|
SIGMA 18 (2022), 069, 25 pages arXiv:2205.08153
https://doi.org/10.3842/SIGMA.2022.069
Freezing Limits for Beta-Cauchy Ensembles
Michael Voit
Fakultät Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
Received May 19, 2022, in final form September 15, 2022; Published online September 28, 2022
Abstract
Bessel processes associated with the root systems AN−1 and BN describe interacting particle systems with N particles on R; they form dynamic versions of the classical β-Hermite and Laguerre ensembles. In this paper we study corresponding Cauchy processes constructed via some subordination. This leads to β-Cauchy ensembles in both cases with explicit distributions. For these distributions we derive central limit theorems for fixed N in the freezing regime, i.e., when the parameters tend to infinity. The results are closely related to corresponding known freezing results for β-Hermite and Laguerre ensembles and for Bessel processes.
Key words: Cauchy processes; Bessel processes; β-Hermite ensembles; β-Laguerre ensembles; freezing; zeros of classical orthogonal polynomials; Calogero-Moser-Sutherland particle models.
pdf (558 kb)
tex (31 kb)
References
- Anderson G.W., Guionnet A., Zeitouni O., An Introduction to random matrices, Cambridge Studies in Advanced Mathematics, Vol. 118, Cambridge University Press, Cambridge, 2009.
- Andraus S., Hermann K., Voit M., Limit theorems and soft edge of freezing random matrix models via dual orthogonal polynomials, J. Math. Phys. 62 (2021), 083303, 26 pages, arXiv:2009.01418.
- Andraus S., Katori M., Miyashita S., Interacting particles on the line and Dunkl intertwining operator of type A: application to the freezing regime, J. Phys. A 45 (2012), 395201, 26 pages, arXiv:1202.5052.
- Andraus S., Katori M., Miyashita S., Two limiting regimes of interacting Bessel processes, J. Phys. A 47 (2014), 235201, 30 pages, arXiv:1309.2733.
- Andraus S., Miyashita S., Two-step asymptotics of scaled Dunkl processes, J. Math. Phys. 56 (2015), 103302, 23 pages, arXiv:1412.2832.
- Andraus S., Voit M., Central limit theorems for multivariate Bessel processes in the freezing regime II: The covariance matrices, J. Approx. Theory 246 (2019), 65-84, arXiv:1902.06840.
- Andraus S., Voit M., Limit theorems for multivariate Bessel processes in the freezing regime, Stochastic Process. Appl. 129 (2019), 4771-4790, arXiv:1804.03856.
- Anker J.-P., An introduction to Dunkl theory and its analytic aspects, in Analytic, Algebraic and Geometric Aspects of Differential Equations, Trends Math., Birkhäuser/Springer, Cham, 2017, 3-58, arXiv:1611.08213.
- Arista J., Demni N., Explicit expressions of the Hua-Pickrell semigroup, Theory Probab. Appl. 67 (2022), 208-228, arXiv:2008.07195.
- Assiotis T., Hua-Pickrell diffusions and Feller processes on the boundary of the graph of spectra, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), 1251-1283, arXiv:1703.01813.
- Assiotis T., Bedert B., Gunes M.A., Soor A., Moments of generalized Cauchy random matrices and continuous-Hahn polynomials, Nonlinearity 34 (2021), 4923-4943, arXiv:2009.04752.
- Berg C., Forst G., Potential theory on locally compact abelian groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 87, Springer-Verlag, New York - Heidelberg, 1975.
- Borodin A., Olshanski G., Infinite random matrices and ergodic measures, Comm. Math. Phys. 223 (2001), 87-123, arXiv:math-ph/0010015.
- Chybiryakov O., Gallardo L., Yor M., Dunkl processes and their radial parts relative to a root system, in Harmonic and Stochastic Analysis of Dunkl Processes, Hermann, Paris, 2008, 113-198, available at http://dml.mathdoc.fr/item/hal-00345627.
- de Boor C., Saff E.B., Finite sequences of orthogonal polynomials connected by a Jacobi matrix, Linear Algebra Appl. 75 (1986), 43-55.
- Deift P.A., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, Vol. 3, New York University, Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc., Providence, RI, 1999.
- Demni N., Generalized Bessel function of type D, SIGMA 4 (2008), 075, 7 pages, arXiv:0811.0507.
- Dumitriu I., Edelman A., Matrix models for beta ensembles, J. Math. Phys. 43 (2002), 5830-5847, arXiv:math-ph/0206043.
- Dumitriu I., Edelman A., Eigenvalues of Hermite and Laguerre ensembles: large beta asymptotics, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), 1083-1099, arXiv:math-ph/0403029.
- Forrester P.J., Log-gases and random matrices, London Mathematical Society Monographs Series, Vol. 34, Princeton University Press, Princeton, NJ, 2010.
- Gorin V., Kleptsyn V., Universal objects of the infinite beta random matrix theory, J. European Math. Soc., to appear, arXiv:2009.02006.
- Hua L.K., Harmonic analysis of functions of several complex variables in the classical domains, Translations of Mathematical Monographs, Vol. 6, Amer. Math. Soc., Providence, R.I., 1979.
- Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge, 2005.
- Neretin Yu.A., Matrix beta-integrals: an overview, in Geometric Methods in Physics, Trends Math., Birkhäuser/Springer, Cham, 2015, 257-272, arXiv:1411.2110.
- Pickrell D., Measures on infinite-dimensional Grassmann manifolds, J. Funct. Anal. 70 (1987), 323-356.
- Rösler M., Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (1998), 519-542, arXiv:q-alg/9703006.
- Rösler M., Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002),Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 93-135, arXiv:math.CA/0210366.
- Rösler M., Voit M., Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998), 575-643.
- Rösler M., Voit M., Dunkl theory, convolution algebras, and related Markov processes, in Harmonic and Stochastic Analysis of Dunkl Processes, Hermann, Paris, 2008, 1-112.
- Rösler M., Voit M., Elementary symmetric polynomials and martingales for Heckman-Opdam processes, in Hypergeometry, Integrability and Lie Theory, Contemp. Math., Vol. 780, Amer. Math. Soc., Providence, RI, 2022, 243-262, arXiv:2108.03228.
- Sato K., Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, Vol. 68, Cambridge University Press, Cambridge, 2013.
- Szegö G., Orthogonal polynomials, textAmerican Mathematical Society Colloquium Publications, Vol. 23, Amer. Math. Soc., New York, 1939.
- van Diejen J.F., Vinet L. (Editors), Calogero-Moser-Sutherland models, CRM Series in Mathematical Physics, Springer-Verlag, New York, 2000.
- Vinet L., Zhedanov A., A characterization of classical and semiclassical orthogonal polynomials from their dual polynomials, J. Comput. Appl. Math. 172 (2004), 41-48.
- Voit M., Central limit theorems for multivariate Bessel processes in the freezing regime, J. Approx. Theory 239 (2019), 210-231, arXiv:1805.08585.
- Voit M., Woerner J.H.C., Functional central limit theorems for multivariate Bessel processes in the freezing regime, Stoch. Anal. Appl. 39 (2021), 136-156, arXiv:1901.08390.
|
|