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Abstract. LP algebras, introduced by Lam and Pylyavskyy, are a generalization of cluster
algebras. These algebras are known to have the Laurent phenomenon, but positivity remains
conjectural. Graph LP algebras are finite LP algebras encoded by a graph. For the graph
LP algebra defined by a tree, we define a family of clusters called rooted clusters. We prove
positivity for these clusters by giving explicit formulas for each cluster variable. We also
give a combinatorial interpretation for these expansions using a generalization of T -paths.

Key words: Laurent phenomenon algebra; cluster algebra; graph LP algebra; T -path

2020 Mathematics Subject Classification: 05E15; 05C70

1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [9]. Though the original motivation
for these objects was the study of total positivity, they have since been found to have connections
to a wide variety of mathematical areas, including the representation theory of quivers [3, 17, 24],
algebraic geometry and mirror symmetry [2, 14], discrete integrable systems [10, 18], Poisson
geometry [12, 13], Teichmüller theory [6, 7, 8, 12], other areas of combinatorics [1, 4, 5, 16], and
mathematical physics [4, 11].

Cluster algebras are commutative rings with a family of distinguished generators called cluster
variables. The cluster variables occur in overlapping subsets of fixed size called clusters. Given
a cluster C, we can obtain a unique distinct cluster C′ by a process called mutation where one
cluster variable in C is replaced with a different cluster variable. The two cluster variables
involved in this process are related by a binomial exchange relation; that is, their product can
be expressed as a binomial in terms of the other variables in C (or, equivalently, in C′).

Cluster algebras have several important features, including that:

(1) Laurent phenomenon. Given a fixed choice of cluster C = (x1, . . . , xn), every cluster vari-
able can be written as a Laurent polynomial in x1, . . . , xn.

(2) Positivity. The Laurent polynomial in (1) has positive coefficients.

Lam and Pylyavskyy introduced Laurent phenomenon (LP) algebras as a generalization of
cluster algebras [19]. In an LP algebra, the restriction that exchange relations be binomial is
relaxed to allow arbitrary irreducible polynomials. The precise definition of these algebras is
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reviewed in Section 2.1. Lam and Pylyavskyy proved that the Laurent phenomenon holds for
LP algebras and conjectured that positivity holds as well.

Graph LP algebras are a particularly nice class of LP algebras whose exchange relations can
be encoded in a graph. Lam and Pylyavskyy explored graph LP algebras in depth in [20] and
gave simple descriptions of all of the clusters along with several formulas for computing the
cluster variables. However, positivity for graph LP algebras remains conjectural. In this paper,
we describe progress towards that conjecture.

We begin by introducing rooted clusters for graph LP algebras. Our first main result, which
we prove by giving explicit formulas for every cluster variable in terms of each rooted cluster, is
positivity for such clusters.

Theorem 1.1. If Γ is a tree and C is a rooted cluster for Γ, then every cluster variable in
the graph LP algebra associated to Γ can be expressed as a Laurent polynomial with positive
coefficients in the elements of C.

We then introduce a generalization of Schiffler’s T -paths for type A cluster algebras [25] for
our setting.

Theorem 1.2. Let Γ be a tree and C be a rooted cluster for Γ. If S is a connected subset of
vertices of Γ, then the cluster variable YS has the combinatorial expansion formula

YS =
∑

complete hyper
T -paths α for S

wt(α).

We will begin in Section 2.1 by giving more background on LP algebras and then specifically
graph LP algebras. In Section 2.3, we introduce rooted clusters. Section 3 gives formulas for the
cluster variables in terms of a rooted cluster C and contains the proof of Theorem 1.1. We begin
Section 4 with background on T -paths for type A cluster algebras and then define hyper T -paths.
This section culminates with the proof of Theorem 1.2. We conclude with a few thoughts about
future work.

2 Preliminaries

2.1 LP algebras

LP algebras were defined by Lam and Pylyavskyy in [19]. We state the full definition of LP
algebras in this section for the sake of completeness, but this paper will focus on a particular
subset: graph LP algebras. Our initial definition of graph LP algebras, in Definition 2.4, uses the
following definition of an LP algebra, but we will later give an equivalent and simpler definition
in Theorem 2.8.

Definition 2.1 (cf. [19, Section 2.1]). Let R be a coefficient ring over Z that is a unique
factorization domain. Let F be the field of rational functions in X1, . . . , Xn over Frac(R) where
X1, . . . , Xn are indeterminates. A seed is a collection {(xi, Fi)}1≤i≤n where

� x1, . . . , xn is a transcendence basis for F over Frac(R).

� F1, . . . , Fn are polynomials in R[x1, . . . , xn] such that

(LP1) Fi is irreducible in R[x1, . . . , xn] and is not divisible by any variable xj , and

(LP2) Fi does not involve xi.

The individual elements x1, . . . , xn are known as cluster variables, the entire set {x1, . . . , xn}
as a cluster. The functions F1, . . . , Fn are the exchange polynomials. The rank of the seed
{(xi, Fi)}1≤i≤n is n.
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Given a seed t = {(xi, Fi)}1≤i≤n, let L = L(t) := R[x±11 , . . . , x±1n ]. The LP algebra associated
to the seed t lives within this Laurent polynomial ring. Precisely defining this LP algebra,
however, requires some additional framework.

For each seed, the collection of exchange polynomials defines a collection of exchange Laurent
polynomials {F̂1, . . . , F̂n} such that

� F̂i := xa11 · · ·xai−1

i−1 x
ai+1

i+1 · · ·xann Fi for some a1, . . . , ai−1, ai+1, . . . , an ∈ Z≤0, and

� for i ̸= j, F̂i|xj←Fj/x
lies in R[x±11 , . . . , x±1j−1, x

±1, x±1j+1, . . . , x
±1
n ] and is not divisible by Fj

(as an element of this ring).

The collection of exchange Laurent polynomials {F̂1, . . . , F̂n} is well-defined and is uniquely de-
termined by the original collection of exchange polynomials {F1, . . . , Fn}. The exchange Laurent
polynomials allow us to state a definition of mutation.

Definition 2.2. For a seed t = {(xi, Fi)}1≤i≤n, mutation in direction k produces a new seed
t′ = µk({(xi, Fi)}1≤i≤n) = {(x′i, F ′i )}1≤i≤n where the new cluster variables are given by the
exchange relation

x′i :=

{
F̂k/xk, i = k,

xi, i ̸= k.

The new exchange polynomials are determined according to the following cases:

� F ′k := Fk.

� If i ̸= k and Fi does not depend on xk, then define F ′i as any polynomial which satisfies
F ′i ⋉ Fi (i.e., F

′
i and Fi differ multiplicatively by a unit in R), where F ′i is now considered

as an element of L′ = L(t′).
� If i ̸= k and Fi does depend on xk, then define

Gi := Fi|xk←(F̂k|xi←0)/x′k

and define Hi as Gi with all common factors with F̂k|xi←0 removed. Note that Hi is only
defined up to multiplication by a unit in R. Now, define

F ′i := MHi,

where M is a Laurent monomial in x′1, . . . , x
′
i−1, x

′
i+1, . . . , x

′
n whose coefficient is a unit

in R, such that F ′i satisfies (LP2) and is not divisible by any variable in R[x′1, . . . , x
′
n].

Such a monomial always exists, but there may be many choices for the coefficient of M .
Therefore, F ′i is defined only up to multiplication by a unit in R.

One can verify that mutation produces a collection which meets the definition of a seed; for
details, see [19, Section 2.2]. Note that this definition of mutation is not exactly involutive, since
mutation is non-deterministic. If we obtain the seed t′ by mutating the seed t in direction k,
however, it is always possible to recover t by mutating t′ in direction k.

Definition 2.3. A Laurent phenomenon algebra (A,S) consists of a collection of seeds S and
a subring A ⊂ F generated by all the cluster variables which appear in seeds in S. The
collection S must satisfy the following conditions.

� Any pair of seeds in S can be obtained from each other via a sequence of mutations.

� For any seed (xi, Fi) ∈ S and direction k ∈ [n]:= {1, 2, . . . , n}, there exists another seed
(x′i, F

′
i ) ∈ S which can be obtained by mutating (xi, Fi) in direction k.
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2.2 Graph LP algebras

For every undirected graph Γ, we obtain a graph LP algebra AΓ. The initial seed for AΓ is
encoded by the edges of the graph.

Definition 2.4. Let Γ be an undirected graph on [n] and R = Z[A1, . . . , An]. Then the graph
LP algebra AΓ is the LP algebra generated by initial seed {(Xi, Ai +

∑
i adjacent to j Xj)}1≤i≤n.

Remark 2.5. There is a similar definition of LP algebras from directed graphs, described in [20],
for which the results of Lam and Pylyavskyy discussed later in this section still hold.

Lam and Pylyavskyy prove that these LP algebras have a particularly nice structure using
nested collections.

Definition 2.6. Let Γ be an undirected graph on [n]. A family of subsets of [n], S =
{S1, . . . , Sk}, is a nested collection if

� for any i, j ≤ k, either Si ⊆ Sj , Sj ⊆ Si, or Si ∩ Sj = ∅, and

� if Si1 , . . . Siℓ are pairwise disjoint, then Si1 , . . . Siℓ are exactly the connected components

of
⋃ℓ

j=1 Sij .

We say S is a maximal nested collection on S if
⋃k

i=1 Si = S and there is no S′ ⊆ S such that
{S1, . . . , Sk, S

′} is a nested collection.

If Γ is a graph on [n] and S is a maximal nested collection on S = [n], we will generally say
that S is a maximal nested collection without specifying S.

Example 2.7. Let Γ be the following graph:

1 2 3

4

5

Then S = {{1}, {3}, {1, 2, 3, 4}} is a nested collection on S = {1, 2, 3, 4}. However, it is not
maximal because adding the set S′ = {1, 2, 3} still yields a nested collection.

As a nonexample, consider S = {{1}, {1, 2}, {3}, {1, 2, 3, 4}}. We can see that this is not
a nested collection by looking at the disjoint sets {1, 2} and {3}. The union of these sets is
{1, 2, 3}, which has only one connected component.

Theorem 2.8 ([20, Theorem 1.1]). Let Γ be an undirected graph on [n]. Define the matrix
N = (nij) by

nij =


Ai +

∑
i adjacent to k Xk

Xi
, i = j,

−1, i adjacent to j,

0, otherwise.

Then the graph LP algebra AΓ has cluster variables {X1, . . . , Xn} ∪ {YS |S ⊂ [n] is connected}
where YS is the determinant of the submatrix of N obtained by taking only rows and columns
indexed by S. The clusters for AΓ are of the form {Xi1 , . . . , Xik} ∪ {YS |S ∈ S} where S is
a maximal nested collection on [n] \ {i1, . . . , ik}.

In a slight abuse of notation, we will generally write Ys1...sr as shorthand for Y{s1,...,sr}.
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Example 2.9. Let Γ be the graph from Example 2.7. One example of a valid cluster for AΓ is
X2, Y1, Y5, Y35, Y345. This is because {{1}, {5}, {3, 5}, {3, 4, 5}} is a maximal nested collection
on {1, 3, 4, 5}. In this case, the N matrix is

N =



A1 +X2

X1
−1 0 0 0

−1
A2 +X1 +X3

X2
−1 0 0

0 −1
A3 +X2 +X4 +X5

X3
−1 −1

0 0 −1
A4 +X3

X4
0

0 0 −1 0
A5 +X3

X5


.

We can use this to rewrite the Y -variables in our cluster. For example,

Y35 =

∣∣∣∣∣∣∣
A3 +X2 +X4 +X5

X3
−1

−1
A5 +X3

X5

∣∣∣∣∣∣∣
=

A3A5 +A5X2 +A5X4 +A5X5 +A3X3 +X2X3 +X3X4

X3X5
.

Lam and Pylyavskyy also completely describe the exchange relations for AΓ. Before stating
these relations, we must first introduce some notation. If S ⊆ [n] and i ∈ [n], then we write

� Si for S ∪ {i},
� S ⊕ i for the connected component of Si that includes i, and

� S ⊖ i for Si \ (S ⊕ i).

For any S ⊆ [n] and i, j ∈ [n], we let P ij
S :=

∑
p:i→Sj

YS\p, where the summation runs over paths
from i to j that contain only i, j, and vertices in S, and S \ p denotes S without the vertices
used in the path p.

Example 2.10. Consider the following graph Γ:

1 3 5

2 4 6

Let S = {1, 2, 3, 4}, i = 6, j = 3. Then there are three paths from i to j:

1 3 5

2 4 6

1 3 5

2 4 6

1 3 5

2 4 6

The first of these paths goes through 5, which is not in S. Therefore, it will not contribute
to P ij

S . The second path only goes through 4, which is in S. For this path we have S \ p is
{1, 2, 3, 4} \ {3, 4, 6} = {1, 2}, so it will contribute Y12. The third path goes through 1, 2, and 4,
all of which are in S. For this path S \ p is {1, 2, 3, 4} \ {3, 1, 2, 4, 6} = ∅, so it will contribute
Y∅ = 1. Thus, we find that P ij

S = Y12 + 1.
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Proposition 2.11 ([20, Lemmas 4.7 and 4.11]).

(a) For i ̸∈ S,

XiYS⊕i =

∑
j ̸∈Si P

ij
S Xj +

∑
j∈Si P

ij
S Aj

YS⊖i
.

(b) For i, j ̸∈ S and i ̸= j,

YS⊕iYS⊕j =
YSijYS + P ij

S P ji
S

YS⊖iYS⊖j
.

2.3 Rooted clusters

For the rest of this paper, we will be focusing on the case when Γ is a tree. In this setting, we
can define a special type of cluster we call a rooted cluster that has desirable properties. There
is one rooted cluster Cv for each vertex v of Γ. In order to define this cluster, we think of Γ as
being rooted at v. We then think of Γ as a poset with the root v being the maximal element
and cover relations given by edges of Γ. This leads us to establish the following notation:

� Notice that if i ̸= v, then i is covered by exactly one vertex. We call this vertex i+.

� The set of elements covered by i is denoted Γv
⋖i. Similarly we have the sets Γv

⋗i, Γ
v
<i, Γ

v
>i,

Γv
≤i, and Γv

≥i (note that Γv
⋗i = {i+} if i ̸= v).

Definition 2.12. Let Γ be a tree on [n]. Make Γ into a rooted tree by choosing a vertex v to
be the root. Then for each vertex x in Γ, let Ix = Γv

≤x. The rooted cluster Cv is {Ix}x∈[n].

We verify that a rooted cluster is a maximal nested collection.

Lemma 2.13. Given a tree, Γ, on [n] and any vertex v ∈ [n], the rooted cluster Cv is a maximal
nested collection on [n].

Proof. Because Iv = [n], the collection of subsets in Cv clearly covers all vertices of Γ. Moreover,
we have the containment Ii ⊂ Iv for all vertices i ̸= v. Thus, Iv is compatible with all other
subsets in Cv.

Let i, j be distinct vertices of Γ such that i, j ̸= v. Because Γ is a tree, there is a unique
path in Γ between i and j. If this path does not pass through the root v, then either i < j or
vice versa. Without loss of generality, assume that i < j. Then, Ii ⊆ Ij . If the unique path
between i and j does pass through v, then Ii ∩ Ij = ∅. Because the root v is not in either Ii
or Ij , the union Ii ∪ Ij has exactly two disjoint connected components: Ii and Ij . In general,

for any collection of pairwise disjoint sets Ii1 , . . . , Iiℓ , the union
⋃ℓ

j=1 Iij is a disconnected graph
whose connected components are exactly the subgraphs with vertices Ii1 , . . . , Iiℓ .

Finally, suppose that S ⊆ [n] is a subset that is compatible with all Ii, i ∈ [n]. We may
assume S is a connected subset of vertices in Γ because otherwise we could simply consider
its connected components. Let x ∈ [n] be the element of S which is closest to v; this element
is unique since S is connected. Since S ∩ Ix ̸= ∅, we must have either S ⊆ Ix or Ix ⊆ S in
order for S and Ix to be compatible. Because x is the largest element of S and Ix contains x
and everything smaller, Ix ̸⊆ S. So, S ⊆ Ix. If S is properly contained in Ix, then there is at
least one element y less than x such that y /∈ S but y+ ∈ S. It follows that Iy and S are not
compatible. Therefore, S must contain everything less than x. Because S does not contain any
vertices of Γ closer to the root than x, it follows that S = Ix.

Therefore, Cv satisfies the definition of a maximal nested collection, as stated in Defini-
tion 2.6. ■
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1

2

3 4 5

6 7 8

Figure 1. We can picture the cluster rooted at vertex 1 by taking subsets which are closed going down.

For example, I2 = {2, 3, 4, 5, 6, 7, 8} and I5 = {5, 8}.

Example 2.14. Consider the tree in Figure 1. The cluster rooted at 1, C1, consists of I1 =
{1, 2, 3, 4, 5, 6, 7, 8}, I2 = {2, 3, 4, 5, 6, 7, 8}, I3 = {3}, I4 = {4, 6, 7}, I5 = {5, 8}, I6 = {6},
I7 = {7}, and I8 = {8}. One can check that these sets form a nested collection, and that it is
not possible to add another set compatible with all others.

As a further example, given the same tree if we rooted at 4 instead, then I2 = {1, 2, 3, 5, 8}.

3 Formulas

Though Theorem 2.8 and Proposition 2.11 give formulas for all cluster variables, these formulas
are not guaranteed to be in terms of the variables in any given cluster. In this section, we will
prove formulas for each cluster variable in terms of the rooted cluster Cv. These formulas will
allow us to prove positivity for this case.

We first state a fact that will be useful throughout this section.

Lemma 3.1. Let Γ be a tree rooted at v and i be a vertex of Γ. Then

YΓv
<i

=
∏

u∈Γv
⋖i

YIu

and for u ∈ Γv
<i,

YΓv
<i\Γv

≥u
=

∏
w∈Γv

≤i∩Γ
v
≥u

∏
x∈Γv

⋖w\Γv
≥u

YIx .

Proof. The formula for YΓv
<i

follows from the definition for Y -variables indexed by disconnected
sets.

Given i and u ∈ Γv
<i, there is a chain i = i0⋗ i1⋗ · · ·⋗ ik = u in the vertex poset. This means

Γv
<i\Γv

≥u = Γv
<i\{i1, . . . , ik}. Consider some y ∈ Γv

<i\Γv
≥u and let 0 ≤ j ≤ k be the largest index

such that y ∈ Iij (note that y ∈ Ii = Ii0 so j exists). Because y ̸∈ Γv
≥u, we must have y ∈ Ij′

for some j′ ⋖ ij where, if j < k, then j′ ̸= ij+1. Therefore, Γv
<i\Γv

≥u =
⊔k

j=0

⊔
x∈Γ⋖ij

\{ij+1} Ix,

where we set {ik+1} = ∅. The desired Y -variable identity follows. ■

3.1 X-variables

Lemma 3.2. Let Γ be a tree rooted at v. For any vertex i of Γ,

Xi =


YΓv

<i
(Xi+ +Ai) +

∑
u∈Γv

<i
YΓv

<i\Γv
≥u

Au

YIi
if i ̸= v,∑

u∈[n] Y[n]\Γv
≥u

Au

Y[n]
if i = v.
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Proof. These formulas follow directly from Proposition 2.11(a) with S = Γv
<i. ■

We can use this to find formulas for the X-variables in terms of the elements of a rooted
cluster.

Proposition 3.3. Let Γ be a tree rooted at v and i be a vertex of Γ. Then

Xi =

∑
u∈Γv

≥i

(∏
w∈Γv

≥i\Γ
v
≥u

YΓv
<w

)(∏
w∈Γv

>u
YIw

)(∑
w∈Iu YΓv

<u\Γv
≥w

Aw

)
∏

u∈Γv
≥i

YIu
.

Proof. We proceed by induction. The base case is i = v. Since Iv = [n], in this case, the
formula from the proposition reduces to the formula in the second part of Lemma 3.2.

Now we will assume the proposition holds for i+ and prove that it holds for i. From
Lemma 3.2, we know

Xi =
YΓv

<i
(Xi+ +Ai) +

∑
u∈Γv

<i
YΓv

<i\Γv
≥u

Au

YIi

=
YΓv

<i

∑
u∈Γv

≥i+

(∏
w∈Γv

≥i+
\Γv
≥u

YΓv
<w

)(∏
w∈Γv

>u
YIw

)(∑
w∈Iu YΓv

<u\Γv
≥w

Aw

)
YIi

∏
u∈Γv

≥i+
YIu

+

(∏
u∈Γv

≥i+
YIu

)(
YΓv

<i
Ai +

∑
u∈Γv

<i
YΓv

<i\Γv
≥u

Au

)
YIi

∏
u∈Γv

≥i+
YIu

=

∑
u∈Γv

≥i+

(∏
w∈Γv

≥i\Γ
v
≥u

YΓv
<w

)(∏
w∈Γv

>u
YIw

)(∑
w∈Iu YΓv

<u\Γv
≥w

Aw

)
∏

u∈Γv
≥i

YIu

+

(∏
u∈Γv

>i
YIu

)(∑
w∈Ii YΓv

<i\Γv
≥w

Aw

)
∏

u∈Γv
≥i

YIu

=

∑
u∈Γv

≥i

(∏
w∈Γv

≥i\Γ
v
≥u

YΓv
<w

)(∏
w∈Γv

>u
YIw

)(∑
w∈Iu YΓv

<u\Γv
≥w

Aw

)
∏

u∈Γv
≥i

YIu
,

where the second equality is from the inductive hypothesis. ■

For example, in the tree in Figure 1,

X4 =
1

YI1YI2YI4
(YΓ1

<2
YΓ1

<4
(A1 + YΓ1

<1\Γ1
≥2
A2 + YΓ1

<1\Γ1
≥3
A3 + YΓ1

<1\Γ1
≥4
A4

+ YΓ1
<1\Γ1

≥5
A5 + YΓ1

<1\Γ1
≥6
A6 + YΓ1

<1\Γ1
≥7
A7 + YΓ1

<1\Γ1
≥8
A8)

+ YΓ1
<4
YI1(YΓ1

<2\Γ1
≥2
A2 + YΓ1

<2\Γ1
≥4
A4 + YΓ1

<2\Γ1
≥6
A6 + YΓ1

<2\Γ1
≥7
A7)

+ YI1YI2(YΓ1
<4\Γ1

≥4
A4 + YΓ1

<4\Γ1
≥6
A6 + YΓ1

<4\Γ1
≥7
A7))

=
1

YI1YI2YI4
(YI3YI4YI5YI6YI7(A1 + YI3YI4YI5A2 + YI4YI5A3 + YI3YI5YI6YI7A4

+ YI3YI4YI8A5 + YI3YI5YI7A6 + YI3YI5YI6A7 + YI3YI4A8)

+ YI6YI7YI1(YI3YI4YI5A2 + YI3YI5YI6YI7A4 + YI3YI5YI7A6 + YI3YI5YI6A7)

+ YI1YI2(YI6YI7A4 + YI7A6 + YI6A7)).

By Lemma 3.1, we obtain the following immediate corollary:

Corollary 3.4. Let Γ be a tree and C a rooted cluster for Γ. For any vertex i of Γ, Xi can be
expressed as a Laurent polynomial in the elements of C with positive coefficients.
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3.2 Y -variables

For the Y -variables, we begin by looking at sets of size 1.

Proposition 3.5. Let Γ be a tree rooted at v. For every vertex i of Γ,

Y{i} =
YIi +

∑
u∈Γv

⋖i
YΓv

<i\{u}

YΓv
<i

.

Proof. If Γv
<i = ∅, then the formula in the proposition reduces to Y{i} = Y{i}.

If Γv
<i ̸= ∅, recall from Theorem 2.8 that Y{i} =

Ai+
∑

u adjacent to i Xu

Xi
. If i ̸= v, we can rewrite

this as Y{i} =
Ai+Xi++

∑
u∈Γv

⋖i
Xu

Xi
. Using Proposition 3.2, we can replace all the the X’s in the

expression that come from elements of Γv
⋖i to get

Y{i} =
Ai +Xi+ +

∑
u∈Γv

⋖i

YΓv
<u

(Xi+Au)+
∑

w∈Γv
<u

YΓv
<u\Γ

v
≥w

Aw

YIu

Xi
.

Giving everything a common denominator, we get

Y{i} =

YΓv
<i
(Ai +Xi+) +

∑
u∈Γv

⋖i

( ∏
w∈Γv

⋖i\{u}
YIw

)(
YΓv

<u
(Xi +Au) +

∑
w∈Γv

<u

YΓv
<u\Γv

≥w
Aw

)
YΓv

<i
Xi

,

which simplifies to

Y{i} =
YΓv

<i
(Ai +Xi+) +

∑
u∈Γv

⋖i

(
YΓv

<i\{u}(Xi +Au) +
∑

w∈Γv
<u

YΓv
<i\Γv

≥w
Aw

)
YΓv

<i
Xi

.

Pulling out all the Xi terms, we get

Y{i} =
YΓv

<i
(Ai +Xi+) +

∑
u∈Γv

<i
YΓv

<i\Γv
≥u

Au +Xi
∑

u∈Γv
⋖i
YΓv

<i\{u}

YΓv
<i
Xi

.

Applying Proposition 2.11(a) with S = Γv
<i proves the proposition in this case.

If i = v, we instead get that Y{v} =
Ai+

∑
u∈Γv

⋖v
Xu

Xv
. A similar computation to the above proves

the proposition in this case. ■

For example, in the tree in Figure 1, we calculate

Y{2} =
YI2 + YI4YI5 + YI3YI6YI7YI5 + YI3YI4YI8

YI3YI4YI5
=

YI2
YI3YI4YI5

+
1

YI3
+

YI6YI7
YI4

+
YI8
YI5

.

Using this formula, we can prove a formula for general sets. It will be useful to define
f(i) = YIi +

∑
u∈Γv

⋖i
YΓv

<i\{u}, the numerator of the fraction from the above proposition. We

begin with a few lemmas.

Lemma 3.6. Let Γ be a tree, S be a connected subset of vertices, and T = {(a, b) ∈ S × S | a =
b+}. Then

YS =

⌊ |S|2 ⌋∑
n=0

(−1)n
∑

A∈A(n)

( ∏
x∈(S\A′)

Y{x}

)
,

where A(n) = {A ⊆ 2T | |A|= n and {a, b} ∩ {c, d} = ∅ for all (a, b), (c, d) ∈ A with (a, b) ̸=
(c, d)} and for any A ∈ A(n), A′ = {s | s is part of a pair in A}.
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Proof. Recall from Theorem 2.8 that YS is the determinant of matrix NS
S . Consider a nonzero

term in this determinant that comes from a permutation σ where σ(i) = j. Writing σ in cycle
notation, there must be a cycle (ijv1 . . . vr). In order for this term to be nonzero, there must be
edges in Γ from i to j, j to v − 1, and so on. Since Γ is a tree, the only way this can happen is
for j = i or for the cycle in σ to be (ij). This tells us that any time there is a nonzero term in
this determinant that uses entry nij for i ̸= j, it must also use entry nji. Since nij = nji = −1,
this term is the product of all the other matrix entries given by the permutation.

Thus, we can break down the formula in the lemma as follows. We sum over n the number of
possible cycles in a permutation that gives a nonzero term in the determinant. Since all of the
cycles are transpositions, the length of each permutation has the same parity as the number of
cycles, giving us the (−1)n. Once we have fixed n, we sum over all possible n-tuples of cycles,
each given by a set A. If the cycles of a permutation are given by A, then the fixed points of the
permutation are given by S \A′. Each x ∈ S \A′ contributes Y{x} to the term in the determinant
we get from this permutation. The cycles each contribute 1. ■

Lemma 3.7. Let Y
(n)
S =

∑
A∈A(n) (

∏
x∈(S\A′) Y{x}). If t is a monomial that appears as a term

in Y
(m+1)
S , then t also appears in Y

(m)
S .

Proof. Let A = {(s1, s2), . . . , (s2m−1, s2m), (p, q)} ∈ A(m+1). Then B = {(s1, s2), . . . , (s2m−1,
s2m)} is in A(m). We have the following equalities:

∏
x∈(S\A′)

Y{x} =

∏
x∈(S\A′) f(x)∏
x∈(S\A′) YΓv

<x

=
YΓv

<p
YΓv

<q

∏
x∈(S\A′) f(x)∏

x∈(S\B′) YΓv
<x

,

∏
x∈(S\B′)

Y{x} =

∏
x∈(S\B′) f(x)∏
x∈(S\B′) YΓv

<x

=
f(p)f(q)

∏
x∈(S\A′) f(x)∏

x∈(S\B′) YΓv
<x

,

f(p)f(q) =

(
YIp +

∑
u∈Γv

⋖p

(YΓv
<p\{u})

)(
YIq +

∑
u∈Γv

⋖q

YΓv
<q\{u}

)

=

(
YIp +

∑
u∈Γv

⋖p

u̸=q

YΓv
<p\{u}

)(
YIq +

∑
u∈Γv

⋖q

YΓv
<q\{u}

)

+ YΓv
<p\{q}

(
YIq +

∑
u∈Γv

⋖q

YΓv
<q\{u}

)

=

(
YIp +

∑
u∈Γv

⋖p

u̸=q

YΓv
<p\{u}

)(
YIq +

∑
u∈Γv

⋖q

YΓv
<q\{u}

)

+ YΓv
<p
YΓv

<q
+ YΓv

<p\{q}
∑

u∈Γv
⋖q

YΓv
<q\{u}.

Notice that YΓv
<p
YΓv

<q
appears in f(p)f(q). This means that if t is a monomial that appears

in
∏

x∈(S\A′) Y{x}, it must also appear in
∏

x∈(S\B′) Y{x}. ■

Theorem 3.8. Let Γ be a tree rooted at v. For any subset S of the vertices of Γ, we have

YS =
∑

O⊆S containing all
minimal elements of Γ in S

∑
u:S\O→V (Γ)
u(x)∈Γv

⋖x\O

(∏
x∈O YIx

) (∏
x∈S\O YΓv

<x\{u(x)}

)
∏

x∈S YΓv
<x

.
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Proof. By Lemma 3.7, if we expand the sum given in Lemma 3.6, the only monomials that will
appear are those that appear in the expansion of

∏
x∈S Y{x}. We will count how many times

each of these monomials appear the sum in Lemma 3.6 with signs.
Since∏

x∈S
Y{x} =

∏
x∈S f(x)∏
x∈S YΓv

<x

,

we will consider a monomial in this expansion

t =
t′∏

x∈S YΓv
<x

.

We obtain t′ by multiplying the terms YIx from f(x) for some set Ot and then multiplying the
terms YΓv

<x\{ut(x)} for some choice of ut(x) ∈ Γv
⋖x for each x ∈ S \Ot. Then

t′ =

( ∏
x∈Ot

YIx

)( ∏
x∈S\Ot

YΓv
<x\Γv

≥ut(x)

)
.

Notice that every minimal element of Γ that is in S must be in Ot for every t.
Let Pt be the set of maximal chains in (S \Ot) that follow ut. That is,

Pt = {(x1, . . . , xn) |xi ∈ S \Ot; xi+1 = uxi(t); (x1, . . . , xn) is maximal}.

Every element of S \Ot is in exactly one chain of Pt. Let

P e
t = {(x, y) | there is a chain in Pt that ends with x; ut(x) = y ∈ S}.

We can see that if (x, y) ∈ P e
t , then t′ contains a factor YΓv

<x
YΓv

<y
. Further, if

Ft = {x | (x, y) ∈ P e
t for some y} and Lt = {y | (x, y) ∈ P e

t for some x},

then we have

t′ =

( ∏
x∈Ft∪Lt

YΓv
<x

)( ∏
x∈Ot\Lt

YIx

)( ∏
x∈S\Ot\Ft

YΓv
<x\{ut(x)}

)
,

because the pairs in P e
t are disjoint by construction. This means t′ is a term in the product

(
∏

x∈Ft∪Lt
YΓv

<x
)(
∏

x∈S\Ft\Lt
f(x)).

Recall that for A ∈ A(n),

∏
x∈(S\A′)

Y{x} =

∏
x∈(S\A′) f(x)∏
x∈(S\A′) YΓv

<x

=

(∏
S∈A′ YΓv

<x

)∏
x∈(S\A′) f(x)∏

x∈S YΓv
<x

.

Since the numerator of this fraction contains
∏

S∈A′ YΓv
<x

, the term t appears in
∏

x∈(S\A′) Y{x}
exactly when A′ ⊆ Ft ∪ Lt. Since Ft ∪ Lt uniquely determines P e

t , the term t appears in∏
x∈(S\A′) Y{x} exactly when A ⊆ P e

t . Thus if |P e
t |= m, when we count the number of times

this t appears with sign, we get
(
m
0

)
−
(
m
1

)
+ · · ·+ (−1)m

(
m
m

)
. This is 0 if m > 0 and 1 if m = 0.

This means we want to sum over all possible choices of Ot and ut that give rise to P e
t = ∅.

We have P e
t = ∅, exactly when every chain in Pt ends in an element x such that ut(x) ̸∈ S.

Given Ot, this is equivalent to ut(x) ̸∈ Ot for every x ∈ S \ Ot. Summing over all subsets of S
that contain every minimal element and then all functions u that meet these conditions gives us
our formula. ■
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Example 3.9. Consider the following graph Γ rooted at 1:

1

2 3

4
5

6

7

Let S = {1, 3}. The possibilities for O ⊂ S such that O contains all leaves in S are ∅, {1}, {3},
and {1, 3}, as S does not contain any minimal elements of the rooted tree. First consider when
O = ∅. In this case, the domain of u is {1, 3}. Since 3 covers only 6, u(3) = 6. Both 2 and 3
are covered by 1 and are not in O, so we could have u(1) = 2 or u(1) = 3. This gives us that
O = ∅ contributes

YΓ1
<1\Γ1

≥2
YΓ1

<3\Γ1
≥6

YΓ1
<1
YΓ1

<3

+
YΓ1

<1\Γ1
≥3
YΓ1

<3\Γ1
≥6

YΓ1
<1
YΓ1

<3

to YS .

Now we consider O = {1}. The domain of u is then {3} and u(3) must be 6, as above. This
means that O = {1} contributes

YI1YΓ1
<3\Γ1

≥6

YΓ1
<1
YΓ1

<3

.

If O = {3} then the domain of u is {1}. Although 1 covers both 2 and 3, 3 ∈ O, and therefore u(1)
has to be 2. This means that O = {3} contributes

YI3YΓ1
<1\Γ1

≥2

YΓ1
<1
YΓ1

<3

.

Finally, if O = {1, 3} then the domain of u is ∅ and we get that O = {1, 3} contributes

YI1YI3
YΓ1

<1
YΓ1

<3

.

All together, this gives us

YS =
YΓ1

<1\Γ1
≥2
YΓ1

<3\Γ1
≥6

+ YΓ1
<1\Γ1

≥3
YΓ1

<3\Γ1
≥6

+ YI1YΓ1
<3\Γ1

≥6
+ YI3YΓ1

<1\Γ1
≥2

+ YI1YI3

YΓ1
<1
YΓ1

<3

=
Y367Y4Y5Y7 + Y245Y67Y7 + Y1234567Y7 + Y367Y367Y4Y5 + Y1234567Y367

Y245Y367Y67
.

As with the X-variables, we get positivity as a corollary.

Corollary 3.10. Let Γ be a tree and C a rooted cluster for Γ. For any set S of vertices of Γ,
YS can be expressed as a Laurent polynomial in the elements of C with positive coefficients.

Theorem 1.1 is a direct consequence of Corollaries 3.4 and 3.10.
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4 Hyper T -paths

We now develop the tools to prove a combinatorial formula for the Y -variables and use that to
reprove Corollary 3.10. Our constructions are a generalization of T -paths. The notion of a T -
path was introduced by Schiffler in [25]. Later, Schiffler and Thomas [26, 27] extended this work
to give cluster expansion formulas for cluster algebras from unpunctured surfaces. Subsequently,
Gunawan and Musiker [15] used T -paths to give expansion formulas for type D cluster algebras
and to prove that in these algebras the cluster monomials form the atomic basis. More recently,
a generalization of T -paths called super T -paths were introduced by Ovenhouse, Musiker, and
the last author in the context of supersymmetric cluster algebras [21].

In Section 4.1, we review the original T -path construction for type A cluster algebras. We
then introduce our generalization of the T -path construction to hyper T -paths and give some
motivating examples in Section 4.2. Section 4.3 gives some additional properties of hyper T -
paths which are derived from our definition. In Sections 4.4, 4.5, and 4.6, we prove that our
hyper T -path construction gives expansion formulas for graph LP algebras in terms of rooted
clusters (Theorem 1.2).

4.1 T -paths for type A cluster algebras

For the purposes of this paper, it will be most useful for us to review the definition of a complete
T -path. Type A cluster algebras are modeled by triangulations of an (n + 3)-gon, with each
initial seed corresponding to a unique initial triangulation. Consider an (n+3)-gon with vertices
labeled 1, . . . , n+3 and a fixed triangulation T = {T1, . . . , Tn, Tn+1, . . . , T2n+3} where T1, . . . , Tn

are interior diagonals and Tn+1, . . . , T2n+3 are boundary edges. Let i and j be non-adjacent
boundary vertices and letMi,j denote the interior diagonal connecting i and j. Fix an orientation
on Mi,j and let i = p0, p1, . . . , pd, pd+1 = j be the ordered list of intersection points of Mi,j and
arcs of T . Then let i1, . . . , id be a list of indices such that intersection point pk lies on the arc
Tik ∈ T . For k ∈ [d], let Mk denote the segment of the diagonal Mi,j between the intersection
points pk and pk+1.

In [22], Musiker and Schiffler define a complete T -path from i to j as a sequence α =
(t1, . . . , tℓ(α)) such that

(T1) i = a0, a1, . . . , aℓ(α) = j are vertices of the (n+ 3)-gon,

(T2) tk ∈ α is an arc in the triangulation T that connects vertices ak−1 and ak, and

(T3) the even arcs are precisely the arcs crossed by Mi,j in order, i.e., t2k = Tik .

One immediate consequence of (T3) is that ℓ(α) = 2d+ 1. It is possible for a complete T -path
to contain backtracking, so there is consequently a natural notion of a reduced T -path where
such backtracking is removed. When we define hyper T -paths in Section 4.2, we will see that
there are also similar notions of complete and reduced hyper T -paths.

Example 4.1. Consider the triangulation T and arc Mi,j shown below:

T13

T6

T7

T8

T9

T10

T11

T12

T1

T4

T5

T2

T3
Mi,j
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Notice that the arcs crossed byMi,j are, in order, T1, T3, and T5. The following is then a complete
T -path from i to j. Odd arcs are depicted as blue and solid; even arcs are depicted as red and
dashed:

i = a0 a1 a2 a3 a4 a5 a6 a7 = j.
T13 T3 T3 T9T1 T3 T5

By removing the backtracking on the arc T3, we obtain the following reduced T -path:

i = a0 a1 a2 a3 a4 a5 = j.
T13 T1 T3 T5 T9

We denote the set of all complete T -paths from i to j as Tij . Given a complete T -path α,
the weight of α is defined to be the Laurent monomial

wt(α) :=

( ∏
i odd

wt(ti)

)( ∏
i even

wt(ti)

)−1
,

where the weight of edge ti is given by wt(ti) := xti . By summing over the set Tij , Schiffler [26]
then obtains an expansion formula for the cluster variable corresponding to Mi,j in terms of the
cluster seed corresponding to the triangulation T :

xMi,j :=
∑
α∈Tij

wt(α).

Although it is not immediately obvious, this cluster expansion formula is independent of the
choice of orientation on Mi,j . This formula also holds if the summation is over all reduced
T -paths rather than all complete T -paths.

Example 4.2. The T -path in Example 4.1 has weight

xT13xT3xT3xT9

xT1xT3xT5

=
xT13xT3xT9

xT1xT5

.

In the case where the variables corresponding to boundary edges (the frozen variables) are given
weight 1, the weight of the T -path becomes

xT3
xT1

xT5
. In this case, the summation over Tij yields

the cluster expansion formula

xMi,j =
x2T3

+ xT3xT4 + xT2xT3 + xT2xT4 + xT1xT5

xT1xT3xT5

.

4.2 Construction and examples

In this section, we generalize the notion of T -paths to define hyper T -paths. We first need the
following construction of ΓC , an auxiliary graph.

Let Γ be a tree and C be a rooted cluster for Γ. For each vertex x of degree 1 in ΓC , we add an
additional vertex x′ which is adjacent only to x. Call this extended graph Γ′. We will continue
to think of Γ′ as a poset where x′ < x if x is not the root and x′ > x if x is the root. For every
S ∈ C, let S′ be the set of vertices in Γ′ that are adjacent to a vertex in S but are themselves not
in S. Add a hyperedge labelled S which connects all the vertices of S′. As a convenient abuse of
notation, we often refer to this hyperedge simply as S. We refer to this new hypergraph as ΓC .
See Figure 2 for an example:

For x a vertex in the rooted tree Γ, we will use Lx to denote to all minimal elements of Γ′

that are less than x. Equivalently, Lx is the elements of Γ′ \ Γ that are less than x.
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3

4 2

1 5

Γ

yeah

I2

5′

5

2

1

1′

344′

I5

I4

I1
ΓC3

I3

Figure 2. A rooted tree and its associated hypergraph.

Definition 4.3. Let S be a connected subset of Γ. A complete hyper T -path for S with respect
to C is a set of nodes, labelled by vertices of ΓC , joined by connections labelled by hyperedges
of ΓC such that the diagram is connected and the following hold.

1. If a connection is labelled by hyperedge e, it joins nodes labelled by all the endpoints of e
with multiplicity 1.

2. There are a distinguished set of boundary nodes labelled by elements of S′ with multiplic-
ity 1. Other nodes are called internal nodes.

3. Connections are specified to be even or odd.

4. Boundary nodes are adjacent only to odd connections.

5. Internal nodes labelled by elements of S are adjacent to exactly one even and at least one
odd connection.

6. Internal nodes labelled by elements not in S are adjacent to exactly one even and exactly
one odd connection.

7. If x, y are below elements of S, any path in any complete hyper T -path from boundary node
x to boundary node y uses even connections labelled, in order, by Ix, Iap , Iap−1 , . . . , Ia1 , Ib1 ,
Ib2 , . . . , Ibq , Iy where the shortest path from x to y in Γ′ is x, ap, ap−1, . . . , a1, x∨y, b1, b2, . . . ,
bq, y for p, q ≥ 0.

8. If x is below an element of S and y above the maximal element of S, any path in any
complete hyper T -path from the boundary node x to the boundary node y uses even
connections labelled, in order, by Ix, Iap , . . . , Ia2 , where the shortest path from x to y
in Γ′ is x, ap, ap−1, . . . , a1, y, p ≥ 1. If p = 1, then a path from x to y uses the even
connection Ix.

9. If x, y are boundary nodes, where the shortest path from x to y in Γ′ is x, ap, . . . , a1, x∨y,
b1, . . . , bq, y, then any path in any complete hyper T -path from x to y uses nodes labelled
by elements of Lx∨y and ap, ap−1, . . . , a1, x ∨ y, b1, b2, . . . , bq, with any multiplicity. If
one of the nodes, say y, is adjacent to the maximal element of S, then x ∨ y = y and
q = 0.

When we draw complete hyper T -paths, we will always depict odd edges as blue/solid and
even edges as red/dashed.

Example 4.4. Consider the graph Γ from Figure 2 and cluster C3. Let S be the set {2, 3}. The
following are some examples of complete hyper T -paths for S:
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1

1′

2 3

5′

4′ 4

I1

I4

2

5

I5

I5

5′

1′
I2

I2
3

5

5′

3 3

1′

4′ 4

I5
I4

2

1

I1
I1 5′

1′
I2

I2
2

4′

5′ 5′

1′

2
I2
3

5

1′

I5I5

2

1

I1

I1 3 4
I4

I4I1

2

5′

1′
I2

3

1′

1

5′

4′ 3 4

I1 I3

I4

2

5

I5
I5

Example 4.5. The following is very similar to the first complete hyper T -path from the previous
example:

1

1′

2

5′

2 3

5

4′ 4

I5

I1

I4

5′

1′
I2

I2
3

I5

However, notice that the path from 1 to 4 uses the even edge I5, which breaks Rule (7). Thus,
this is not a complete hyper T -path.

Example 4.6. Consider the path graph on [4] and cluster C1. Let S = {2, 3}. The following
might initially appear to be a complete hyper T -path for S, but it actually violates Rule (8):

4

3

4′
2 4′ 1

I4 I3

I3 I2

Because 1 is adjacent to the maximal element of S and 4 is adjacent to the minimal element
of S, Rule (8) requires that the even edges of any complete hyper T -path from 1 to 4 be labeled,
in order, by I2 and I3.

Example 4.7. Our definition of complete hyper T -paths is motivated by the definition of
complete T -paths in the last section. If Γ is a path graph on [n], then the clusters consisting
of only Y -variables form a type An−1 cluster algebra [20, Corollary 6.2]. In this case, complete
hyper T -paths are exactly complete T -paths.

Let Γ be the path graph on [6] with vertices numbered in order. We can construct ΓC3 as
follows (with edge labels omitted for clarity):

1′ 1 2 3 4 5 6 6′
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This can be redrawn as an octogon:

1′

1

2

3 4

5

6

6′

Complete hyper T -paths on this octagon are the same as complete T -paths.

Remark 4.8. Rules (7) and (8) can be relaxed to instead require even connections to be labelled
by a subset of the listed hyperedges, arranged in the order consistent with the complete list.
Doing so gives us a definition for the more general object of (not necessarily complete) hyper
T -paths. In particular, we can define a reduced hyper T -path as a hyper T -path where there
are no internal nodes of degree two where both adjacent connections are labelled by the same
hyperedge. Although we state and prove Theorem 1.2 with complete hyper T -paths, it also
holds for reduced hyper T -paths.

For the remainder of this paper, we focus solely on complete hyper T -paths. For readability,
we will drop the prefix “complete” and simply refer to complete hyper T -paths as hyper T -paths.

Definition 4.9. The weight of a hyper T -path α is

wt(α) =

( ∏
odd connections c

wt(c)

)( ∏
even connections c

wt(c)

)−1
,

where the weight of a connection labelled by a set Ix is YIx and the weight of a connection
labelled by an edge in Γ′ is 1.

Example 4.10. The first hyper T -path in Example 4.4 has weight

YI5YI2
YI1YI4YI5YI2

=
1

YI1YI4
=

1

Y1Y4
.

We have now introduced all of the necessary definitions to precisely understand the statement
of Theorem 1.2. The rest of Section 4 will be dedicated to proving this theorem.

4.3 Properties of hyper T -paths

Before proving Theorem 1.2, we highlight some properties of hyper T -paths which are implied
by the rules stated in Definition 4.3 and will be useful to our proof.

The following condition is immediately implied by Rule (9).

Lemma 4.11. Let S be a connected subset of Γ. Then, internal nodes in a hyper T -path for S
will always be labeled either by elements of S or elements of Ly for some y ∈ S.

We next prove a lemma regarding the even connections that appear in a hyper T -path. Note
that in the statement of the lemma below, x+ only exists if x is not the root or if x is the root
and deg(x) = 1.
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Lemma 4.12. Given S, a connected subset of Γ endowed with rooted cluster Cv let x be the
maximal element of S (it is possible that x = v). Let α be a hyper T -path for S. Then, for each
y ∈ S ∪ S′ where y ̸= x, x+, α contains exactly one even connection labeled Iy.

Proof. First, we show that for every y ∈ S ∪ S′ such that y ̸= x, x+, the set Iy must label at
least one even connection. First, suppose y ∈ S; then, at least one vertex c such that c < y
must be in S′. Moreover, S′ will have at least one element, d, such that d ≮ y. It follows that
c ∨ d > y. By Rules (7) and (8), a path from c to d in a hyper T -path for S must use Iy as an
even edge. If y ∈ S′, then a path from y to any other boundary node in a hyper T -path must
use Iy as an even edge.

Now, we show that Iy cannot be used to label multiple even connections in a hyper T -path
for S. Suppose by way of contradiction that the label Iy appeared on two even connections
in a hyper T -path. Because all hyper T -paths are connected, this would require that there be
two boundary nodes connected by a path containing two even connections labeled Iy, violating
Rules (7) and (8). Thus, we can conclude that any hyper T -path associated to S must contain
exactly one even connection labeled Iy. ■

It follows from Rules (7) and (8) that Lemma 4.12 describes all even connections in a hyper
T -path. Finally we introduce a technical lemma which we will use heavily in the proofs for the
rest of this section.

Lemma 4.13. Let S be a connected subset of vertices of Γ and let u and v be distinct elements
of S′. Let x be maximal in S and let a′, b′ ∈ Lx. Then, there does not exist a path between
boundary nodes labeled u and v which takes a step along an even connection between a′ and b′

in any hyper T -path α associated to S.

Proof. We assume for sake of contradiction that such a path exists in some T -path α. First,
suppose that u and v are adjacent to minimal elements of S. Let the path between u and v in Γ
be u = w0, w1, . . . , wn, u ∨ v, zm, . . . , z1, v = z0. In order for a path from a node labeled u to
a node labeled v in a hyper T -path associated to S to have an even connection with nodes a′, b′,
it must be that a′ < wi and b′ < wi or a′ < zi and b′ < zi for some i. Assume without of loss
of generality that the former is true. Note that, if 0 ≤ i ≤ n is minimal such that a′ < wi and
b′ < wi, then a′, b′ ∈ Lwj for all i ≤ j ≤ n.

Assume first that this even step is along a connection labeled Iwk
for k < n. Also assume

without loss of generality that this path, oriented from the node u to the node v, goes through b′

before it goes through a′. Then, we know that a′ must connect to some endpoints of the next
even connection on this path. By Rule (7), this next connection is labeled Iwk+1

. It is possible
that a′ also connects to other even connections. By Rule (7) and the fact that this connection
is along a path using even connections labeled Iu, Iw1 , . . . , Iwk

, if the unique odd connection
incident to a′ connects to another even connection, it must be Iz for z ⋖ wk+1. Thus, the odd
connection incident to a′ can only have nodes wk+1, wk+2, and boundary nodes in Lwk+2

; this
implies that this odd connection must be labeled Iwk

or Iwk+1
. Since b′ ∈ Lwk

⊆ Lwk+1
, this

odd connection incident to a′ will also have b′ as a node. We know this is a distinct node
from the b′ incident to the even connection Iwk

since this would create a cycle, which would
create paths between the boundary nodes u and v which violate Rule (7). Since the underlying
graph Γ is acyclic, b′ /∈ Lz. It follows that the even edge incident to this node labeled b′ must
be labeled Iwk+1

. Thus, if we have a path with even step from b′ to a′ along Iwk
, we will also

have a path with an even step from b′ to a′ along Iwk+1
:

b′
Iwk

a′
b′ a′

Iwk+1
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It therefore suffices to consider the case when we have an even step along Iwn between b′

and a′. As before, we assume that when traveling along this path from u to v, we visit b′ first.
The odd connection incident to this node a′ can only have nodes which are incident to (Iu∨v)

′

or (Iz)
′ for z ⋖ u ∨ v. Thus, the odd connection incident to a′ must be labeled I(u∨v) or Iwn .

These odd connections will have b′ as a node as well. Note that b′ ∈ (Iu∨v)
′ but b′ /∈ (Iz)

′ for
z ⋖ u ∨ v and z ̸= wn since our underlying graph is acyclic. Thus, either u ∨ v is maximal in S
and we have a contradiction since b′ cannot connect to any even connection, or b′ is incident to
the even connection Iu∨v:

b′
Iwn

a′
b′ a′

Iu∨v

∗
Izm

This logic continues; each new node a′ must have an incident odd connection which also has
a new node labeled b′. In order to preserve all rules, the node b′ must be incident to an even
edge Ix for increasing vertices x. Eventually, we will reach x such that x+ is maximal in S.
Since Ix+ does not appear as an even connection in a hyper T -path associated with S, we would
be stuck at this point with a node b′ incident to an odd connection but without any valid options
for an incident even connection. Therefore, it is impossible to have a path in a hyper T -path
between two boundary nodes which uses a step along an even connection between two extended
vertices.

Now, we consider the case where u ∈ S′ is adjacent to a minimal element of S and x+ =
v ∈ S where x is the maximal element of S. Let the path between u and v in Γ be u =
w0, w1, . . . , wn, x, v = x+. In order for a path from a node labeled u to a node labeled v in
a hyper T -path associated to S to have an even connection with labels a′, b′, it must be that
a′ < wi and b′ < wi for some i so that a′, b′ ∈ Lwi . By the same argument as the previous case,
if a path from the boundary node labeled u to the boundary node labeled v has a step along an
even connection Iwk

, k < n, between a′ and b′, then we can also find a path which has a step
along an even connection Iwk+1

. Thus, it suffices to consider the case where the path uses a step
along an even connection labeled Iwn between b′ and a′; as before, suppose this path, when
oriented from u to v passes through b′ before a′. By Rule (8), Iwn is the last even connection
on this path when oriented from u to v, so the node incident to Iwn labeled a′ must be incident
to an odd connection with a node labeled v. This connection must be Ix; accordingly, another
node labeled b′ will be incident to this odd connection. In order to preserve Rule (7) concerning
paths from u to other boundary nodes labeled by vertices of S′ incident to minimal elements
of S, this new node b′ must be adjacent to an even connection labeled Iz for z ⋖ x and z ̸= wn.
However, since our underlying graph Γ is acyclic, there is no vertex z with these properties such
that b′ ∈ Lz. Thus, we have reached a contradiction and such a step along an even connection
is not possible in this case. ■

4.4 Hyper T -paths for singleton sets

Let Γ be a tree with rooted cluster Cv. We first describe the set of hyper T -paths for a singleton
set {x}, where x is a vertex of Γ. If {x} ∈ Cv (equivalently, if Ix = {x}) then the only hyper
T -path for {x} consists of a single odd connection, labeled by Ix. Now, consider a vertex x of Γ
such that {x} /∈ Cv; this includes the case where x is the root v. Let Γv

⋖x be {c0, . . . , cd} where
d ≥ 0. We know this set is non-empty since x is not a minimal element of Γ. If x is the root
of Γ and deg(x) > 1, then any hyper T -path associated to the set {x} has endpoints c0, . . . , cd.
Otherwise, any hyper T -path associated to the set {x} has endpoints c0, . . . , cd, x

+.
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Recall that Lci denotes the set of minimal elements of Γ′ which are less than ci (equivalently,
the set of elements of Γ′ \Γ that are less than ci). For each ci, there is one hyper T -path where ci
is connected via a collection of odd connections to Lci and all other cj , for j ̸= i, are connected
to x. We illustrate this below for c0. Odd connections are shown as solid (blue) lines and even
connections as dashed (red) lines:

c0

c1

...

cd

∪w∈Γv
⋖c0

Iw

Lc0

x

...

x

Ic0

Ic1

Icd

x

Lc1

...

Lcd

x+

Ic1

Icd

Notice that for each element w covered by c0, there is one odd connection labeled Iw with
nodes c0 and Lw. The collection of all such connections will connect c0 to all of the vertices of Lc0 .
If x+ does not exist, this hyper T -path can be updated by simply deleting that boundary node
and its incident odd connection. This hyper T -path satisfies the rules given in Definition 4.3.
When ci is the distinguished boundary node, we refer to this hyper T -path as T ci

x .
There is one additional hyper T -path, shown below, where none of the ci boundary nodes

connect to Lci via an odd connection:

c0

c1

...

cd

x

x

x

Ic0

Ic1

Icd

Lc0

Lc1

Lcd

x+

Ix

...
...

If x+ does not exist, then x is the root and Ix is the entire vertex set of Γ; therefore, the
connection labeled Ix has nodes Lc0 ⊔ · · · ⊔ Lcd . One can check that this hyper T -path also
satisfies the rules of Definition 4.3. We use T+

x to denote this hyper T -path.
We now prove that this list of hyper T -paths is in fact a complete list for a singleton set. This

will provide the base case of Theorem 4.17, which describes all hyper T -paths for any connected
set S.

Theorem 4.14. Let Γ be a tree with rooted cluster Cv and y be an arbitrary vertex in Γ with
Γv
⋖y = {c0, . . . , cd}. Then, with respect to Cv, the collection of hyper T -paths for {y} consists

exactly of T+
y and T ci

y for each ci ∈ Γv
⋖y.

Proof. By Lemma 4.11, the internal nodes in a hyper T -path for {y} can only be labelled by
y or elements of Ly. Accordingly, the odd connections adjacent to the each boundary node ci
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can connect to nodes labeled by y or by vertices in Lci . By Rules (7) and (8), a path in the
hyper T -path from ci to any other boundary node must first use the even connection Ici . In
addition, by Lemma 4.13, we cannot have a path from ci to any other boundary node which
uses an even step between two extended vertices. If ci connected to a set of nodes labeled by
a proper subset of Lci , then since the even connection incident to these nodes must be labeled Ici
and have all vertices from Lci as labels of nodes, we would create a path which Lemma 4.13
forbids. Thus, if ci does not connect to a node labeled y, it must connect to a collection of nodes
labeled by all vertices in Lci . To determine the set of valid hyper T -paths, we will consider
how many of the nodes labeled by boundary vertices ci can connect directly to nodes labeled
by y.

First, consider the case where all of the nodes labeled by boundary vertices ci connect via
an odd connection to nodes labeled by y. By Rules (7) and (8), this determines the label
of the subsequent even connection in each branch and leaves us with the following configura-
tion:

c0

c1

...

cd

y

y

y

Ic0

Ic1

Icd

Lc0

Lc1

Lcd

...
...

Because the sets Ic0 , . . . , Icd are a complete set of the elements of the cluster Cv which are
incompatible with {y}, by Lemma 4.12 we can no longer add even connections. This also means
we cannot introduce more internal nodes, since each must have an incident even connection.
All of the nodes in Lc0⊔ · · · ⊔Lcd can be connected by odd connections labeled either Iy or Iu
where u > y. If we use Iu, then we would have to introduce the node u+. Because u+ is not
in either S or S′, however, it cannot label a node. Therefore, we must use the connection Iy.
If y is not the root of Γ or if y is the root and deg(y) = 1, this connection will also have
node y+. If y is the root and deg(y) > 1, then S′ = Γv

⋖y, and a connection labeled Iy connects
the nodes labeled by all vertices in Lc0⊔ · · · ⊔Lcd to each other. Thus, this hyper T -path must
be T+

y .

Next, we consider the case where all but one of the boundary nodes are connected to y.
Without loss of generality, let c0 be the unique boundary node which instead is connected via
odd connections to the set Lc0 . The following even connections on each branch are again forced
by Rules (7) and (8):

c0

c1

...

cd

∪w∈Γv
⋖c0

Iw

Lc0

y

...

y

Ic0

Ic1

Icd

y

Lc1

...

Lcd
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As in the previous case, we cannot introduce any more internal nodes since we have used the
complete set of allowable even connections. A connection between ∪d

i=1Lci and y+ would also
have vertices in Lc0 as nodes. We can neither introduce new nodes nor, by (6), connect this new
connection to the existing set of nodes Lc0 . Thus, we must connect each set Lci individually
to y, using a connection labeled Ici . That is, any hyper T -path with this configuration which
satisfies every rule must be T c0

y .

Finally, we consider the case where more than one of the boundary nodes ci connect to Lci

via an odd connection. If y only covers one element, then this case is not possible. Without loss
of generality, suppose c0, . . . , ck for 1 ≤ k ≤ d connect to Lc0 , . . . ,Lck respectively:

c0

...

ck

ck+1

...

cd

∪w∈Γv
⋖c0

Iw

∪w∈Γv
⋖ck

Iw

Lc0

...

Lck

y

...

y

Ic0

Ick

Ick+1

Icd

y

...

y

Lck+1

...

Lcd

The same discussion as in the previous case holds. However, now there are multiple nodes
labeled y which need an adjacent odd connection. Each node in a set Lci can only be adjacent
to one odd connection by Rule (6). Moreover, these nodes must connect to a node labeled y;
otherwise we would create subpaths in the hyper T -path that violate Rule (9). Thus, there is
no way to connect all of these initial components while still satisfying the rules for a valid hyper
T -path. ■

4.5 Hyper T -paths for general sets

The goal of this section is the proof of Theorem 4.17, which will enable us to prove our second
main result, Theorem 1.2, in which we verify that any hyper T -path satisfying the rules given
in Definition 4.3 can be constructed by pasting together hyper T -paths for singleton sets, which
we described in Section 4.4.

The procedure for pasting two hyper T -paths together is as follows. Let u, v be vertices
connected by an edge (u, v) in Γ. Let A and B be disjoint subsets of the vertex set of Γ such
that A contains u but not v and B contains v but not u. Then v ∈ A′ and u ∈ B′. Let TA, TB

be hyper T -paths for the sets A and B, respectively. Suppose that in TA, the boundary node
labeled v is connected via an odd connection to a node labeled u or in TB the boundary node
labeled u is connected via an odd connection to a node labeled v. By Rules (7) and (8), if this is
not true for both hyper T -paths, then in one of them there are nodes labeled u and v connected
by a sequence of an odd connection and an even connection. Then, we can paste TA and TB

together as follows. Suppose without loss of generality that in TA there is an odd connection
with nodes labeled u and v. Then deleting that connection and the node u and identifying the
node v in TA and TB gives us TA ⊕ TB, a hyper T -path for A ∪B.
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Example 4.15. Consider the graph Γ in Figure 2. Let A = {2} and B = {3}. Then, u = 2 and
v = 3. Below we display a hyper T -path for A, call it TA, and a hyper T -path for B, call it TB.
In the notation of Section 4.4, TA = T 1

2 and TB = T 4
3 . We can see that TA has the boundary

node 3 joined to an internal node 2 by an odd edge and TB has a boundary node 2. We paste
these two hyper T -paths together by deleting the boundary node 3 from TA and identifying the
internal node 2 to which this boundary node was formerly connected with the boundary node 2
from TB:

1

1′

2

5′

I1

2

5

I5
I5

3 ⊕ 2 3 4′ 4
I4

5′

1′
I2

I2
3 =

1

1′

2 3

5′

4′ 4

I1

I4

2

5

I5

I5

5′

1′
I2

I2
3

In this case, since TB has a connection between the boundary node 3 and an internal node 2,
we could have instead thought about this pasting as deleting the boundary node 2 from TB and
identifying the formerly connected node 3 with the boundary node 3 from TA. Both processes
give the same result.

In this case, any pair of T -paths for A and B can be pasted except the pair T+
2 and T 2

3 .

Proposition 4.16. Let A and B be disjoint connected subsets of Γ such that there exists an
edge (u, v) in Γ where A contains u and not v and B contains v but not u. If TA is a hyper
T -path for A and TB is a hyper T -path for B such that u and v are joined by a connection in at
least one of TA, TB, then TA ⊕ TB is a hyper T -path for A ⊔B.

Proof. It is easy to check that this construction follows all of the rules listed in Defini-
tion 4.3. ■

Theorem 4.17. Let S be a connected set of vertices of the graph Γ. Let Cv be a rooted cluster
on Γ. Let y be a minimal element of S; that is, there are no elements in S less than y. Then,
any hyper T -path associated to S can be constructed by pasting a hyper T -path for {y}, T ∗y ,
together with a hyper T -path for S\{y}.

Proof. We proceed by induction on |S|. The |S|= 1 case is covered by Theorem 4.14, so let
|S|> 1, and suppose we have proved the statement of the theorem for all sets of size |S|−1.
Let y be a minimal element of S and let Γv

⋖y = {c0, . . . , cd} with d ≥ 0. As in the singleton case,
each boundary node ci must connect via odd connection to either y or all of Lci . We consider
the same cases as in the singleton case.

First, consider the case where all ci connect directly to y via an odd connection. Rules (7)
and (8) then determine the label attached to the even connections adjacent to each of these
internal nodes labeled y. By Rule (7), any subpath in the hyper T -path from ci to cj for i ̸= j
must use even connections labeled Ici and Icj , in this order. Because hyper T -paths must be
connected, the nodes labeled by vertices in Lc0 , . . . ,Lcd must all be joined by a series of odd
connections. Moreover, the first two even connections on a path from ci to an element of S′
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which is not labelled by an element of Γv
⋖y must be Ici and Iy. The nodes in Lc0⊔ · · · ⊔Lcd

must then all connect to one or multiple endpoints of Iy. Recall that the endpoints of Iy are y+

and Lc0⊔ · · · ⊔Lcd and, by Lemma 4.12, this hyper T -path can only use one even connection
labeled Iy. So, we must connect all the nodes in Lci to one node labeled y+:

c0

c1

...

cd

y

y

y

Ic0

Ic1

Icd

Lc0

Lc1

Lcd

...
...

Iy

y+

∗

∗∗
...

We can decompose this T -path as T+
y and a T -path for S − {y}. In the latter T -path, y is

a boundary node and is connected via an odd connection to y+:

c0

c1

...

cd

y

y

y

Ic0

Ic1

Icd

Lc0

Lc1

Lcd

...
...

y+

Iy

...
...

⊕ y y+

∗

∗∗
...

Now, we consider the case where exactly one boundary node, call it c0, is not connected to y
by an odd connection. Recall from the proof of Theorem 4.14 that we must then connect the
node c0 to all vertices in Lc0 . As discussed in the previous case, these branches must again
meet via odd connections, and the next even connection on each branch must be Iy. In order
to connect, via an odd connection, the nodes labeled by Lci to nodes labeled by Lcj , for i ̸= j,
we would need to use a connection labeled either Iy or Iu, where u ∈ Γv

>y. This would require
introducing more internal nodes; at very least, we would have to introduce nodes labeled by
vertices in Lc0 . Then, by Rules (7) and (8), the nodes labeled by vertices in Lc0 would be
incident to an even connection with label Iy. Since this even connection would also have nodes
labeled by elements in Lci , we would create paths which violate Lemma 4.13. Thus, we must
connect each Lci for 1 ≤ i ≤ d directly to y:
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c0

c1

...

cd

⋃
w∈Γv

⋖c0
Iw

Lc0

y

...

y

Ic0

Ic1

Icd

y

Lc1

...
...

Lcd

Ic1

Icd

The node y can either connect via an odd connection to y+ or Lc0⊔ · · · ⊔Lcd . In this case,
we can decompose the hyper T -path into T c0

y and a hyper T -path associated to S−{y}. Unlike
in the previous case, the boundary node y in the hyper T -path associated to S − {y} does not
necessarily connect to y+ by an odd connection:

c0

c1

...

cd

∏
w∈Γv

⋖c0
Iw

Lc0

y

...

y

Ic0

Ic1

Icd

y

Lc1

...
...

Lcd

y+

Ic1

Icd ⊕ y · · ·

The final case is when more than one of the boundary nodes ci are connected via odd connec-
tions to Lci . If y only covers one element, this case is not possible. Without loss of generality,
label the elements covered by y so that c0, . . . , ck are connected Lc0 , . . . ,Lck respectively for
0 < k ≤ d and ck+1, . . . , cd are connected to y:

c0

...

ck

ck+1

...

cd

∏
w∈Γv

⋖c0
Iw

∏
w∈Γv

⋖ck
Iw

Lc0

...

Lck

y

...

y

Ic0

Ick

Ick+1

Icd

y

...

y

Lck+1

...

Lcd
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Since the hyper T -path is connected, there must be a path between the boundary nodes ci
and cj for i ̸= j; by Rule (9), this path can only pass through nodes labeled by y and vertices
in Ly. Each node in Lci can only be incident to one odd connection, so connecting these nodes
to one of the nodes labeled y would produce a disconnected hyper T -path. There is no way for
all of these d+1 branches to come together in the next odd connection without producing extra
branches. As discussed in the previous case, connecting the nodes in Lck+1

⊔ · · · ⊔Lcd would
create paths between boundary nodes which violate Lemma 4.13. Hence, this case does not
produce any valid hyper T -paths.

We have therefore shown that all valid hyper T -paths associated to S can be constructed via
pasting in the desired manner. ■

Theorem 4.18. The hyper T -paths for a connected set S are exactly obtained by pasting hyper
T -paths for each element of S together.

Proof. By Proposition 4.16, pasting hyper T -paths for each element of S together will always
give us a hyper T -path for S. We also know by Theorem 4.17 that all hyper T -paths for S are
formed this way. ■

4.6 Proof of Theorem 1.2

We begin by proving Theorem 1.2 when |S|= 1.

Lemma 4.19. Let Γ be a tree and Cv a rooted cluster for Γ. Then the cluster variable Y{i} has
the combinatorial formula

Y{i} =
∑

complete hyper
T -paths γ for {i}

wt(γ).

Proof. From Theorem 4.14, the hyper T -paths for {i} are T+
i and T x

i for each x ∈ Γv
⋖i. The

hyper T -path T+
i has weight

YIi∏
w∈Γv

⋖i
YIw

=
YIi
YΓv

<i

.

The hyper T -path T x
i has weight

∏
w∈Γv

⋖x
YIw

YIx
=

(∏
w∈Γv

⋖x
YIw

)(∏
w∈Γv

⋖i\{x}
YIw

)
∏

w∈Γv
⋖i
YIw

=
YΓv

<i\{x}

YΓv
<i

.

Added together, this is the same as the formula for Y{i} from Proposition 3.5. ■

We can now prove our the theorem for general sets.

Proof of Theorem 1.2. To get a hyper T -path for S, we choose a hyper T -path for each x ∈ S
such that we are able to paste them all together. Let O ⊂ S be the set of elements x where we
choose T+

x . Notice that if x is a minimal element of Γ, we must choose T+
x and therefore x must

be in O. Define u:S \O → V (Γ) so that we choose T
u(x)
x for each x ∈ S \O. Since T

u(x)
x does not

have an connection joining nodes x and u(x), if u(x) ∈ S we must have chosen a hyper T -path
for u(x) that has such a connection. That means we must not have chosen T+

u(x). Equivalently,

u(x) must not be in O.
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Thus, summing over all possible choices of hyper T -paths for the elements of S, we find∑
complete hyper
T -paths γ for S

wt(γ) =
∑

O⊆S containing all
minimal elements of Γ in S

∑
u:S\O→V (Γ)
u(x)∈Γv

⋖x\O

( ∏
x∈O

wt(T+
x )

)( ∏
x∈S\O

wt(T u(x)
x )

)

=
∑

O⊆S containing all
minimal elements of Γ in S

∑
u:S\O→V (Γ)
u(x)∈Γv

⋖x\O

( ∏
x∈O

YIx
YΓv

<x

)( ∏
x∈S\O

YΓv
<x\{u(x)}

YΓv
<x

)
.

By Theorem 3.8, this is YS . ■

5 Future directions

5.1 From rooted clusters to other clusters

We would like to extend our results to other clusters for trees.
Our definition of rooted clusters comes from the algebraic formulas for the exchange rela-

tions. That is, rooted clusters are exactly the ones where the formulas in Proposition 2.11 give
expansions in terms of the cluster variables. Proving formulas algebraically for other types of
clusters will likely require an inductive argument. This induction seems to be easiest in star
graphs because of their symmetry.

Conjecture 5.1. Let Sn denote the star graph on n vertices whose central vertex is labeled by 1.
Let C be the cluster {{3}, {4}, . . . , {n}, {1, 3, 4, . . . n}}. For any vertex subset S such that 1 ∈ S,
we conjecture that

YS =



∏
i∈S\{1,2}

Y 2
i

Y[n]\{1,2}

(∑
i ̸∈S

∏
j ̸=1,2,i

Yj

)
+

Y[n]∏
i∈[n]\S

Yi
+

Y[n]

Y[n]\{2}

( ∑
i∈[n]\S

1

Yi

)
if 2 ̸∈ S,

Y[n]\{2}∏
i∈[n]\(S∪{2})

Yi
+

( ∏
i∈S\{1}

Yi

)( ∑
j∈[n]\(S∪{2})

1

Yi

)
if 2 ∈ S.

If 1 ̸∈ S, then S either consists of a set of disconnected leaves or a single leaf. Because {i} ∈ C
for all i ̸= 2, we then have

Ys =

Yi if S = {i},∏
i∈S

Yi else.

We are hopeful that we can extend our hyper T -path expansion formula to other types of
clusters. For a type A cluster algebra, T -paths can be used to find expansions for cluster variables
in terms of any cluster. Because the definitions of T -paths and hyper T -paths for path graphs
are similar, this suggests that it might be possible to use hyper T -paths for other clusters when Γ
is an arbitrary tree.

Unfortunately, our current hyper T -path construction does not work for arbitrary clusters.
One immediate problem is that Rules (7) and (8) would need to be rewritten to allow the even
edges to be labelled by any set in the cluster that is incompatible with S. However, that change
still would not be sufficient because we still wouldn’t have “enough” valid hyper T -paths. For
example, suppose Γ is the graph from Figure 2 and C is the cluster {Y5, y25, Y125Y1235, Y12345}.
Then the term

Y 2
5

Y125
appears in the expansion of Y235, but we have been unable to find a hyper
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T -path with that weight. Further, the expansions of some cluster variables with respect to
certain clusters contain monomials with squared terms in the denominator. This is not possible
with our current definition, as we see from Lemma 4.12. Thus, it is clear that there is some
other substantial change required for us to be able to extend our construction to other clusters.

5.2 Snake graphs

In [23], Musiker, Schiffler and Williams provided an alternative combinatorial formula for type A
cluster algebras using perfect matchings (also known as dimer models) on certain snake graphs.

For an arc γ in a triangulation T , the snake graph Gγ,T is built up from quadrilateral tiles
whose diagonals correspond to arcs of T that intersect with γ. We illustrate the definition via
the following example and refer to [23] for a complete exposition on snake graphs.

The snake graph corresponding to the arc Mi,j in the triangulation T from Example 4.1 is
as follows:

T10

T9

T4

T3 T1

T5

T2

T13

T3

T6

A perfect matching of a graph is a collection M of its edges such that every vertex in the
graph is incident to exactly one edge in M . The weight of a perfect matching is the product of
all of the cluster variables associated to edges in M . For example, the set of edges with labels
T3, T3, T9, T13 is a perfect matching with weight x23x9x13 for the previous snake graph:

T10

T9

T4

T3

T1

T5

T2

T13

T3

T6

The following theorem of [23] gives an explicit combinatorial formula for the cluster variable
associated to the arc γ = Mi,j .

Theorem 5.2 ([23, Theorem 4.9]). The cluster variable xγ of an arc γ has a Laurent expansion
in terms of the cluster corresponding to T which is given by

xγ =
1

cross(γ)

∑
M is a perfect

matching of Gγ,T

wt(M),

where cross(γ) is the weighted product of all diagonals in T which γ crosses.

There is a weight-preserving bijection between the set of perfect matching of Gγ,T and the set
of all (usual) T -paths from i to j: by adding diagonals representing arcs in cross(γ) to a perfect
matching M , one obtains a complete T -path where the edges in M are the odd steps and the
diagonals in cross(γ) are the even steps. For example, adding diagonals to the above perfect
matching, we obtain the same complete T -path as in Example 4.1:

T10

T9

T4

T3

T1

T5

T2

T13

T3

T6T5 T3 T1
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We hope that a graph-theoretic formula similar to the cluster expansion formula of Musiker,
Schiffler, and Williams exists for graph LP algebras from generic trees; this would provide
another approach to prove the positivity conjecture for more general clusters of LP algebras
from trees. The rough idea is explained in the following example.

Example 5.3. We draw a snake graph associated to the set {2, 3} of the graph Γ in Figure 2
as follows. Note that the two edges 1′ − 2 and 5′ − 2 are considered as one single edge when we
take a matching:

3

4

5′

4

2

3
1

5′

1′

5

2

1′

Similar to the cluster case (Theorem 5.2), the cluster variable Y23 is given by the weighted
sum of all matchings divided by a monomial given by the elements of the cluster incompatible
with {2, 3}.

The following are several matchings of the above snake graph, where vertex 2 is allowed (but
not required) to have 2 adjacent matched edges:

3

4

5′

4

2

3
1

5′

1′

5

2

1′
3

4

5′

4

2

3
1

5′

1′

5

2

1′

3

4

5′

4

2

3
1

5′

1′

5

2

1′
3

4

5′

4

2

3
1

5′

1′

5

2

1′

Note that these matchings have the same weight as the complete hyper T -paths in Example 4.4.

Observe that in the preceding example, all vertices in the underlying graph Γ had degree
three or less. When the vertices in Γ have higher degree, it is unclear how to draw the snake
graphs.
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