induction, it is also
true for the free cumulant κEπ of a noncrossing partition π which converges to the corresponding
free cumulant κEπ . It implies firstly that the distribution of

(
β̃n(xi)

)
i∈N under Ehn∗φ

φ converges

strongly to the distribution of (xi)i∈N under E and secondly that the distribution of
(
β̃n(xi)

)
i∈N

under hn ∗ φ converges strongly to the distribution of (xi)i∈N under φ.
In order to conclude, we remark that, for any 1 ≤ m ≤ n, the distribution o(

β̃n(x1), . . . , β̃n(xm)
)

is invariant under αm. As a consequence, for any 1 ≤ m, the distribution of (x1, . . . , xm) is
invariant under αm (as it is the limit of the distribution of

(
β̃n(x1), . . . , β̃n(xm)

)
when n tends

to ∞).
Implication (2) → (1): Lemma 5.5 tells us that En[x∗1x1] = 1

n

∑
j=1 x

∗
jxj , and this variable

converges to v := E[x∗1x1] thanks to Proposition 5.6.
For all n ≥ 1, m ≥ 1, (i1, . . . , im) ∈ Nm and b1 . . . bm ∈ B∞, Lemma 5.4 gives us the exact

value of

κEn
m

[
xe1i1 b1, . . . , bm−1x

em
im

]
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in the case where n ≥ max(i1, . . . , im). By letting n tend to ∞, we get 0 if m ̸= 2, or if e1 = e2.
The only non-vanishing cases are

lim
n→∞

κEn
2 [xi1b, x

∗
i2 ] = δi1,i2φ(x1bx

∗
1) and lim

n→∞
κEn
2 [x∗i1b, xi2 ] = δi1,i2φ(b)v.

Proposition 5.6 allows us to conclude that the cumulants κE of (xi) are always vanishing,
except

B∞ ∋ b 7→ κE2 [xib, x
∗
i ] = φ(xibx

∗
i )1B and B∞ ∋ b 7→ κE2 [x∗i b, xi] = φ(b)v,

which means that (xi)i∈N is a B∞-valued free centered circular family whose elements have
identical variances. Because B is invariant by the action of these variances, we get the result. ■

5.4 Invariance for infinite sequences for tracial von Neumann algebras

Just like in our finite de Finetti theorem (see Section 4.2), we now consider the tracial case, i.e.,
of W ∗-probability spaces where φ is a trace.

Proposition 5.8. Let (xi)i∈N be an infinite sequence of random variables in some tracial W ∗-
probability space (M,φ). The following are equivalent:

1. The distribution φx of (xi)i∈N is invariant under the dual action of Unc.

2. The sequence (xi)i∈N has the same ∗-distribution as (cix)i∈N where (ci)i∈N is a sequence
of free circular variables, x is self-adjoint and (ci)i∈N and x are ∗-free.

In this case, x2 and the strong limit v of
(
1
n

∑n
i=1 x

∗
ixi
)
n∈N are identically distributed. More

generally, the distribution of x can be taken as any distribution such that x2 and v are identically
distributed.

For example, the distribution of x can be taken as the distribution of
√
v.

Proof. Implication (2) → (1): It is just an application of Example 4.3.
Implication (1) → (2): By enlarging (M,φ) if necessary, we consider a self-adjoint variable x

and a sequence of free circular variables (ci)i∈N ∗-free from x such that x2 and v are identically
distributed. Denoting by E the conditional expectation from M to W ∗(x), we can compute the
W ∗(x)-valued cumulants of (cix, (cix)∗)i∈N thanks to Theorem 3.20. They all vanish except

κE2 (cixb, (xci)
∗) = φ

(
x2b
)
1M and κE2 ((cix)∗b, xci) = φ(b)x2, ∀b ∈W ∗(x),

which means that (cix)i∈N is a W ∗(x)-valued free centered circular family. The variance leaving
invariant the subalgebra W ∗(x2), (cix)i∈N is a W ∗(x2)-valued free centered circular family with
variances

W ∗(x2) ∋ b 7→ φ
(
x2b
)
1M and W ∗(x2) ∋ b 7→ φ(b)x2.

Using Theorem 5.7, we know that (xi)i∈N is a W ∗(v)-valued free centered circular family with
variances

W ∗(v) ∋ b 7→ φ(xibx
∗
i )1M = φ(vb)1M and W ∗(v) ∋ b 7→ φ(b)v,

where we used the traciality and the exchangeability to write

φ(xibx
∗
i )1M = φ(bx∗ixi)1M = lim

n
φ

(
b ·

(
1

n

n∑
i=1

x∗ixi

))
1M = φ(vb)1M .

The distribution of v and x2 being the same, (xi)i∈N and (cix)i∈N have the same ∗-distribu-
tion. ■
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Corollary 5.9. Let (xi)i∈N be an infinite sequence of random variables in some tracial W ∗-
probability space (M,φ). The following are equivalent:

1. The distribution φx of (xi)i∈N is invariant under the dual action of Unc and the strong
limit v of

(
1
n

∑n
i=1 x

∗
ixi
)
n∈N has a trivial kernel.

2. We have the decomposition (xi)i∈N = (cix)i∈N where (ci)i∈N is a sequence of free circular

variables in M , x is the strong limit of
(√

1
n

∑n
i=1 x

∗
ixi
)
n∈N, x has a trivial kernel and

(ci)i∈N and x are ∗-free.

Proof. Implication (2) → (1): It is just an application of Example 4.3, with the additional
observation that v = x2 and x have the same kernel.

Implication (1) → (2): The fact that v has a trivial kernel implies that we can invert x :=
√
v

which is the strong limit of
(√

1
n

∑n
i=1 x

∗
ixi
)
n∈N (in the algebra of affiliated operators) and we

can define ci := xi · x−1 in such a way that xi = cix. It remains to prove that (ci)i∈N and x are
in M and are ∗-free with the ∗-distribution announced.

Let (c̃ix̃)i∈N be the realization of the ∗-distribution of (xi)i∈N (not necessarily in M) ap-
pearing in Proposition 5.8, with x̃ positive. But this means that the von Neumann algebra
generated by (xi)i∈N is isomorphic to the von Neumann algebra generated by (c̃ix̃)i∈N via the
mapping xi 7→ c̃ix̃. We extend this mapping to the algebra of affiliated operators (not necessarily

bounded). The image of x is the strong limit of
√

1
n

∑n
i=1(c̃ix̃)∗c̃ix̃, which is x̃, and the image of

ci = xi ·x−1 is c̃ix̃ · x̃−1 = c̃i. As a consequence, the ∗-distribution of (ci, x)i is the ∗-distribution
of (c̃i, x̃): they are bounded, and (ci)i∈N is a sequence of free circular variables in M , which is
∗-free from x :=

√∑n
i=1 x

∗
ixi. ■

6 De Finetti theorems for bialgebra actions

We now pass to a different kind of action of the Brown algebra: to bialgebra actions. These
are actions which make use of the tensor product of algebras (bialgebra actions) rather than
of the free product (dual group actions). Surprisingly, there cannot be a de Finetti theorem in
that case: we will show a kind of no-go theorem for this situation. However, if we weaken the
assumption of a W ∗-probability space to a space (M,φ) where φ is not faithful, we do obtain
a non-trivial de Finetti theorem.

6.1 Bialgebra actions

Denote again by Qn the unital free ∗-algebra generated by ti, i = 1, . . . , n. The Brown algebra
Pol(Unc

n ) has also an action as ∗-bialgebra on Qn, since for every n ∈ N there exists a unique
∗-homomorphism γn : Qn → Pol(Unc

n ) ⊗ Qn with γn(ti) =
∑n

j=1 uij ⊗ tj , which furthermore
satisfies the coaction identities

(∆ ⊗ id) ◦ γn = (id ⊗ γn) ◦ γn and (δ ⊗ id) ◦ γn = id.

Definition 6.1. Let (xi)i∈N be a sequence of random variables in a noncommutative probability
space (A,φ). The distribution φx of (xi)i∈N is said to be invariant under the ∗-bialgebraic action
of Unc, if φx is invariant under the coactions γn, i.e., if

(id ⊗ φx) ◦ γn = φx1,

for all n ≥ 1.



26 I. Baraquin, G. Cébron, U. Franz, L. Massen and M. Weber

Remark 6.2. A sequence (xi)i∈N of quantum random variables is invariant under the ∗-
bialgebraic action of Unc if and only if we have∑

1≤i1,...,ik≤n

ue1j1i1 · · ·u
ek
jkik

φ
(
xe1i1 · · ·x

ek
ik

)
= φ

(
xe1j1 · · ·x

ek
jk

)
1, (6.1)

for all k ∈ N, 1 ≤ j1, . . . , jk ≤ n, e = (e1, . . . , ek) ∈ {∅, ∗}k.

6.2 No-go de Finetti theorem for faithful states

In the case of usual W ∗-probability spaces (M,φ), where φ is a faithful state, we prove that
there exist no non-trivial sequences that are invariant under the ∗-bialgebraic action of Unc. This
constitutes our no-go de Finetti theorem for the Brown algebra under these kind of actions.

Theorem 6.3. Let (xi)i∈N be an infinite sequence of random variables in some W ∗-probability
space (M,φ). The joint ∗-distribution φx of (xi)i∈N is invariant under the ∗-bialgebraic action
of Unc if and only if xi = 0 for all i ∈ N.

In the proof of this theorem, we will use the following finite-dimensional representations of
Pol(Unc

n ).

Lemma 6.4. There exists a unique unital ∗-homomorphism πn : Pol(Unc
n ) →Mn(C) such that

πn(ujk) = ekj

for 1 ≤ j, k ≤ n. This homomorphism does not factorize via the quotient map qn : Pol(Unc
n ) →

Pol(U+
n ) for n ≥ 2.

Proof. Indeed, the assignment ujk 7→ ekj , u
∗
jk 7→ ejk satisfies the two defining relations uu∗ =

1 = u∗u of Pol(Unc
n ):∑

k

πn(uik)πn(u∗jk) = δij
∑
k

ekk = δij1,
∑
k

πn(u∗ki)πn(ukj) = δij
∑
k

ekk = δij1.

But for n ≥ 2 it does not satisfy the other two relations utu = 1 = uut that define Pol(U+
n ),

instead we have∑
k

πn(u∗ik)πn(ujk) = neij ,
∑
k

πn(uki)πn(u∗ki) = neij . ■

Proof of Theorem 6.3. Let n ≥ 2. Applying the ∗-representation πn defined in Lemma 6.4
to invariance condition (6.1) for products of the form x∗jxk, 1 ≤ j, k ≤ n, we get

φ(x∗jxk)1 = γ

(
n∑

i1,i2=1

u∗ji1uki2φ(x∗i1xi2)

)
= ejk

n∑
i=1

φ(x∗ixi),

which implies in particular φ(x∗ixi) = 0 and therefore, by faithfulness of φ, xi = 0 for all
1 ≤ i ≤ n. ■
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6.3 Half a de Finetti theorem for non-faithful states

Our proof of Theorem 6.3 depends in a crucial way on the assumption that the von Neumann
algebra M is equipped with a faithful state. We will now show that there do exist sequences that
are invariant under the ∗-bialgebraic action of Unc, if we weaken this assumption. Let us call
a pair (M,ψ) of a von Neumann algebra equipped with a not necessarily faithful state ψ a weak
W ∗-probability space. It is straightforward to extend the notions of a joint ∗-distribution in
Definition 3.4 and of invariance under the ∗-bialgebraic action of Unc in Definition 6.1 to weak
W ∗-probability spaces.

We have half a de Finetti theorem for the case of weak W ∗-probability spaces, i.e., we can
only prove one direction of the usual de Finetti theorems.

Proposition 6.5. Let (xi)i∈N be an infinite sequence of elements of a weak W ∗-probability space
(M,ψ).

If there exists a W ∗-subalgebra 1 ∈ B ⊆ M and a conditional expectation E : M → B such
that (xi)i∈N is a B-valued free centered circular family whose elements have identical variances

B ∋ b 7→ θ(b) = E(xibx
∗
i ) ∈ B and B ∋ b 7→ η(b) = E(x∗i bxi) = 0,

for all i ∈ N, then the joint distribution of (xi)i∈N is invariant under the ∗-bialgebraic action
of Unc.

For e = (e1, . . . , e2k) ∈ {∅, ∗}2k, denote by

NC
e,(∅,∗)
2 (k) = {π ∈ NC2(k);∀{s, t} ∈ π, emin(s,t) = ∅, emax(s,t) = ∗},

the pair partitions whose pairs ‘join’ a ∅ to a ∗.
We will need the following lemma.

Lemma 6.6. Let k ≥ 1, j = (j1, . . . , j2k) ∈ {1, . . . , n}2k, e = (e1, . . . , e2k) ∈ {∅, ∗}2k, and

π ∈ NC
e,(∅,∗)
2 (k). Then we have∑

1≤i1,...,i2k, π⪯ker i

ue1j1i1 · · ·u
e2k
j2ki2k

=

{
1 if π ⪯ ker j,

0 else.

Proof. We will prove this by induction. For k = 1 this is simply one of the defining relations
of Pol(Unc

n ).
Suppose now k > 1. Then π contains an interval V = (ℓ, ℓ + 1) with eℓ = ∅, eℓ+1 = ∗.

Therefore ∑
1≤i1,...,i2k, π⪯ker i

ue1j1i1 · · ·u
e2k
j2ki2k

=
∑

1≤i1,...,iℓ−1,iℓ+2,...,i2k, π\V⪯ker i

ue1j1i1 · · ·

(
n∑

i=1

ujℓiu
∗
jℓ+1i

)
︸ ︷︷ ︸

=δjℓjℓ+1

· · ·ue2kj2ki2k
,

from which the result follows with the induction hypothesis. ■

We will also need an expression for the conditional expectation of circular elements with one
vanishing variance η(b) = κE2 (x∗i b, x1) ≡ 0. From the last formula in Section 3.4, we get in this
case

E
(
b0x

e1
i1
b1 · · ·xekik

)
=


∑

π∈NC
e,(∅,∗)
2 (k), π⪯ker i

κEπ
[
b0x1b1, . . . , x

ek
1 bk

]
if k even,

0 if k odd.

(6.2)
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Proof of Proposition 6.5. We check that equation (6.1) is satisfied. For the odd moments
we clearly have∑

1≤i1,...,i2k+1≤n

ue1j1i1 · · ·u
e2k+1

j2k+1i2k+1
φ
(
xe1i1 · · ·x

e2k+1

i2k+1

)
= 0 = φ

(
xe1j1 · · ·x

e2k+1

j2k+1

)
1.

Let j = (j1 . . . , j2k) ∈ {1, . . . , n}2k and e = (e1, . . . , e2k) ∈ {∅, ∗}2k. Then∑
1≤i1,...,i2k≤n

ue1j1i1 · · ·u
e2k
j2ki2k

φ
(
xe1i1 · · ·x

e2k
i2k

)
=

∑
1≤i1,...,i2k≤n

ue1j1i1 · · ·u
e2k
j2ki2k

φ
(
E
(
xe1i1 · · ·x

e2k
i2k

))
=

∑
1≤i1,...,i2k≤n

ue1j1i1 · · ·u
e2k
j2ki2k

φ

( ∑
π∈NC

e,(∅,∗)
2 , π⪯ker i

κEπ
(
xe1i1 , . . . , x

e2k
i2k

))

=
∑

π∈NC
e,(∅,∗)
2

∑
1≤i1,...,i2k≤n, π⪯ker i

ue1j1i1 · · ·u
e2k
j2ki2k

φ
(
κEπ
(
xe1i1 , . . . , x

e2k
i2k

))
=

∑
π∈NC

e,(∅,∗)
2

φ
(
κEπ
(
xe1j1 , . . . , x

e2k
j2k

))
1 = φ

(
xe1j1 · · ·x

ek
jk

)
1,

where we used first Lemma 6.6, and then equation (6.2). ■
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[13] Gohm R., Köstler C., Noncommutative independence from the braid group B∞, Comm. Math. Phys. 289
(2009), 435–482, arXiv:0806.3691.
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