Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 033, 28 pages      arXiv:2209.01934      https://doi.org/10.3842/SIGMA.2023.033
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday

Spherical Induced Ensembles with Symplectic Symmetry

Sung-Soo Byun a and Peter J. Forrester b
a) Center for Mathematical Challenges, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
b) School of Mathematical and Statistics, The University of Melbourne, Victoria 3010, Australia

Received September 22, 2022, in final form May 16, 2023; Published online May 30, 2023

Abstract
We consider the complex eigenvalues of the induced spherical Ginibre ensemble with symplectic symmetry and establish the local universality of these point processes along the real axis. We derive scaling limits of all correlation functions at regular points both in the strong and weak non-unitary regimes as well as at the origin having spectral singularity. A key ingredient of our proof is a derivation of a differential equation satisfied by the correlation kernels of the associated Pfaffian point processes, thereby allowing us to perform asymptotic analysis.

Key words: symplectic random matrix; spherical induced ensembles; Pfaffian point process.

pdf (1021 kb)   tex (497 kb)  

References

  1. Adler M., Forrester P.J., Nagao T., van Moerbeke P., Classical skew orthogonal polynomials and random matrices, J. Stat. Phys. 99 (2000), 141-170, arXiv:solv-int/9907001.
  2. Akemann G., The complex Laguerre symplectic ensemble of non-Hermitian matrices, Nuclear Phys. B 730 (2005), 253-299, arXiv:hep-th/0507156.
  3. Akemann G., Basile F., Massive partition functions and complex eigenvalue correlations in matrix models with symplectic symmetry, Nuclear Phys. B 766 (2007), 150-177, arXiv:math-ph/0606060.
  4. Akemann G., Byun S.-S., Kang N.-G., Scaling limits of planar symplectic ensembles, SIGMA 18 (2022), 007, 40 pages, arXiv:2106.09345.
  5. Akemann G., Cikovic M., Venker M., Universality at weak and strong non-Hermiticity beyond the elliptic Ginibre ensemble, Comm. Math. Phys. 362 (2018), 1111-1141, arXiv:1610.06517.
  6. Akemann G., Ebke M., Parra I., Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels, Comm. Math. Phys. 389 (2022), 621-659, arXiv:2103.12114.
  7. Akemann G., Kieburg M., Mielke A., Prosen T., Universal signature from integrability to chaos in dissipative open quantum systems, Phys. Rev. Lett. 123 (2019), 254101, 6 pages, arXiv:1910.03520.
  8. Akemann G., Phillips M.J., The interpolating Airy kernels for the $\beta=1$ and $\beta=4$ elliptic Ginibre ensembles, J. Stat. Phys. 155 (2014), 421-465, arXiv:1308.3418.
  9. Ameur Y., Byun S.-S., Almost-Hermitian random matrices and bandlimited point, Anal. Math. Phys., to appear, arXiv:2101.03832.
  10. Ameur Y., Hedenmalm H., Makarov N., Fluctuations of eigenvalues of random normal matrices, Duke Math. J. 159 (2011), 31-81, arXiv:0807.0375.
  11. Ameur Y., Kang N.-G., Makarov N., Wennman A., Scaling limits of random normal matrix processes at singular boundary points, J. Funct. Anal. 278 (2020), 108340, 46 pages, arXiv:1510.08723.
  12. Ameur Y., Kang N.-G., Seo S.-M., The random normal matrix model: insertion of a point charge, Potential Anal. 58 (2023), 331-372, arXiv:1804.08587.
  13. Benaych-Georges F., Chapon F., Random right eigenvalues of Gaussian quaternionic matrices, Random Matrices Theory Appl. 1 (2012), 1150009, 18 pages, arXiv:1104.4455.
  14. Berezin S., Kuijlaars A.B.J., Parra I., Planar orthogonal polynomials as type I multiple orthogonal polynomials, SIGMA 19 (2023), 020, 18 pages, arXiv:2212.06526.
  15. Borodin A., Sinclair C.D., The Ginibre ensemble of real random matrices and its scaling limits, Comm. Math. Phys. 291 (2009), 177-224, arXiv:0805.2986.
  16. Bosbach C., Gawronski W., Strong asymptotics for Jacobi polnomials with varying weights, Methods Appl. Anal. 6 (1999), 39-54.
  17. Byun S.-S., Charlier C., On the characteristic polynomial of the eigenvalue moduli of random normal matrices, arXiv:2205.04298.
  18. Byun S.-S., Charlier C., On the almost-circular symplectic induced Ginibre ensemble, Stud. Appl. Math. 150 (2023), 184-217, arXiv:2206.06021.
  19. Byun S.-S., Ebke M., Universal scaling limits of the symplectic elliptic Ginibre ensemble, Random Matrices Theory Appl. 12 (2023), 2250047, 33 pages, arXiv:2108.05541.
  20. Byun S.-S., Ebke M., Seo S.-M., Wronskian structures of planar symplectic ensembles, Nonlinearity 36 (2023), 809-844, arXiv:2110.12196.
  21. Byun S.-S., Forrester P.J., Progress on the study of the Ginibre ensembles I: GinUE, arXiv:2211.16223.
  22. Byun S.-S., Forrester P.J., Progress on the study of the Ginibre ensembles II: GinOE and GinSE, arXiv:2301.05022.
  23. Byun S.-S., Seo S.-M., Random normal matrices in the almost-circular regime, Bernoulli 29 (2023), 1615-1637, arXiv:2112.11353.
  24. Charlier C., Large gap asymptotics on annuli in the random normal matrix model, Math. Ann., to appear, arXiv:2110.06908.
  25. Charlier C., Asymptotics of determinants with a rotation-invariant weight and discontinuities along circles, Adv. Math. 408 (2022), 108600, 36 pages, arXiv:2109.03660.
  26. Criado del Rey J.G., Kuijlaars A.B.J., A vector equilibrium problem for symmetrically located point charges on a sphere, Constr. Approx. 55 (2022), 775-827, arXiv:2008.01017.
  27. Diaconis P., Forrester P.J., Hurwitz and the origins of random matrix theory in mathematics, Random Matrices Theory Appl. 6 (2017), 1730001, 26 pages, arXiv:1512.09229.
  28. Fenzl M., Lambert G., Precise deviations for disk counting statistics of invariant determinantal processes, Int. Math. Res. Not. 2022 (2022), 7420-7494, arXiv:2003.07776.
  29. Fischmann J., Bruzda W., Khoruzhenko B.A., Sommers H.-J., Życzkowski K., Induced Ginibre ensemble of random matrices and quantum operations, J. Phys. A 45 (2012), 075203, 31 pages, arXiv:1107.5019.
  30. Fischmann J., Forrester P.J., One-component plasma on a spherical annulus and a random matrix ensemble, J. Stat. Mech. Theory Exp. 2011 (2011), P10003, 24 pages, arXiv:1107.5220.
  31. Forrester P.J., Fluctuation formula for complex random matrices, J. Phys. A 32 (1999), L159-L163, arXiv:cond-mat/9805306.
  32. Forrester P.J., Log-gases and random matrices, London Math. Soc. Monogr. Ser., Vol. 34, Princeton University Press, Princeton, NJ, 2010.
  33. Forrester P.J., Skew orthogonal polynomials for the real and quaternion real Ginibre ensembles and generalizations, J. Phys. A 46 (2013), 245203, 10 pages, arXiv:1302.2638.
  34. Forrester P.J., Analogies between random matrix ensembles and the one-component plasma in two-dimensions, Nuclear Phys. B 904 (2016), 253-281, arXiv:1511.02946.
  35. Forrester P.J., A review of exact results for fluctuation formulas in random matrix theory, Probab. Surv. 20 (2023), 170-225, arXiv:2204.03303.
  36. Forrester P.J., Honner G., Exact statistical properties of the zeros of complex random polynomials, J. Phys. A 32 (1999), 2961-2981, arXiv:cond-mat/9812388.
  37. Forrester P.J., Mays A., Pfaffian point process for the Gaussian real generalised eigenvalue problem, Probab. Theory Related Fields 154 (2012), 1-47, arXiv:0910.2531.
  38. Forrester P.J., Nagao T., Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble, J. Phys. A 41 (2008), 375003, 19 pages, arXiv:0806.0055.
  39. Fyodorov Y.V., Khoruzhenko B.A., Sommers H.-J., Almost Hermitian random matrices: crossover from Wigner-Dyson to Ginibre eigenvalue statistics, Phys. Rev. Lett. 79 (1997), 557-560, arXiv:cond-mat/9703152.
  40. Fyodorov Y.V., Sommers H.-J., Khoruzhenko B.A., Universality in the random matrix spectra in the regime of weak non-Hermiticity, Ann. Inst. H. Poincaré Phys. Théor. 68 (1998), 449-489, arXiv:chao-dyn/9802025.
  41. Ginibre J., Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys. 6 (1965), 440-449.
  42. Grobe R., Haake F., Sommers H.-J., Quantum distinction of regular and chaotic dissipative motion, Phys. Rev. Lett. 61 (1988), 1899-1902.
  43. Hedenmalm H., Wennman A., Planar orthogonal polynomials and boundary universality in the random normal matrix model, Acta Math. 227 (2021), 309-406, arXiv:1710.06493.
  44. Ipsen J.R., Products of independent quaternion Ginibre matrices and their correlation functions, J. Phys. A 46 (2013), 265201, 16 pages, arXiv:1301.3343.
  45. Kanzieper E., Eigenvalue correlations in non-Hermitean symplectic random matrices, J. Phys. A 35 (2002), 6631-6644, arXiv:cond-mat/0109287.
  46. Khoruzhenko B.A., Lysychkin S., Truncations of random symplectic unitary matrices, arXiv:2111.02381.
  47. Kiessling M.K.-H., Spohn H., A note on the eigenvalue density of random matrices, Comm. Math. Phys. 199 (1999), 683-695, arXiv:math-ph/9804006.
  48. Krishnapur M., From random matrices to random analytic functions, Ann. Probab. 37 (2009), 314-346, arXiv:0711.1378.
  49. Kuijlaars A., Universality, in The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford, 2018, 103-134, arXiv:1103.5922.
  50. Lacroix-A-Chez-Toine B., Garzón J.A.M., Calva C.S.H., Castillo I.P., Kundu A., Majumdar S.N., Schehr G., Intermediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble, Phys. Rev. E 100 (2019), 012137, 10 pages, arXiv:1904.01813.
  51. Lacroix-A-Chez-Toine B., Majumdar S.N., Schehr G., Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: Exact results for the entanglement entropy and number variance, Phys. Rev. A 99 (2019), 021602, 6 pages, arXiv:1809.05835.
  52. Lee S.-Y., Riser R., Fine asymptotic behavior for eigenvalues of random normal matrices: ellipse case, J. Math. Phys. 57 (2016), 023302, 29 pages, arXiv:1501.02781.
  53. Lee S.-Y., Yang M., Strong asymptotics of planar orthogonal polynomials: gaussian weight perturbed by finite number of point charges, Comm. Pure Appl. Math., to appear, arXiv:2003.04401.
  54. Lysychkin S., Complex eigenvalues of high dimensional quaternion random matrices, Ph.D. Thesis, Queen Mary University of London, 2021, available at https://qmro.qmul.ac.uk/xmlui/handle/123456789/82221.
  55. Mays A., A real quaternion spherical ensemble of random matrices, J. Stat. Phys. 153 (2013), 48-69, arXiv:1209.0888.
  56. Mays A., Ponsaing A., An induced real quaternion spherical ensemble of random matrices, Random Matrices Theory Appl. 6 (2017), 1750001, 29 pages, arXiv:1606.06000.
  57. Mehta M.L., Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991.
  58. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, Cambridge University Press, Cambridge, 2010.
  59. Saff E.B., Totik V., Logarithmic potentials with external fields, Grundlehren Math. Wiss., Vol. 316, Springer, Berlin, 1997.
  60. Sommers H.-J., Symplectic structure of the real Ginibre ensemble, J. Phys. A 40 (2007), F671-F676, arXiv:0706.1671.
  61. Temme N.M., The asymptotic expansion of the incomplete gamma functions, SIAM J. Math. Anal. 10 (1979), 757-766.
  62. Temme N.M., Special functions. An introduction to the classical functions of mathematical physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.
  63. Titchmarsh E.C., The theory of functions, Oxford University Press, Oxford, 1964.
  64. Widom H., On the relation between orthogonal, symplectic and unitary matrix ensembles, J. Stat. Phys. 94 (1999), 347-363, arXiv:solv-int/9804005.

Previous article  Next article  Contents of Volume 19 (2023)