Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 020, 18 pages      arXiv:2212.06526      https://doi.org/10.3842/SIGMA.2023.020
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday

Planar Orthogonal Polynomials as Type I Multiple Orthogonal Polynomials

Sergey Berezin ab, Arno B.J. Kuijlaars a and Iván Parra a
a) Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B box 2400, 3001 Leuven, Belgium
b) St. Petersburg Department of V.A. Steklov Mathematical Institute of RAS, Fontanka 27, 191023 St. Petersburg, Russia

Received December 14, 2022, in final form March 21, 2023; Published online April 12, 2023

Abstract
A recent result of S.-Y. Lee and M. Yang states that the planar orthogonal polynomials orthogonal with respect to a modified Gaussian measure are multiple orthogonal polynomials of type II on a contour in the complex plane. We show that the same polynomials are also type I orthogonal polynomials on a contour, provided the exponents in the weight are integer. From this orthogonality, we derive several equivalent Riemann-Hilbert problems. The proof is based on the fundamental identity of Lee and Yang, which we establish using a new technique.

Key words: planar orthogonal polynomials; multiple orthogonal polynomials; Riemann-Hilbert problems; Hermite-Padé approximation; normal matrix model.

pdf (409 kb)   tex (25 kb)  

References

  1. Akemann G., Nagao T., Parra I., Vernizzi G., Gegenbauer and other planar orthogonal polynomials on an ellipse in the complex plane, Constr. Approx. 53 (2021), 441-478, arXiv:1905.02397.
  2. Akemann G., Vernizzi G., Characteristic polynomials of complex random matrix models, Nuclear Phys. B 660 (2003), 532-556, arXiv:hep-th/0212051.
  3. Balogh F., Bertola M., Lee S.-Y., McLaughlin K.D.T.-R., Strong asymptotics of the orthogonal polynomials with respect to a measure supported on the plane, Comm. Pure Appl. Math. 68 (2015), 112-172, arXiv:1209.6366.
  4. Balogh F., Grava T., Merzi D., Orthogonal polynomials for a class of measures with discrete rotational symmetries in the complex plane, Constr. Approx. 46 (2017), 109-169, arXiv:1509.05331.
  5. Bertola M., Elias Rebelo J.G., Grava T., Painlevé IV critical asymptotics for orthogonal polynomials in the complex plane, SIGMA 14 (2018), 091, 34 pages, arXiv:1802.01153.
  6. Bleher P.M., Kuijlaars A.B.J., Orthogonal polynomials in the normal matrix model with a cubic potential, Adv. Math. 230 (2012), 1272-1321, arXiv:1106.6168.
  7. Byun S.-S., Forrester P.J., Progress on the study of the Ginibre ensembles I: GinUE, arXiv:2211.16223.
  8. Deaño A., Simm N., Characteristic polynomials of complex random matrices and Painlevé transcendents, Int. Math. Res. Not. 2022 (2022), 210-264, arXiv:1909.06334.
  9. Deift P., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lect. Notes Math., Vol. 3, New York University, New York, 1999.
  10. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335-1425.
  11. Deift P., Zhou X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. 137 (1993), 295-368, arXiv:math.AP/9201261.
  12. Fokas A.S., Its A.R., Kitaev A.V., The isomonodromy approach to matrix models in $2$D quantum gravity, Comm. Math. Phys. 147 (1992), 395-430.
  13. Gustafsson B., Teodorescu R., Vasil'ev A., Classical and stochastic Laplacian growth, Adv. Math. Fluid Mech., Birkhäuser, Cham, 2014.
  14. Hedenmalm H., Wennman A., Planar orthogonal polynomials and boundary universality in the random normal matrix model, Acta Math. 227 (2021), 309-406, arXiv:1710.06493, hrefhttps://doi.org/10.4310/acta.2021.v227.n2.a3.
  15. Karp D., Holomorphic spaces related to orthogonal polynomials and analytic continuation of functions, in Analytic Extension Formulas and Their Applications (Fukuoka, 1999/Kyoto, 2000), Int. Soc. Anal. Appl. Comput., Vol. 9, Kluwer Acad. Publ., Dordrecht, 2001, 169-187.
  16. Lee S.-Y., Yang M., Discontinuity in the asymptotic behavior of planar orthogonal polynomials under a perturbation of the Gaussian weight, Comm. Math. Phys. 355 (2017), 303-338, arXiv:1607.02821.
  17. Lee S.-Y., Yang M., Planar orthogonal polynomials as Type II multiple orthogonal polynomials, J. Phys. A 52 (2019), 275202, 14 pages, arXiv:1801.01084.
  18. Lee S.-Y., Yang M., Strong asymptotics of planar orthogonal polynomials: Gaussian weight perturbed by finite number of point charges, arXiv:2003.04401.
  19. Van Assche W., Orthogonal and multiple orthogonal polynomials, random matrices, and Painlevé equations, in Orthogonal Polynomials, Tutor. Sch. Workshops Math. Sci., Birkhäuser, Cham, 2020, 629-683, arXiv:1904.07518.
  20. Van Assche W., Geronimo J.S., Kuijlaars A.B.J., Riemann-Hilbert problems for multiple orthogonal polynomials, in Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, Kluwer Acad. Publ., Dordrecht, 2001, 23-59.
  21. van Eijndhoven S.J.L., Meyers J.L.H., New orthogonality relations for the Hermite polynomials and related Hilbert spaces, J. Math. Anal. Appl. 146 (1990), 89-98.
  22. Webb C., Wong M.D., On the moments of the characteristic polynomial of a Ginibre random matrix, Proc. Lond. Math. Soc. 118 (2019), 1017-1056, arXiv:1704.04102.

Previous article  Next article  Contents of Volume 19 (2023)