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Abstract. Let X be a smooth projective variety with a semisimple quantum cohomology.
It is known that the blowup Blpt(X) of X at one point also has semisimple quantum co-
homology. In particular, the monodromy group of the quantum cohomology of Blpt(X) is
a reflection group. We found explicit formulas for certain generators of the monodromy group
of the quantum cohomology of Blpt(X) depending only on the geometry of the exceptional
divisor.
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1 Introduction

The notion of a Frobenius manifold was invented by Dubrovin in order to give a geometric
formulation of the properties of quantum cohomology (see [9]). Later on, it was discovered
by Dubrovin and Zhang (see [12]) that if the Frobenius manifold is in addition semisimple,
then the corresponding Frobenius structure has very important applications to the theory of
integrable hierarchies of KdV type. Our main interest is in a certain system of vectors which
we call reflection vectors, associated to any semisimple Frobenius manifold. The most general
problem is to obtain a classification of the set of reflection vectors corresponding to a semisimple
Frobenius manifold. In fact, the set of reflection vectors contain the information about the
monodromy group of the so-called second structure connection, so by solving an appropriate
classical Riemann–Hilbert problem, the reflection vectors uniquely determine the corresponding
semisimple Frobenius structure.

1.1 Period vectors

The main motivation to define period vectors for semisimple Frobenius manifolds comes from the
work of Givental [19]. Using the period integrals of a simple singularity of type A, Givental was
able to construct an integrable hierarchy in the form of Hirota bilinear equations. This result
generalizes to simple singularities too (see [21]). The key to the constructions in these two papers
are the period integrals of K. Saito (see [33]). Given a singularity f ∈ OCn , Saito has invented an
extension of the classical residue pairing, called higher residue pairing, and used it to construct
a period map for the hypersurface {f(x) = λ} ⊂ Cn, where λ is a regular value. Since the
hypersurface is a Stein manifold, the vector space of holomorphic forms is infinite dimensional
and it is not clear at all that a good notion of a period map exists. Saito’s remarkable idea was to
ask for a set of holomorphic forms, called good basis, (ω1, . . . , ωN ), where N is the Milnor number
of the singularity, such that, the higher-residue pairing of ωi and ωj vanish for all 1 ≤ i, j ≤ N .
The existence of a good basis was proved by M. Saito [34]. The existence of a good basis
implies that the space of miniversal deformations of the singularity f has a flat structure which
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turns out to be semisimple Frobenius structure in the sense of Dubrovin (see [23]). Moreover,
the Gauss–Manin connection in vanishing cohomology is identified with the second structure
connection (2.1)–(2.2) with some m ∈ Z or m ∈ 1

2 + Z depending on whether the number n of
variables of the singularity f is odd or even. Therefore, the second structure connection of the
Frobenius structure in singularity theory admits solutions in terms of period integrals, see [14,
Section 3.1] for a nice overview of the construction of such solutions. The period integrals
used by Givental and Milanov correspond to singularities with odd number of variables, i.e.,
they are solutions to the second structure connection ∇(m) for some m ∈ Z. Let us point out
that Dubrovin has introduced the so-called Gauss–Manin and extended Gauss–Manin systems
(see [11, equations (5.9), (5.11) and (5.12)]). In our notation, the Gauss–Manin system is
the system of linear differential equations (2.1) with m = −1 and λ = 0, while the extended
Gauss–Manin system is the system (2.1)–(2.2) with m = 0. However, in order to obtain a more
satisfactory characterization of the period integrals, we need to consider the entire sequence of
second structure connections (2.1)–(2.2) with m ∈ Z!

Remark 1.1. The entire set of connections ∇(m) (m ∈ C) was introduced by Manin and
Merkulov [27] in order to classify semisimple Frobenius manifolds as special solutions to the
Schlesinger equations.

It is easy to check that if I(m)(t, λ) is a solution to ∇(m), then I(m+1)(t, λ) := ∂λI
(m)(t, λ) is

a solution to ∇(m+1). Moreover, if m+ 1
2 is not an eigenvalue of the grading operator θ, then

the differential operator ∂λ defines an isomorphism between the solutions of ∇(m) and ∇(m+1).
In particular, the monodromy representations of these two connections are isomorphic. In sin-
gularity theory, even if m+ 1

2 is an eigenvalue of θ and ∂λ might fail to be surjective, the period
integrals are always in the image of ∂λ! The reason is the following. If I(m+1) is a solution
to ∇(m+1) defined in terms of period integrals, then by stabilizing the singularity once, i.e.,
adding a square of a new variable to f , we get a new period integral I(m+1/2) which is a solution
to ∇(m+1/2). Moreover, by stabilizing twice we get a period integral I(m) which is a solution
to ∇(m) satisfying I(m+1) = ∂λI

(m). By stabilizing twice we get that if a period integral is
a solution to ∇(m+1) for some m ∈ Z, then it must be a derivative of a solution of ∇(m) which
itself is also a period integral. The above discussion motivates the following definition.

Definition 1.2. For a given semisimple Frobenius manifold, a sequences I(m)(t, λ) (m ∈ Z)
satisfying the following two conditions:

(i) flatness: I(m)(t, λ) is a solution to ∇(m) for all m ∈ Z,
(ii) translation invariance: ∂λI

(m)(t, λ) = I(m+1)(t, λ) for all m ∈ Z

is said to be a period vector of the Frobenius manifold.

1.2 Reflection vectors

The notion of a reflection vector was suggested by the first author in [28]. The definition depends
on the choice of a calibration and it will be recalled in Section 2.2. In this section we would like
to give an alternative definition which has the advantage of being independent of the choice of
a calibration. The relation to the original definition will be explained in Section 1.3 below.

Suppose that M is a semisimple Frobenius manifold and let A be the set of all period
vectors of M . Given α ∈ A, we denote by I

(m)
α (t, λ) (m ∈ Z) the corresponding sequence of

solutions. To be more precise, we fix a reference point (t◦, λ◦) ∈M×C in the complement of the
discriminant (see Section 2.2) and let each I

(m)
α (t, λ) be an analytic solution to ∇(m) defined in

a neighborhood of (t◦, λ◦). Clearly, A has a vector space structure: if α, β ∈ A, then we define
I
(m)
α+β(t, λ) := I

(m)
α (t, λ) + I

(m)
β (t, λ) and I

(m)
cα (t, λ) := cI

(m)
α (t, λ) where c ∈ C is a scalar. As we
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already explained above, if m is a sufficiently negative integer, then the map α 7→ I
(m)
α (t, λ)

gives an isomorphism between A and the space of solutions to ∇(m). In particular, A is a finite
dimensional vector space and the analytic continuation along closed loops in the complement
of the discriminant defines a representation of π1((M × C)′, (t◦, λ◦)) on A isomorphic to the
monodromy representation of ∇(m). Here (M ×C)′ denotes the complement of the discriminant
in M × C (see Section 2.2). The monodromy group, i.e., the image of the fundamental group
of this representation will be called the stable monodromy group of M , or just the monodromy
group of M .

Remark 1.3. Dubrovin has defined the monodromy group of a Frobenius manifold to be the
monodromy group of the Gauss–Manin system (see [11, Definition 5.6]), i.e., the monodromy
group of the second structure connection with m = −1. In this paper, by monodromy of
a Frobenius manifold we mean the monodromy group of the connection ∇(m), where m is
a sufficiently negative integer, such that, m+ 1

2 is not an eigenvalue of the grading operator θ.
Our definition of a monodromy group will coincide with Dubrovin’s one if the eigenvalues of
the grading operator θ do not take values in 1

2 + Z. Since passing to more negative values of
m corresponds to stabilization in singularity theory, if one needs to make a clear distinction
between our definition and Dubrovin’s one, we suggest to refer to our monodromy group as the
stable monodromy group.

The space of period vectorsA has the following remarkable pairing, called intersection pairing,

(α|β) :=
(
I(0)α (t, λ), (λ− E•)I(0)β (t, λ)

)
,

where E is the Euler vector field (see Sections 2.1 and 2.2 for more details). Using the differ-
ential equations (2.1)–(2.2), it is easy to check that the right-hand side of the above formula
is independent of t and λ. In particular, the intersection pairing is monodromy invariant. The
local structure of the period vectors near a generic point on the discriminant is described by the
following simple lemma.

Lemma 1.4. Suppose that C is a reference path from (t◦, λ◦) to a point (t, λ) ∈ (M × C)′
sufficiently close to a generic point (t′, u′) on the discriminant. Then

(a) The subspace of β ∈ A, such that, I
(m)
β (t, λ) extends analytically in a neighborhood of (t′, u′)

is a co-dimension 1 subspace of A.
(b) Up to a sign, there exists a unique period vector α ∈ A, such that, the analytic con-

tinuation along a small loop around (t′, u′) transforms I
(m)
α (t, λ) 7→ −I(m)

α (t, λ) (∀m) and
(α|α) = 2.

In the case m = 0, this is exactly Lemma 5.3 in [11]. Dubrovin’s proof works in general too
after some minor modifications. Moreover, the solutions to ∇(0) constructed by Dubrovin in [11,
Lemma 5.3], are in fact periods, i.e., we can include them in a sequence satisfying the conditions
of Definition 1.2 — see Section 2.3 where this sequence is constructed in terms of Givental’s
R-matrix.

Definition 1.5. A period vector α ∈ A is said to be a reflection vector if there exists a reference
path C approaching a generic point on the discriminant, such that, ±α is the unique vector from
part (b) in Lemma 1.4.

It is an easy corollary of Lemma 1.4 that if C is a simple loop in (M × C)′ around a generic
point on the discriminant, then the analytic continuation along C defines a linear transformation

wα : A → A, x 7→ x− (x|α)α,
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where α is the reflection vector corresponding to C, i.e., this is an orthogonal reflection in A
with respect to the hyperplane α⊥ := {y ∈ A | (α|y) = 0}. This is our main motivation to
call α a reflection vector. Note that if π1(M, t◦) = 1, then the monodromy group π1((M × C)′,
(t◦, λ◦)) is generated by simple loops around the discriminant. Therefore, in this case, the stable
monodromy group of M is a reflection group.

1.3 Calibrated Frobenius manifolds

We would like to construct an isomorphism A ∼= H where H = Tt◦M is the tangent space at the
reference point, or equivalently the space of flat vector fields. This isomorphism depends on the
choice of a fundamental solution S(t, z)zθz−ρ of Dubrovin’s connection near z =∞, such that,
the operator series satisfies the symplectic condition S(t, z)S(t,−z)T = 1 (see Section 2.2 for
more details). In the case of quantum cohomology of a manifold X, there is a canonical choice of
such solution: ρ is the operator of classical cup product multiplication by c1(TX) and S(t, z) is
defined in terms of genus-0, 1-point descendent Gromov–Witten invariants of X (see (2.11)). In
general, there is an ambiguity in the choice of such a solution (see [11], Lemma 2.7). Following
Givental [20], we call a Frobenius manifold equipped with the choice of a fundamental solution
calibrated. In this case, the operator series S is called calibration. Let us point out that in all
examples of Frobenius manifolds coming from geometry, we have the following commutation
relation: [θ, ρ] = −ρ. Following Givental again, we will say that θ is a Hodge grading operator if
there exists a calibration for which [θ, ρ] = −ρ.

Suppose now that M is a calibrated Frobenius manifold for which θ is a Hodge grading
operator. Then we can construct an End(H)-valued solution I(m)(t, λ) of the second structure
connection ∇(m), such that, ∂λI

(m)(t, λ) = I(m+1)(t, λ) — see formula (2.3). Moreover, if m is
sufficiently negative, then the operator I(m)(t, λ) is invertible. Therefore, the map

H → A, a 7→ I(m)(t, λ)a, m ∈ Z (1.1)

is an isomorphism of vector spaces. Under this isomorphism, the intersection pairing on A can
be expressed in terms of the operators θ and ρ — see formulas (2.6) and (2.7).

1.4 Quantum cohomology

Suppose that X is a smooth projective variety with semisimple quantum cohomology. There
is no geometric interpretation of the reflection vectors in this case unless the manifold admits
a mirror in the sense of Givental. Nevertheless, there is a remarkable conjectural description
of the set of reflection vectors partially motivated by the examples from mirror symmetry. Let
us give a precise statement. Since the quantum cohomology of X is semisimple, the Dolbeault
cohomology groups Hp,q(X) = 0 for p ̸= q (see [24]). In particular, there exists a set of ample
line bundles L1, . . . , Lr, such that, the first Chern classes pi := c1(Li) (1 ≤ i ≤ r) form a Z-basis
of H2(X,Z)t.f. (the torsion free part). Let q1, . . . , qr be formal variables. Following Iritani, we
introduce the following map (see [25]):

Ψq : K0(X)→ H∗(X,C), (1.2)

defined by

Ψq(E) := (2π)
1−n
2 Γ̂(X) ∪ e−

∑r
i=1 pi log qi ∪ (2πi)deg(ch(E)),

where deg is the complex degree operator, that is, deg(ϕ) = iϕ for ϕ ∈ H2i(X;C), i :=
√
−1,

n = dimC(X), and Γ̂(X) = Γ̂(TX) is the Γ-class of X. Recall that for a vector bundle E, the
Γ-class of E is defined by

Γ̂(E) :=
∏

x : Chern roots of E

Γ(1 + x).
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The map Ψq is multivalued with respect to q. If qi is sufficiently close to 1 for all 1 ≤ i ≤ r, then
we define log qi via the principal branch of the logarithm. In general, one has to fix a reference
path in (C∗)r between q = (q1, . . . , qr) and (1, . . . , 1) and define Ψq via analytic continuation
along the reference path. Let us introduce the following pairing

⟨ , ⟩ : H∗(X,C)⊗H∗(X,C)→ C, ⟨a, b⟩ := 1

2π

∫
X
a ∪ eπiθ ◦ eπiρ(b),

where the linear operators θ and ρ are defined respectively by

θ : H∗(X,C)→ H∗(X,C), θ(ϕ) :=
nϕ

2
− deg(ϕ),

and

ρ : H∗(X,C)→ H∗(X,C), ρ(ϕ) := c1(TX) ∪ ϕ.

By using the Hierzebruch–Riemann–Roch formula, we get

⟨Ψq(E),Ψq(F )⟩ = χ(E∨ ⊗ F ),

where χ is the holomorphic Euler characteristic, that is, χ(E) =
∑∞

i=0(−1)i dimH i(X,E). We
will refer to ⟨ , ⟩ as the Euler pairing. In case the manifold X admits a mirror model in the
sense of Givental, the Euler pairing ⟨ , ⟩ can be identified with the Seifert form and therefore
its symmetrization

(a|b) := ⟨a, b⟩+ ⟨b, a⟩, a, b ∈ H∗(X,C)

corresponds to the intersection pairing. For that reason we refer to the symmetrization ( | ) of
the Euler pairing as the intersection pairing.

Let us denote byDb(X) the derived category of the category of bounded complexes of coherent
sheaves on X, that is, the bounded derived category of X (see [18] for some background on
derived categories). For E ,F ∈ Db(X) we denote by E [i] the shifted complex: (E [i])k := Ek+i

and Extk(E ,F) := Hom(E ,F [k]) where Hom is computed in the derived category Db(X). Recall
that an object E ∈ Db(X) is called exceptional if

Extk(E , E) =

{
C if k = 0,

0 otherwise.

A sequence of exceptional objects (E1, . . . , EN ) in Db(X) is called an exceptional collection
if Extk(Ei, Ej) = 0 for all i > j and k ∈ Z. An exceptional collection (E1, . . . , EN ) is called
full exceptional collection if the smallest subcategory of Db(X) that contains Ei (1 ≤ i ≤ N) and
is closed under isomorphisms, shifts, and cones, is Db(X) itself.

Conjecture 1.6.

(a) If the quantum cohomology of X is convergent and semisimple, then Ψq(E) is a reflection
vector for every exceptional object E ∈ Db(X).

(b) If (E1, . . . , EN ) is a full exceptional collection in Db(X), then the reflection vectors αi :=
Ψq(Ei) (1 ≤ i ≤ N) generate the set R of all reflection vectors in the following sense:

(i) The reflections x 7→ x − (x|αi)αi (1 ≤ i ≤ N) generate the monodromy group W of
quantum cohomology.

(ii) For every α ∈ R there exists w ∈W , such that, w(α) ∈ {α1, . . . , αN}.
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The reflection vectors R in quantum cohomology are defined through the Frobenius manifold
structure on the domain M ⊂ H∗(X,C) of convergence of the big quantum cup product. Using
the calibration (2.11) we turn M into a calibrated Frobenius manifold. The space of period
vectors of M is identified with H∗(X,C) via the isomorphism (1.1) which give us an embedding
of the set of reflection vectors R in H∗(X,C). More details will be given in Sections 2.2 and 2.5.
Conjecture 1.6 follows easily from the work of Iritani (see [25]) in the case when X is a weak
compact Fano toric orbifold that admits a full exceptional collection consisting only of line
bundles. In general, since the second structure connection is a Laplace transform of Dubrovin’s
connection, Conjecture 1.6 should be equivalent to the so-called Dubrovin’s conjecture (see [10,
Conjecture 4.2.2]) or to its improved version proposed by Galkin–Golyshev–Iritani (see [16,
Conjecture 4.6.1]). Dubrovin’s conjecture was originally stated for Fano manifolds but shortly
afterwards Arend Bayer suggested that the Fano condition should be removed (see [3]). Dubrovin
already proved that the intersection pairing can be expressed in terms of the Stokes multipliers
for the first structure connection (see [11, Lemma 5.4]). We expect that Dubrovin’s argument
already has the necessary ingredients to prove that Conjecture 1.6 is equivalent to Dubrovin’s
conjecture. We are planning to return to this problem in the near future.

Let us state the main result in our paper. Let Bl(X) be the blowup of X at one point,
π : Bl(X) → X be the blowup map, and j : Pn−1 → Bl(X) be the closed embedding that
identifies Pn−1 with the exceptional divisor E.

Theorem 1.7. If the quantum cohomology of X is convergent and semisimple and the quantum
cohomology of Bl(X) is convergent, then Ψq(OE(k)), where OE(k) := j∗OPn−1(k), k ∈ Z, are
reflection vectors for the quantum cohomology of Bl(X).

Several remarks are in order. It is known by the results of Bayer (see [3]) that the blowup at
a point preserves semi-simplicity of the quantum cohomology. We believe that our requirement
that the quantum cohomology of Bl(X) is convergent is redundant, that is, the blowup operation
preserves the convergence in quantum cohomology. Let us point out that recently Giordano
Cotti (see [7, Theorem 6.6]) was able to prove the convergence of quantum cohomology under
the assumption that the small quantum cohomology is semisimple and convergent. His result
is not quite sufficient for our purposes but it might be interesting to apply his techniques to
study convergence of blowups in general. We will return to this problem in the near future.
Furthermore, we would like to prove that Conjecture 1.6 is compatible with the blowup operation.
Let us recall that by the work of Orlov (see [31]) if (E1, . . . , EN ) is a full exceptional collection
of X, then (OE(−n+ 1), . . . ,OE(−1), π∗E1, . . . , π∗EN ) is a full exceptional collection of Bl(X).
In order to complete the proof of Conjecture 1.6 for the blowups at finitely many points we still
have to prove that π∗Ei are reflection vectors. The methods used in the current paper, after
some modification, should be sufficient to do this. Nevertheless, our attempts to modify the
arguments were unsuccessful so far, so we left this problem for a separate project too.

The paper is organized as follows. Sections 2 and 3 contain the background which we need
to formulate and state our main result, i.e., Theorem 1.7. In Section 4, we investigate the fun-
damental solution of the second structure connection of a blowup. The goal is to expand the
solution in a Laurent series at Q = 0, where Q is the Novikov variable corresponding to the
exceptional divisor, and to compute explicitly the coefficients of the leading order terms. In Sec-
tions 5 and 6, we compute the monodromy of the leading order coefficients in the Q-expansion.
The monodromy of the leading order coefficients allows us to determine the reflection vectors
corresponding to certain class of simple loops which yields our main result. The logic in our
proof is the following. Let us look at the fundamental solution I(m)(t, λ) of the second structure
connection defined in terms of the calibration — see Section 2.2. This fundamental solution is
a Laurent series whose coefficients are genus 0, 1-point descendent GW invariants. Since the line
bundle corresponding to the exceptional divisor E is not ample, the GW invariants are in general



Reflection Vectors and Quantum Cohomology of Blowups 7

Laurent series in Q. Our first observation is that if we rescale appropriately the fundamental
solution I(m)(t, λ), then we will obtain a power series in Q. Moreover, we can extract the leading
order terms of the Taylor series expansion at Q = 0 up to order Qn where n = dim(X). This
is done in Section 4 (see Propositions 4.3, 4.4 and 4.5) by using a generalization of Gathman’s
vanishing result. The latter is proved in Section 3, Proposition 3.4. The next step is to analyze
the singularities of the second structure connection, i.e., the dependence of the canonical coor-
dinates uj on Q. Again using Gathman’s vanishing result we prove (see Proposition 5.2) that
the canonical coordinates split into two groups such that Quj is either sufficiently close to 0
(there are N = dimH∗(X) such coordinates) or sufficiently close to −(n− 1)vk (1 ≤ k ≤ n− 1).
Suppose now that we have a simple loop γk around −(n− 1)vk that contains the corresponding
canonical coordinate and let α =: Q−(n−1)eβ be the corresponding reflection vector, where the
dependence of α on Q follows from the divisor equation (see Section 5.1). Let us decompose
β = βb+βe where βb ∈ H∗(X) and βe ∈ H̃∗(E) where E is the exceptional divisor. In Section 5,
by analyzing the monodromy of the leading order terms in the expansion at Q = 0 we prove that
βb = 0. There is a slight complication in proving the vanishing of the top degree part of βb be-
cause one of the coefficients in the Q-expansion (see Proposition 4.3, the term involving QnϕN )
is an infinite series so its monodromy is not straightforward to compute. In Section 6, we prove
that this problematic coefficient is a Mellin–Barnes integral and we compute its monodromy by
standard techniques based on deforming the contour. Finally, in order to compute βe, we look
again at the leading order term of the Q-expansion and we see that the corresponding coefficient
is a fundamental solution for the second structure connection in quantum cohomology of Pn−2

(see Sections 5.3 and 5.4). We get that βe must be a reflection vector in the quantum cohomology
of Pn−2 but the latter were computed in our previous work [28] (see also [25]).

2 Frobenius manifolds

Following Dubrovin [9], we recall the notion of a Frobenius manifold. Then we proceed by
defining the so-called second structure connection and reflection vectors of a semisimple Frobenius
manifold. Finally, we would like to recall the construction of a Frobenius manifold in the settings
of Gromov–Witten theory.

2.1 First and second structure connections

Suppose that M is a complex manifold and TM is the sheaf of holomorphic vector fields on M .
The manifold M is equipped with the following structures:

(F1) A non-degenerate symmetric bilinear pairing

(·, ·) : TM ⊗ TM → OM .

(F2) A Frobenius multiplication: commutative associative multiplication

· • · : TM ⊗ TM → TM ,

such that (v1 • w, v2) = (v1, w • v2) ∀v1, v2, w ∈ TM .

(F3) A unit vector field: global vector field 1 ∈ TM (M), such that,

1 • v = v, ∇L.C.
v 1 = 0, ∀v ∈ TM ,

where ∇L.C. is the Levi-Civita connection of the pairing (·, ·).
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(F4) An Euler vector field: global vector field E ∈ TM (M), such that, there exists a con-
stant n ∈ C, called conformal dimension, and

E(v1, v2)− ([E, v1], v2)− (v1, [E, v2]) = (2− n)(v1, v2)

for all v1, v2 ∈ TM .

Note that the complex manifold TM ×C∗ has a structure of a holomorphic vector bundle with
base M ×C∗: the fiber over (t, z) ∈M ×C∗ is TtM ×{z} ∼= TtM which has a natural structure
of a vector space. Given the data (F1)–(F4), we define the so called Dubrovin’s connection on
the vector bundle TM × C∗

∇v := ∇L.C.
v − z−1v•, v ∈ TM , ∇∂/∂z :=

∂

∂z
− z−1θ + z−2E•,

where z is the standard coordinate on C∗ = C\{0}, where v• is an endomorphism of TM defined
by the Frobenius multiplication by the vector field v, and where θ : TM → TM is an OM -modules
morphism defined by

θ(v) := ∇L.C.
v (E)−

(
1− n

2

)
v.

Definition 2.1. The data ((·, ·), •,1, E), satisfying the properties (F1)–(F4), is said to be
a Frobenius structure of conformal dimension n if the corresponding Dubrovin connection is flat,
that is, if (t1, . . . , tN ) are holomorphic local coordinates on M , then the set of N +1 differential
operators ∇∂/∂ti (1 ≤ i ≤ N), ∇∂/∂z pairwise commute.

Let us proceed with recalling the notion of second structure connection and reflection vec-
tors. We follow the exposition from [28]. We are going to work only with Frobenius manifolds
satisfying the following 4 additional conditions:

(i) The tangent bundle TM is trivial and it admits a trivialization given by a frame of global
flat vector fields.

(ii) Recall that the operator

adE : TM → TM , v 7→ [E, v]

preserves the space of flat vector fields. We require that the restriction of adE to the space
of flat vector fields is a diagonalizable operator with eigenvalues rational numbers ≤ 1.

(iii) The Frobenius manifold has a calibration for which the grading operator is a Hodge grading
operator (see Sections 1.3 and 2.2).

(iv) The Frobenius manifold has a direct product decomposition M = C × B such that if we
denote by t1 : M → C the projection along B, then dt1 is a flat 1-form and ⟨dt1,1⟩ = 1.

Conditions (i)–(iv) are satisfied for all Frobenius manifolds constructed by quantum cohomology
or by the primitive forms in singularity theory.

Let us fix a base point t◦ ∈M and a basis {ϕi}Ni=1 of the reference tangent space H := Tt◦M .
Furthermore, let (t1, . . . , tN ) be a local flat coordinate system on an open neighborhood of t◦

such that ∂/∂ti|t◦ = ϕi in H. The flat vector fields ∂/∂ti (1 ≤ i ≤ N) extend to global flat
vector fields on M and provide a trivialization of the tangent bundle TM ∼= M × H. This
allows us to identify the Frobenius multiplication • with a family of associative commutative
multiplications •t : H ⊗ H → H depending analytically on t ∈ M . Modifying our choice of
{ϕi}Ni=1 and {ti}Ni=1 if necessary we may arrange that

E =
N∑
i=1

((1− di)ti + ri)∂/∂ti,
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where ∂/∂t1 coincides with the unit vector field 1 and the numbers

0 = d1 ≤ d2 ≤ · · · ≤ dN = n

are symmetric with respect to the middle of the interval [0, n]. The number n is known as the
conformal dimension of M . The operator θ : TM → TM defined above preserves the subspace of
flat vector fields. It induces a linear operator on H, known to be skew symmetric with respect
to the Frobenius pairing ( , ). Following Givental, we refer to θ as the Hodge grading operator.

There are two flat connections that one can associate with the Frobenius structure. The first
one is the Dubrovin connection — defined above. The Dubrovin connection in flat coordinates
takes the following form:

∇∂/∂ti =
∂

∂ti
− z−1ϕi•, ∇∂/∂z =

∂

∂z
+ z−1θ − z−2E•,

where z is the standard coordinate on C∗ = C − {0} and for v ∈ Γ(M, TM ) we denote by
v• : H → H the linear operator of Frobenius multiplication by v.

Our main interest is in the second structure connection

∇(m)
∂/∂ti

=
∂

∂ti
+ (λ− E•t)−1(ϕi•t)(θ −m− 1/2), (2.1)

∇(m)
∂/∂λ =

∂

∂λ
− (λ− E•t)−1(θ −m− 1/2), (2.2)

where m ∈ C is a complex parameter. This is a connection on the trivial bundle

(M × C)′ ×H → (M × C)′,

where

(M × C)′ = {(t, λ) | det(λ− E•t) ̸= 0}.

The hypersurface det(λ− E•t) = 0 in M × C is called the discriminant.

2.2 Reflection vectors for calibrated Frobenius manifolds

We would like to construct a fundamental solution to the second structure connection ∇(m)

for m sufficiently negative. As we already explained in Section 1.3, this would allow us to embed
the reflection vectors (see Definition 1.5) of the Frobenius manifold M in H.

Suppose that M is a calibrated Frobenius manifold with calibration S(t, z) for which the
grading operator is a Hodge grading operator. By definition (see [20]), the calibration is an
operator series S(t, z) = 1 +

∑∞
k=1 Sk(t)z

−k, Sk(t) ∈ End(H) depending holomorphically on t
and z for t sufficiently close to the base point t◦ and z ∈ C∗, such that, the Dubrovin’s connection
has a fundamental solution near z =∞ of the form

S(t, z)zθz−ρ,

where ρ ∈ End(H) is a nilpotent operator and the following symplectic condition holds

S(t, z)S(t,−z)T = 1,

where T denotes transposition with respect to the Frobenius pairing. We say that θ is a Hodge
grading operator if [θ, ρ] = −ρ.
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Let us fix a reference point (t◦, λ◦) ∈ (M × C)′ such that λ◦ is a sufficiently large positive
real number. It is easy to check that the following function is a solution to the second structure
connection ∇(m)

I(m)(t, λ) =
∞∑
k=0

(−1)kSk(t)Ĩ(m+k)(λ), (2.3)

where

Ĩ(m)(λ) = e−ρ∂λ∂m

(
λθ−m−

1
2

Γ
(
θ −m+ 1

2

)) .
Note that both I(m)(t, λ) and Ĩ(m)(λ) take values in End(H). From now on we restrict m ∈ Z.
The second structure connection has a Fuchsian singularity at infinity, therefore the series
I(m)(t, λ) is convergent for all (t, λ) sufficiently close to (t◦, λ◦). Using the differential equa-
tions (2.1)–(2.2), we extend I(m) to a multi-valued analytic function on (M ×C)′ taking values
in End(H). We define the following multi-valued functions taking values in H:

I(m)
a (t, λ) := I(m)(t, λ)a, a ∈ H, m ∈ Z. (2.4)

Clearly, for each fixed a ∈ H, the sequence I
(m)
a (t, λ) (m ∈ Z) is a period vector in the sense

of Definition 1.2. Moreover, if m ∈ Z is sufficiently negative, then I(m)(t, λ) is an invertible
operator. Therefore, all period vectors of M have the form (2.4). Using analytic continuation
we get a representation

π1((M × C)′, (t◦, λ◦))→ GL(H)

called themonodromy representation of the Frobenius manifold. The imageW of the monodromy
representation is called the monodromy group or stable monodromy group (see Remark 1.3).

Under the semi-simplicity assumption, we may choose a generic reference point t◦ on M ,
such that the Frobenius multiplication •t◦ is semisimple and the operator E•t◦ has N pairwise
different eigenvalues u◦i (1 ≤ i ≤ N). The fundamental group π1((M ×C)′, (t◦, λ◦)) fits into the
following exact sequence

π1(F
◦, λ◦)

i∗ // π1((M × C)′, (t◦, λ◦)) p∗ // π1(M, t◦) // 1, (2.5)

where p : (M × C)′ → M is the projection on M , F ◦ = p−1(t◦) = C \ {u◦1, . . . , u◦N} is the
fiber over t◦, and i : F ◦ → (M × C)′ is the natural inclusion. For a proof we refer to [35,
Proposition 5.6.4] or [30, Lemma 1.5 (C)]. Using the exact sequence (2.5), we get that the
monodromy group W is generated by the monodromy transformations representing the lifts of
the generators of π1(M, t◦) in π1((M × C)′, (t◦, λ◦)) and the generators of π1(F

◦, λ◦).

The image of π1(F
◦, λ◦) under the monodromy representation is a reflection group that can

be described as follows. Let us introduce the bi-linear pairing

⟨a, b⟩ = 1

2π

(
a, eπiθeπiρb

)
, a, b ∈ H. (2.6)

Motivated by the applications to mirror symmetry, we will refer to ⟨ , ⟩ as the Euler pairing.
Its symmetrization

(a|b) := ⟨a, b⟩+ ⟨b, a⟩, a, b ∈ H, (2.7)
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also plays an important role in mirror symmetry and we will refer to it as the intersection
pairing. It can be checked that the intersection pairing can be expressed in terms of the period
vectors as follows:

(a|b) :=
(
I(0)a (t, λ), (λ− E•)I(0)b (t, λ)

)
.

Using the differential equations of the second structure connection, it is easy to prove that the
right-hand side of the above identity is independent of t and λ. However, the fact that the
constant must be (a|b) requires some additional work (see [29]).

Suppose now that γ is a simple loop in F ◦, i.e., a loop that starts at λ◦, approaches one of the
punctures u◦i along a path γ′ that ends at a point sufficiently close to u◦i , goes around u◦i , and
finally returns back to λ◦ along γ′. By analyzing the second structure connection near λ = ui
it is easy to see that up to a sign there exists a unique a ∈ H such that (a|a) = 2 and the
monodromy transformation of a along γ is −a. The monodromy transformation representing
γ ∈ π1(F ◦, λ◦) is the reflection defined by the following formula:

wa(x) = x− (a|x)a.

Let us denote by R the set of all a ∈ H as above determined by all possible choices of simple
loops in F ◦. Under the isomorphism (1.1), the set R coincides with the set of reflection vectors
of M .

2.3 The anti-invariant solution

We would like to construct the unique solution to the second structure connection appearing
in part (b) of Lemma 1.4. We refer to it as the anti-invariant solution because the analytic
continuation around the discriminant changes its sign. Our construction is very similar to (2.3),
except that now instead of the singularity of ∇(m) at λ = ∞, we will consider the singularity
at λ = ui(t) and instead of fundamental solution of Dubrovin’s connection near z = ∞ we will
make use of the formal asymptotic solution to Dubrovin’s connection near z = 0.

Let us recall Givental’s R-matrix (see [20])

R(t, z) = 1 +R1(t)z +R2(t)z
2 + · · · , Rk(t) ∈ End(H)

defined for all semisimple t ∈ M as the unique solution to the following system of differential
equations:

∂R

∂ta
(t, z) = −R(t, z)∂Ψ

∂ta
Ψ−1 + z−1[ϕa•, R(t, z)],

∂R

∂z
(t, z) = −z−1θR(t, z)− z−2[E•, R(t, z)],

where ϕa• and E• are the operators of Frobenius multiplication respectively by the flat vector
field ∂/∂ta and by the Euler vector field E and Ψ is the (N ×N)-matrix with entries

Ψai :=
√

∆i
∂ta
∂ui

, 1 ≤ a, i ≤ N,

where u1, . . . , uN are the canonical coordinates in a neighborhood of the base point t◦, that is,
a local coordinate system, such that,

∂

∂ui
• ∂

∂uj
= δij

∂

∂uj
,

(
∂

∂ui
,
∂

∂uj

)
=
δij
∆i
,

where δij is the Kronecker delta symbol and ∆i ∈ OM,t◦ is a holomorphic function that has no
zeroes in a neighborhood of t◦. It is known that the canonical coordinates coincide with the
eigenvalues of the operator E•t. Here End(H) is identified with the space of (N×N)-matrices via
the basis ϕ1, . . . , ϕN , that is, the entries Aab of A ∈ End(H) are defined by A(ϕb) =:

∑
a ϕaAab.
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Remark 2.2. The matrix Ψ up to the normalization factors ∆i is the Jacobian matrix of the
change from canonical to flat coordinates. The above definition of the R-matrix differed from the
original definition in [20] by conjugation by Ψ, that is, Ψ−1R(t, z)Ψ is the R-matrix of Givental.

Suppose that α ∈ H is a reflection vector. Let us fix a generic semisimple point t ∈M , such
that, the canonical coordinates u1(t), . . . , uN (t) are pairwise distinct. Let us fix a reference path
from (t◦, λ◦) to a neighborhood of a point on the discriminant (t, ui(t)) for some i, such that,
the period vector I

(−m)
α (t, λ) transforms into −I(−m)

α (t, λ) under the analytic continuation in λ
along a closed loop around ui(t). We claim that the period vector has the following expansion
at λ = ui(t):

I(−m)
α (t, λ) =

√
2π

∞∑
k=0

(−1)k (λ− ui)
k+m−1/2

Γ(k +m+ 1/2)
Rk(t)Ψ(t)ei, (2.8)

where ei is the vector column with 1 on the ith position and 0 elsewhere, that is, Ψei is the column
representing the vector field

∑N
a=1

√
∆i

∂ta
∂ui
ϕa =

√
∆i∂/∂ui. Let us prove this claim. Using the

differential equations for R(t, z), it is easy to check that the right-hand side of the above formula
is a solution to the second structure connection. Therefore, the right-hand side of (2.8) and the
reference path determine a vector α ∈ H for which formula (2.8) holds. Moreover,

(
I(0)α (t, λ), (λ− E•)I(0)α (t, λ)

)
=

2π

Γ(1/2)2
+O(λ− ui) = 2 +O(λ− ui).

Since the left-hand side is independent of λ and ui, the higher order terms O(λ − ui) in the
above formula must vanish. This proves that (α|α) = 2. Finally, since the analytic continuation
around λ = ui of the right-hand side of (2.8) changes the sign of the right-hand side, we conclude
that α must be a reflection vector and that (2.8) is the expansion of the corresponding period
vector near the discriminant.

2.4 Gromov–Witten theory

Let us recall some basics on Gromov–Witten (GW) theory. For further details we refer to [26].
Let Eff(X) ⊂ H2(X,Z)t.f. be the monoid of all homology classes that can be represented in
the form

∑
i ki[Ci], where ki is a non-negative integer and [Ci] is the fundamental class of

a holomorphic curve Ci ⊂ X. The main object in GW theory is the moduli space of stable
mapsMg,k(X,β), where g, k are non-negative integers and β ∈ Eff(X). By definition, a stable
map consists of the following data (Σ, z1, . . . , zk, f):

(1) Σ is a Riemann surface with at most nodal singular points.

(2) z1, . . . , zk are marked points, that is, smooth pairwise-distinct points on Σ.

(3) f : Σ→ X is a holomorphic map, such that, f∗[Σ] = β.

(4) The map is stable, i.e., the automorphism group of (Σ, z1, . . . , zk, f) is finite.

Two stable maps (Σ, z1, . . . , zk, f) and (Σ′, z′1, . . . , z
′
k, f
′) are called equivalent if there exists

a biholomorphism ϕ : Σ → Σ′, such that, ϕ(zi) = z′i and f ′ ◦ ϕ = f . The moduli space of
equivalence classes of stable maps is known to be a proper Delign–Mumford stack with respect
to the étale topology on the category of schemes (see [6]). The corresponding coarse moduli
space Mg,k(X,β) has a structure of a projective variety, which however could be very singular.
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We have the following diagram:

Mg,k+1(X,β)
evk+1 //

π
��

X

Mg,k(X,β)
evi //

ft
��

X 1 ≤ i ≤ k,

Mg,k,

where evi(Σ, z1, . . . , zk, f) := f(zi), π is the map forgetting the last marked point an contracting
all unstable components, and ft is the map forgetting the holomorphic map f and contracting
all unstable components. The moduli space has natural orbifold line bundles Li (1 ≤ i ≤ k)
whose fiber at a point (Σ, z1, . . . , zk, f) is the cotangent line T ∗ziΣ equipped with the action of
the automorphism group of (Σ, z1, . . . , zk, f). Let ψi = c1(Li) be the first Chern class. The most
involved construction in GW theory is the construction of the so called virtual fundamental cycle.
The construction has as an input the complex (Rπ∗ev

∗
k+1TX)∨ which gives rise to a perfect

obstruction theory on Mg,k(X,β) relative to Mg,k (see [4, 5]) and yields a homology cycle
in Mg,k(X,β) of complex dimension

3g − 3 + k + n(1− g) + ⟨c1(TX), β⟩,

known as the virtual fundamental cycle. Gromov–Witten invariants are by definition the fol-
lowing correlators:〈

a1ψ
l1 , . . . , akψ

lk
〉
g,k,β

=

∫
[Mg,k(X,β)]virt

ev∗1(a1) · · · ev∗k(ak)ψ
l1
1 · · ·ψ

lk
k ,

where a1, . . . , ak ∈ H∗(X;C) and l1, . . . , lk are non-negative integers.
Let us recall the so-called string and divisor equations. Suppose that either β ̸= 0 or

2g − 2 + k > 0, then

〈
1, a1ψ

l1 , . . . , akψ
lk
〉
g,k+1,β

=

k∑
i=1

〈
a1ψ

l1 , . . . , aiψ
li−1, . . . , akψ

lk
〉
g,k,β

,

and if p ∈ H2(X,C) is a divisor class, then〈
p, a1ψ

l1 , . . . , akψ
lk
〉
g,k+1,β

=

(∫
β
p

)〈
a1ψ

l1 , . . . , akψ
lk
〉
g,k,β

+

k∑
i=1

〈
a1ψ

l1 , . . . , p ∪ aiψli−1, . . . , akψ
lk
〉
g,k,β

,

where if li = 0, then we define ψli−1
i := 0. We will need also the genus-0 topological recursion

relations, that is, if k ≥ 2, then the following relation holds:〈
aψl+1, b1ψ

m1 , . . . , bkψ
mk
〉
0,k+1,β

=
∑
i,I,β′

〈
aψl, ϕi, bi1ψ

mi1 , . . . , birψ
mir
〉
0,2+r,β′

〈
ϕi, bj1ψ

mj1 , . . . , bjsψ
mjs
〉
0,1+s,β′′ ,

where the sum is over all 1 ≤ i ≤ N , all subsequences I = (i1, . . . , ir) of the sequence (1, 2, . . . , k)
including the empty one, and all homology classes β′ ∈ Eff(X), such that, β′′ := β−β′ ∈ Eff(X).
The sequence (j1, . . . , js) is obtained from (1, 2, . . . , k) by removing the subsequence I. In
particular, r + s = k.
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2.5 Quantum cohomology of X

Let us recall the notation Li, pi := c1(Li), and qi (1 ≤ i ≤ r) from the introduction. If
β ∈ Eff(X), then we put qβ = q

⟨p1,β⟩
1 · · · q⟨pr,β⟩r . The group ring C[Eff(X)] is called the Novikov

ring of X and the variables qi are called Novikov variables. Note that the Novikov variables
determine an embedding of the Novikov ring into the ring of formal power series C[[q1, . . . , qr]].
Let us fix a homogeneous basis ϕi (1 ≤ i ≤ N) of H∗(X;C), such that, ϕ1 = 1 and ϕi+1 = pi for
all 1 ≤ i ≤ r. Let t = (t1, . . . , tN ) be the corresponding linear coordinates. The quantum cup
product •t,q of X is a deformation of the classical cup product defined by

(ϕa •t,q ϕb, ϕc) := ⟨ϕa, ϕb, ϕc⟩0,3(t) =
∞∑

m=0

∑
β∈Eff(X)

qβ

m!
⟨ϕa, ϕb, ϕc, t, . . . , t⟩0,3+m,β.

Using string and divisor equation, we get that the structure constants of the quantum cup
product, i.e., the 3-point genus-0 correlators in the above formula are independent of t1 and are
formal power series in the following variables:

q1e
t2 , . . . , qre

tr , tr+1, . . . , tN .

We are going to consider only manifolds X, such that, the quantum cup product is analytic.
More precisely, let us allow for the Novikov variables to take values 0 < |qi| < 1 (1 ≤ i ≤ r).
Then we will assume that there exists an ϵ > 0, such that, the structure constants of the quantum
cup product are convergent power series for all t satisfying

Re(ti) < log ϵ, 2 ≤ i ≤ r + 1, |tj | < ϵ, r + 1 < j ≤ N. (2.9)

The inequalities (2.9) define an open subset M ⊂ H∗(X;C). The main fact about genus-0 GW
invariants is that M has a Frobenius structure, such that, the Frobenius pairing is the Poincaré
pairing, the Frobenius multiplication is the quantum cup product, the unit 1 = ϕ1, and the
Euler vector field is

E =
N∑
i=1

(1− di)ti
∂

∂ti
+

r+1∑
j=2

(
c1(TX), ϕj

) ∂
∂tj

,

where di is the complex degree of ϕi, that is, ϕi ∈ H2di(X;C) and ϕj (1 ≤ j ≤ N) is the basis
of H∗(X;C) dual to ϕi (1 ≤ i ≤ N) with respect to the Poincaré pairing. Let us point out
that in case the quantum cup product is semisimple we have Hodd(X;C) = 0. Otherwise, in
generalM has to be given the structure of a super-manifold (see [26]). The conformal dimension
of M is n = dimC(X) and the Hodge grading operator takes the form

θ(ϕi) =
(n
2
− di

)
ϕi, 1 ≤ i ≤ N. (2.10)

Finally, there is a standard choice for a calibration S(t, q, z) = 1 +
∑∞

k=1 Sk(t, q)z
−k, where

Sk(t, q) ∈ End(H∗(X;C)) is defined by

(Sk(t, q)ϕi, ϕj) =

∞∑
m=0

∑
β∈Eff(X)

qβ

m!

〈
ϕiψ

k−1, ϕj , t, . . . , t
〉
0,2+m,β

. (2.11)

Suppose that the Frobenius manifold M corresponding to quantum cohomology is semisimple.
Recalling the construction from Section 2.2, we get the notion of a reflection vector.
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3 The geometry of blowups

Let Bl(X) be the blowup of X at a point pt ∈ X, π : Bl(X)→ X be the corresponding blowup
map, and E := π−1(pt) the exceptional divisor. Put e = c1(O(E)) = P.D.(E). We would like
to recall some well known facts about Bl(X) which will be used later on.

3.1 Cohomology of the blowup

Using a Mayer–Vietories sequence argument, it is easy to prove the following two facts:

(1) The pullback map π∗ : H∗(X;C) // H∗(Bl(X);C) is injective, so we can view the co-

homology H∗(X;C) as a subvector space of H∗(Bl(X);C).
(2) We have a direct sum decomposition

H∗(Bl(X);C) = H∗(X;C)
⊕

H̃∗(E),

where H̃∗(E) =
⊕n−1

i=1 Cei is the reduced cohomology of E.

The Poincaré pairing of Bl(X) can be computed as follows. Let us choose a basis ϕi (1 ≤ i ≤ N)
of H∗(X;C), such that,

(i) ϕ1 = 1 and ϕN = P.D.(pt),

(ii) ϕi+1 = pi = c1(Li) (1 ≤ i ≤ r), where Li (1 ≤ i ≤ r) is a set of ample line bundles on X,
such that, pi (1 ≤ i ≤ r) form a Z-basis of H2(X,Z)t.f..

Lemma 3.1. Let ( , )Bl(X) and ( , )X be the Poincaré pairings on respectively Bl(X) and X.
Then we have

(a) (ϕi, ϕj)
Bl(X) = (ϕi, ϕj)

X for all 1 ≤ i, j ≤ N .

(b) (ϕi, e
k)Bl(X) = 0 for 1 ≤ i ≤ N and 1 ≤ k ≤ n− 1.

(c) en = (−1)n−1ϕN and
(
ek, en−k

)Bl(X)
= (−1)n−1.

Proof. Parts (a) and (b) follow easily by the projection formula and Poincaré duality. The sec-
ond part of (c) is a consequence of the first part, so we need only to prove that en = (−1)n−1ϕN .
We have en = cϕN for dimension reasons. Note that E ∼= Pn−1 and O(E)|E = OPn−1(−1).
Therefore, e|E = c1(O(E)|E) = −p, where p = c1(OPn−1(1)) is the standard hyperplane class
of Pn−1. We get

c =

∫
[Bl(X)]

en =

∫
[E]
en−1 =

∫
[Pn−1]

(−p)n−1 = (−1)n−1. ■

The ring structure of H∗(Bl(X);C) with respect to the cup product is also easy to compute.
We have

(1) H∗(X;C) is a subring of H∗(Bl(X);C).
(2) ϕ1 ∪ ek = ek and ϕi ∪ ek = 0, 2 ≤ i ≤ N , 1 ≤ k ≤ n− 1.

(3)

ek ∪ el =


ek+l if k + l < n,

(−1)n−1ϕN if k + l = n,

0 if k + l > n.

Property (1) follows from the fact that pullback in cohomology is a ring homomorphism. The
formulas in (3) follow from Lemma 3.1 (c). Finally, (2) follows from (1), (3) and Lemma 3.1 (b).
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3.2 K-ring of the blowup

For some background on topological K-theory we refer to [13, Chapter 6]. Let us compute
the topological K-ring of Bl(X). We will be interested only in manifolds X, such that, the
corresponding quantum cohomology is semisimple. Such X are known to have cohomology
classes of Hodge type (p, p) only. In particular, K1(X) ⊗ Q = 0. To simplify the exposition,
let us assume that K1(X) = 0. In our arguments below we will have to work with non-
compact manifolds. However, in all cases the non-compact manifolds are homotopy equivalent
to finite CW-complexes. We define the corresponding K-groups by taking the K-groups of the
corresponding finite CW-complexes.

Proposition 3.2.

(a) The K-theoretic pullback π∗ : K0(X)→ K0(Bl(X)) is injective.

(b) We have

K0(Bl(X)) = K0(X)⊕
n−1⊕
j=1

ZOj
E ,

where K0(X) is viewed as a subring of K0(Bl(X)) via the K-theoretic pullback π∗ and
OE := O −O(−E) is the structure sheaf of the exceptional divisor.

Proof. Let U⊂X be a small open neighborhood of the center of the blowup pt and V :=X\{pt}.
Note that {U, V } is a covering of X. Put Ũ = π−1(U) and Ṽ := π−1(V ), then

{
Ũ , Ṽ

}
is a cov-

ering of Bl(X). Let us compare the reduced K-theoretic Mayer–Vietories sequences of these two
coverings. We have the following commutative diagram:

K̃−1(X) //

��

K̃−1(V )⊕ K̃−1(U) //

��

K̃−1(U \ pt) //

∼=
��

K̃0(X) //

��

K̃0(V )⊕ K̃0(U)

��

K̃−1(Bl(X)) // K̃−1
(
Ṽ
)
⊕ K̃−1

(
Ũ
)

// K̃−1
(
Ũ \ E

)
// K̃0(Bl(X)) // K̃0

(
Ṽ
)
⊕ K̃0

(
Ũ
)
,

where the vertical arrows in the above diagram are induced by the K-theoretic pullback π∗. Note
that K̃ev(U \ pt) = K̃0

(
Ũ \ E

)
= 0 because Ũ \ E ∼= U \ pt is homotopic to S2n−1 – the (2n−1)-

dimensional sphere. Therefore, the horizontal arrows in the first and the last square of the
above diagram are respectively injections and surjections. Furthermore, K̃−1(U) = K̃0(U) = 0
because U is contractible and K̃−1

(
Ũ
)
= 0 because Ũ is homotopy equivalent to E ∼= Pn−1. We

get that the second vertical arrow is an isomorphism
(
V ∼= Ṽ

)
and hence, recalling the 5-lemma

or by simple diagram chasing, we get K̃−1(Bl(X)) ∼= K̃−1(X). By assumption K̃−1(X) = 0,
so K̃−1(Bl(X)) = 0. A straightforward diagram chasing shows that the 4th vertical arrow is
injective, i.e., we proved (a).

Note that the above diagram yields the following short exact sequence:

0 // K̃0(X)
π∗
// K̃0(Bl(X))

|E // K̃0
(
Pn−1) // 0, (3.1)

where the map |E is the restriction to the exceptional divisor E ∼= Pn−1. The above exact
sequence splits because K̃0

(
Pn−1) ∼= Zn−1 is a free module. Note that OE |E = OPn−1−OPn−1(1)

is the generator of K̃0
(
Pn−1), so part (b) follows from the exactness of (3.1). ■

Let us compute the K-theoretic product of the torsion free part K0(Bl(X))t.f.. Note that
π∗(OBl(X)) = OX . Therefore, π∗π

∗(F ) = F for every F ∈ K0(X). Let us compute OE ⊗ π∗F
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for F ∈ K̃0(X). The restriction of OE ⊗ π∗F to E is 0. Recalling the exact sequence (3.1), we
get OE ⊗ π∗F = π∗G for some G ∈ K̃0(X). Taking pushforward, we get

G = π∗(OE ⊗ π∗F ) = π∗(OE)⊗ F = Cpt ⊗ F = rk(F )Cpt = 0,

where Cpt is the skyscraper sheaf on X and in the 3rd equality we used the exact sequence

0 // O(−E) // O // j∗(OPn−1) // 0,

where j : Pn−1 → Bl(X) is the embedding whose image is the exceptional divisor. This sequence
implies OE = j∗OPn−1 and hence π∗OE = (π ◦ j)∗OPn−1 = Cpt. We proved that

OE ⊗ π∗F = 0, ∀F ∈ K̃0(X).

It remains only to compute On
E . The restriction of On

E to E is (1−OPn−1(−1))n = 0. Therefore,
On

E = π∗F . The Chern character ch(On
E) = (1 − exp(−c1(O(E))))n = en = (−1)n−1ϕN , where

we used Lemma 3.1 (c). On the other hand, the Chern character of the skyscraper sheaf can be
computed easily with the Grothendieck–Riemann–Roch formula. Namely, we have

ch(ι◦∗(C)) ∪ td(X) = ι◦∗(ch(C) ∪ td(pt)) = ι◦∗(1) = P.D.(pt) = ϕN ,

where ι◦ : pt → X is the natural inclusion of the point pt. Thus, ch(Cpt) = ϕN . Comparing
with the formula for ch(On

E), we get

On
E = (−1)n−1Cpt mod ker(ch).

Finally, let us finish this section by quoting the formula for the K-theoretic class of the tangent
bundle (see [15, Lemma 15.4]):

T Bl(X) = TX − n− 1 + nO(−E) +O(E).

3.3 Quantum cohomology of the blowup

Let us first compare the effective curve cones Eff(X) and Eff(Bl(X)).We have an exact sequence

0 // H2

(
Pn−1;Z

) j∗ // H2(Bl(X);Z) π∗ // H2(X;Z) // 0,

where j : Pn−1 → Bl(X) is the natural closed embedding of the exceptional divisor. The proof
of the exactness is similar to the proof of (3.1). In particular, since the torsion free part of the
above sequence splits, we get

H2(Bl(X);Z)t.f. = H2(X;Z)t.f. ⊕ Zℓ,

where ℓ ∈ H2(E;Z) is the class of a line in the exceptional divisor. The cone of effective curve
classes Eff(Bl(X)) ⊂ Eff(X)⊕ Zℓ. The Novikov variables of the blowup will be fixed to be the
Novikov variables of X and an extra variable corresponding to the line bundle O(E). In other
words, for β̃ = β + dℓ ∈ Eff(Bl(X)), put

qβ̃ = qβq
⟨c1(O(E)),β̃⟩
r+1 = q

⟨ϕ2,β⟩
1 · · · q⟨ϕr+1,β⟩

r q−dr+1.

Note that O(E) is not an ample line bundle: for example, ℓ · E = −1 < 0. Our choice of qr+1

makes the structure constants formal Laurent (not power) series in qr+1. Following Bayer
(see [3]), we write qr+1 = Qn−1 for some formal variable Q. Let us recall the basis ϕi (1 ≤ i ≤ N)
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of H∗(X;C). Put ϕN+k = ek (1 ≤ k ≤ n − 1). Then ϕi
(
1 ≤ i ≤ Ñ := N + n − 1

)
is

a basis of H∗(Bl(X);C). Let t = (t1, . . . , tÑ ) be the corresponding linear coordinate system on
H∗(Bl(X);C). The structure constants of the quantum cohomology of Bl(X) take the form

(ϕa •t,q ϕb, ϕc) := ⟨ϕa, ϕb, ϕc⟩0,3(t) =
∞∑

m=0

∑
β̃=(β,d)

qβQ−d(n−1)

m!
⟨ϕa, ϕb, ϕc, t, . . . , t⟩0,3+m,β̃

.

Remark 3.3. The quantum cup product of H∗(X) depends only on (t2, . . . , tN ). Suppose
that these N − 1 parameters are generic such that the quantum cup product of H∗(X) is
semisimple. Then, according to Bayer [3] (see also Proposition 4.6), even if we restrict the
remaining parameters to 0, that is, set t1 = tN+1 = · · · = t

Ñ
= 0, then the quantum cup

product of the blowup is still semisimple. Therefore, for our purposes, it is sufficient to work
with t ∈ H∗(Bl(X)), such that, t1 = tN+1 = · · · = t

Ñ
= 0.

3.4 Twisted GW invariants of Pn−1

It turns out that genus-0 GW invariants of Bl(X) whose degree β̃ = dℓ with d ̸= 0 can be
identified with certain twisted GW invariants of Pn−1. Suppose that (C, z1, . . . , zk, f) is a sta-
ble map representing a point in M0,k(Bl(X), dℓ). Let π : Bl(X) → X be the blowup map.
Since π∗ ◦ f∗[C] = 0 and π induces a biholomorphism between Bl(X) \ E and X \ {pt}, we get
that f(C) is contained in E. Therefore, we have a canonical identification

M0,k(Bl(X), dℓ) =M0,k(E, d),

where E ∼= Pn−1 is the exceptional divisor. Let us compare the virtual tangent spaces of the
two moduli spaces at (C, z1, . . . , zk, f). For the left-hand side, we have

T0,k,dℓ = H1(C, TC(−z1 − · · · − zk))−H0(C, TC(−z1 − · · · − zk))
+H0(C, f∗TBl(X))−H1(C, f∗TBl(X)),

while for the right-hand side we have

T0,k,d = H1(C, TC(−z1 − · · · − zk))−H0(C, TC(−z1 − · · · − zk))
+H0(C, f∗TE)−H1(C, f∗TE),

where TC is the tangent sheaf of C and TC(−z1 − · · · − zk) is the sub sheaf of TC consisting of
sections vanishing at z1, . . . , zk. On the other hand, we have an exact sequence

0 // TE // TBl(X)|E // OE(−1) // 0,

where we used that OE(−1) is the normal bundle to the exceptional divisor in Bl(X). Pulling
back the exact sequence to C via the stable map and taking the long exact sequence in coho-
mology, we get

0 // H0(C, f∗TE) // H0(C, f∗TBl(X)) // H0(C, f∗OE(−1)) //

// H1(C, f∗TE) // H1(C, f∗TBl(X)) // H1(C, f∗OE(−1)) // 0.

Note that H0(C, f∗OE(−1)) = 0 because C is a rational curve. Indeed, if C ′ is an irre-
ducible component of C and d′ = f∗[C

′] is its contribution to the degree of f , then C ′ ∼= P1

and f∗OE(−1)|C′ = OP1(−d′). Therefore, H0(C ′, f∗OE(−1)) = 0 and we get that the restric-
tions of the sections of f∗OE(−1) to the irreducible components of C are 0 which implies that
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there are no non-zero global sections. Let us recall the Riemann–Roch formula for nodal curves
(easily proved by induction on the number of nodes)

dimH0(C,L)− dimH1(C,L) = 1− g +
∫
[C]
c1(L),

where L is a holomorphic line bundle on C and g is the genus of C. Applying the Riemann–Roch
formula to f∗OE(−1), we get that

dimH1(C, f∗OE(−1)) = −1−
∫
f∗[C]

c1(OE(−1)) = d− 1.

The cohomology group H1(C, f∗OE(−1)) is the fiber of a holomorphic vector bundle N0,k,d

onM0,k(E, d) of rank d− 1. The virtual tangent bundles are related by T0,k,dℓ = T0,k,d−N0,k,d.
Recalling the construction of the virtual fundamental cycle [5], we get[

M0,k(Bl(X), dℓ)
]virt

=
[
M0,k(E, d)

]virt ∩ e(N0,k,d).

The above formula for the virtual fundamental class yields the following formula:

⟨α1ψ
m1 , . . . , αkψ

mk⟩0,k,dℓ =
∫
[M0,k(E,d)]virt

k∏
i=1

ev∗i (αi|E)ψmi
i ∪ e(N0,k,d).

Later on we will need the 3-point GW invariants with d = 1. Let us compute them. If d = 1,
then e(N0,k,d) = 1 and the above formula implies that the GW invariants of the blowup coincide
with the GW invariants of the exceptional divisor, that is,

⟨α1ψ
m1 , . . . , αkψ

mk⟩Bl(X)
0,k,ℓ = ⟨α1|Eψm1 , . . . , αk|Eψmk⟩E0,k,1,

where we used the superscripts Bl(X) and E in order to specify that the correlators are GW
invariants of respectively Bl(X) and E. Note that if p = c1OE(1) is the hyperplane class,
then e|E = −p. The quantum cohomology of Pn−1 is well known to be C[p]/(pn − Q). In
particular, the 3-point correlators〈

pi, pj , pk
〉
0,3,1

=

{
1 if i+ j + k = 2n− 1,

0 otherwise,
∀0 ≤ i, j, k ≤ n− 1.

Therefore,〈
ei, ej , ek

〉
0,3,ℓ

=

{
−1 if i+ j + k = 2n− 1,

0 otherwise.

Let us specialize k = 1. Using the divisor equation (recall that
∫
ℓ e = −1), we get

〈
ei, ej

〉
0,2,ℓ

=

{
1 if i = j = n− 1,

0 otherwise.

3.5 The vanishing theorem of Gathmann

Gathmann discovered a very interesting vanishing criteria for the GW invariants of the blowup
(see [17]). We need a slight generalization of his result which can be stated as follows. Following
Gathmann, we assign a weight to each basis vector

wt(ϕa) =

{
0 if 1 ≤ a ≤ N,
a−N − 1 if N < a ≤ N + n− 1.

In other words, the exceptional class ek has weight k − 1 for all 1 ≤ k ≤ n− 1 and in all other
cases the weight is 0.
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Proposition 3.4. Suppose that we have a GW invariant〈
ϕaψ

k, ϕb1 , . . . , ϕbm , e
l1 , . . . , els

〉
0,β+dℓ,1+m+s

, (3.2)

where 1 ≤ a ≤ Ñ , 1 ≤ b1, . . . , bm ≤ N , and 2 ≤ l1, . . . , ls ≤ n − 1, satisfying the following
3 conditions:

(i) β ̸= 0.

(ii) wt(ϕa) +
∑s

i=1(li − 1) > 0 or d > 0.

(iii) wt(ϕa) +
∑s

i=1(li − 1) < (d+ 1)(n− 1)− k.
Then the GW invariant (3.2) must be 0.

Proof. The proof is done by induction on k. Gathmann’s result is the case when k = 0. The
inductive step uses the genus-0 topological recursion relations (see Section 2.4). Suppose that
the proposition is proved for k and let us prove it for k + 1. Using the TRRs, we write the
correlator (3.2) with k replaced by k + 1 in the following form:

N+n−1∑
c=1

∑ 〈
ϕaψ

k, ϕc, ϕB′ , eL
′〉

β′+d′ℓ

〈
ϕc, ϕB′′ , eL

′′〉
β′′+d′′ℓ

,

where the second sum is over all possible splittings B′⊔B′′ = {b1, . . . , bm}, L′⊔L′′ = {l1, . . . , ls},
β′+ β′′ = β and d′+ d′′ = d. The notation is as follows. We dropped the genus and the number
of marked points from the correlator notation because the genus is always 0 and the number of
marked points is the same as the number of insertions. The insertion of all ϕb′ with b

′ ∈ B′ is
denoted by ϕB′ and the insertions of all el

′
with l′ ∈ L′ is denoted by eL

′
. Similar conventions

apply for ϕB′′ and eL
′′
in the second correlator. The first correlator has 2+m′+s′ insertions while

the second one 1 +m′′ + s′′, where m′, m′′, s′, and s′′ are respectively the number of elements
of respectively B′, B′′, L′, and L′′. We have to prove that if the 3 conditions in the proposition
are satisfied where k should be replaced by k + 1, then the above sum is 0. We will refer to the
correlator involving B′ and L′ as the first correlator and to the correlator involving B′′ and L′′

as the second correlator. We will prove that for each term in the above sum either the first or
the second correlator vanishes. The proof will be divided into 4 cases.

Case 1: if β′ = 0 and the second correlator does not satisfy condition (ii), that is, wt(ϕc) +∑
l′′∈L′′(l′′ − 1) ≤ 0 and d′′ ≤ 0. Note that since β′′ = β ̸= 0, the second correlator satis-

fies condition (i). Since β′ = 0 we need to consider only c, such that, ϕc|E ̸= 0 and hence
ϕc ∈

{
1, e, . . . , en−1

}
. Moreover, the weight of ϕc is 0 so ϕc ∈

{
1, en−1

}
and ϕc ∈ {ϕN , e}. Since

l′′ ≥ 2 for all l′′ ∈ L′′ the set L′′ must be empty. The corresponding term in the sum in this case
takes the form〈

ϕaψ
k, ϕc, 1, . . . , 1, e

l1 , . . . , els
〉
d′ℓ
⟨ϕc, ϕB′′⟩β+d′′ℓ,

where the insertions from ϕB′ all must be 1 otherwise ϕb|E = 0 and the correlator vanishes.
Using the dimension formula, we get

deg(ϕa) + k + deg(ϕc) +

s∑
i=1

li = (d′ + 1)(n− 1) + s+m′.

Note that ϕa must satisfy ϕa|E ̸= 0, otherwise the correlator is 0. Therefore, ϕa ∈
{
1, e, . . . , en−1

}
which implies that deg(ϕa) ≤ wt(ϕa) + 1 with inequality only if ϕa = 1. We get

(d′ + 1)(n− 1) +m′ = deg(ϕa) + k + deg(ϕc) +

s∑
i=1

(li − 1)

≤ wt(ϕa) + 1 + k +
s∑

i=1

(li − 1) + deg(ϕc).
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On the other hand, let us recall that the correlator (3.2) (with k + 1 instead of k) satisfies
condition (iii), that is,

wt(ϕa) +

s∑
i=1

(li − 1) < (d+ 1)(n− 1)− k − 1.

We get (d′ + 1)(n − 1) +m′ < deg(ϕc) + (d + 1)(n − 1). Recall that there are two possibilities
for ϕc : ϕc = 1 or ϕc = en−1. In the first case, we get 0 ≤ m′ < d′′(n − 1) and hence d′′ > 0
contradicting our assumption that d′′ ≤ 0. In the second case, we get 0 ≤ m′ < (d′′ + 1)(n− 1).
This implies that d′′ > −1 which together with d′′ ≤ 0 implies that d′′ = 0. However, since
ϕc = e, we get that the second correlator vanishes by the divisor equation. This completes the
proof of our claim in Case 1.

Case 2: β′ = 0 and the second correlator satisfies condition (ii). Since β′′ = β ̸= 0, the
second correlator satisfies condition (i) too, so it will vanish unless condition (iii) fails, that is,

wt(ϕc) +
∑

l′′∈L′′

(l′′ − 1) ≥ (d′′ + 1)(n− 1).

On the other hand, similarly to Case 1, we must have ϕb′ = 1 for all b′ ∈ B′, so the dimension
formula applied to the first correlator yields

deg(ϕa) + k + deg(ϕc) +
∑
l′∈L′

(l′ − 1) = (d′ + 1)(n− 1) +m′.

Adding up the above inequality and identity, we get

deg(ϕa) + k + deg(ϕc) + wt(ϕc) +
s∑

i=1

(li − 1) ≥ (d+ 1)(n− 1) + n− 1 +m′.

Again deg(ϕa) ≤ wt(ϕa) + 1, so

m′ + n− 1− deg(ϕc)− wt(ϕc) ≤ wt(ϕa) + 1 + k +
s∑

i=1

(li − 1)− (d+ 1)(n− 1).

Recalling again condition (iii), we get that the right-hand side of the above inequality is < 0,
and hence m′+n−1 < deg(ϕc)+wt(ϕc). Similarly to Case 1, we may assume that ϕc|E ̸= 0, that
is, ϕc ∈

{
1, e, . . . , en−1

}
which implies that deg(ϕc) + wt(ϕc) ≤ n − 1. This is a contradiction

with m′ + n− 1 < deg(ϕc) + wt(ϕc).
Case 3: if β′ ̸= 0 and the first correlator does not satisfy condition (ii), that is, wt(ϕa) +

wt(ϕc) +
∑

l′∈L′(l′ − 1) = 0 and d′ ≤ 0. Note that we must have L′ = ∅ and either d′′ > 0
or
∑s

i=1(li − 1) > 0. Therefore, the second correlator satisfies condition (ii).
Suppose that β′′ = 0 (⇔ condition (i) fails). We must have ϕb′′ |E ̸= 0 for all b′′ ∈ B′′ ⇒

ϕb′′ = 1 for all b′′ ∈ B′′. Recalling the dimension formula for the second correlator, we get

deg(ϕc) +

s∑
i=1

(li − 1) = (d′′ + 1)(n− 1) +m′′ − 1.

On the other hand, since wt(ϕa) = 0 for the case under consideration, condition (iii) implies
that

∑s
i=1(li − 1) < (d + 1)(n − 1) − k − 1. Combining this estimate with the above equality,

we get m′′ + k < deg(ϕc) + d′(n − 1). If m′′ > 0, then the second correlator has at least one
insertion by 1 (∵ B′′ ̸= ∅). Since the second correlator does not have descendants it will
vanish unless d′′ = 0. However, if β′′ = d′′ = 0 the second correlator is non-zero only if the
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number of insertion is 3 because the moduli space isM0,1+m′′+s × Bl(X), that is, m′′ = s = 1.
Moreover, ϕc ∪ el1 up to a constant must be ϕN hence ϕc = en−l1 and ϕc = el1 . However,
l1 ≥ 2 by definition, so wt(ϕc) = l1 − 1 > 0 — contradicting the assumption that the first
correlator does not satisfy condition (ii). We get m′′ = 0 and the estimate that we did above
yields k < deg(ϕc) + d′(n − 1). Note that deg(ϕc) ≤ n − 1. Therefore, d′ > −1. Recall that
we are assuming that d′ ≤ 0, so d′ = 0. Recalling the divisor equation we get ϕc ̸= e. Since
β′′ = 0 the restriction ϕc|E ̸= 0 hence ϕc ∈

{
1, e, . . . , en−1

}
. Moreover, ϕc ̸= 1 thanks to the

string equation. We get ϕc = el for some l ≥ 2 contradicting the assumption that wt(ϕc) = 0.
Suppose now that β′′ ̸= 0. Then the second correlator satisfies both conditions (i) and (ii).

Therefore, condition (iii) must fail, that is,

wt(ϕc) +
s∑

i=1

(li − 1) ≥ (d′′ + 1)(n− 1). (3.3)

Using that wt(ϕc) ≤ n− 2 and
∑

i(li − 1) < (d+ 1)(n− 1)− k − 1, we get

(d′′ + 1)(n− 1) < n− 2 + (d+ 1)(n− 1)− k − 1,

which implies that k + 1 < d′(n − 1) + n − 2. In particular, d′ > −1 and since by assumption
d′ ≤ 0 we get d′ = 0. If ϕc = e, then using the divisor equation we get〈

ϕaψ
k, ϕc, ϕB′

〉
β′ =

〈
e ∪ ϕaψk−1, ϕB′

〉
β′ .

Since wt(ϕa) = 0 the cup product e∪ϕa ̸= 0 only if ϕa = e. This however implies that e∪ϕa = e2

has positive weight and hence the correlator on the right-hand side of the above identity satisfies
both conditions (i) and (ii). Condition (iii) must fail, so 1 ≥ n − 1 − (k − 1) = n − k, that is,
k ≥ n−1. On the other hand, recall that we already have the estimate k+1 < d′(n−1)+n−2 =
n − 2 which contradicts the inequality in the previous sentence. We get ϕc ̸= e which together
with wt(ϕc) = 0 implies that ϕc /∈

{
e2, . . . , en−1

}
and hence wt(ϕc) = 0. Recalling (3.3), we get

(d′′ + 1)(n− 1) ≤
s∑

i=1

(li − 1) < (d+ 1)(n− 1)− k − 1.

Since d′ = 0, we get 0 < −k − 1 which is clearly a contradiction. This completes the proof of
the vanishing claim in Case 3.

Case 4: if β′ ̸= 0 and the first correlator satisfies condition (ii). Then condition (iii) for the
first correlator must fail, that is,

wt(ϕa) + wt(ϕc) +
∑
l′∈L′

(l′ − 1) ≥ (d′ + 1)(n− 1)− k. (3.4)

We claim that the second correlator also satisfies conditions (i) and (ii). Indeed, suppose that (i)
is not satisfied, that is, β′′ = 0. All insertions in ϕB′′ must be 1. Recalling the dimension formula,
we get

deg(ϕc) +
∑

l′′∈L′′

(l′′ − 1) = (d′′ + 1)(n− 1)− 1 +m′′.

Adding up the above identity and the inequality (3.4), we get

wt(ϕa) + deg(ϕc) + wt(ϕc) +

s∑
i=1

(li − 1) ≥ (d+ 2)(n− 1)− k − 1 +m′′

= (d+ 1)(n− 1)− k − 1 + n− 1 +m′′,
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which is equivalent to

n− 1 +m′′ − deg(ϕc)− wt(ϕc) ≤ wt(ϕa) +

s∑
i=1

(li − 1) + k + 1− (d+ 1)(n− 1) < 0,

where for the last inequality we used that the correlator whose vanishing we want to prove
satisfies condition (iii). We get m′′ + n ≤ deg(ϕc) + wt(ϕc). On the other hand, since ϕc|E ̸= 0,
we have ϕc ∈

{
1, e, . . . , en−1

}
which implies that deg(ϕc)+wt(ϕc) ≤ n− 1 – contradiction. This

proves that β′′ ̸= 0.
Suppose that the second correlator does not satisfy condition (ii). Then, d′′ ≤ 0, wt(ϕc) = 0,

and L′′ = ∅. Since L′′ = ∅, the inequality (3.4) takes the form

wt(ϕa) + wt(ϕc) +
s∑

i=1

(li − 1) ≥ (d′ + 1)(n− 1)− k.

On the other hand, recalling again condition (iii) for the correlator whose vanishing we wish to
prove, we get

wt(ϕa) +

s∑
i=1

(li − 1) < (d+ 1)(n− 1)− k − 1.

Combining with the above estimate, we get

(d′ + 1)(n− 1)− k < wt(ϕc) + (d+ 1)(n− 1)− k − 1,

which becomes (−d′′)(n− 1) < wt(ϕc)− 1. Since wt(ϕc) = 0 and d′′ ≤ 0 the above inequality is
possible only if ϕc = e. Then we get d′′ ̸= 0 thanks to the divisor equation, that is, d′′ ≤ −1 and
hence wt(ϕc)− 1 > n− 1. This is a contradiction because the maximal possible value of wt(ϕc)
is n− 2. This completes the proof of our claim that the second correlator satisfies conditions (i)
and (ii).

Finally, in order for the second correlator to be non-zero, condition (iii) must fail. We get

wt(ϕc) +
∑

l′′∈L′′

(l′′ − 1) ≥ (d′′ + 1)(n− 1).

Adding up the above inequality and (3.4), we get

wt(ϕa) + wt(ϕc) + wt(ϕc) +

s∑
i=1

(li − 1) ≥ (d+ 2)(n− 1)− k = (d+ 1)(n− 1)− k − 1 + n.

On the other hand, recalling the inequality

wt(ϕa) +
s∑

i=1

(li − 1) < (d+ 1)(n− 1)− k − 1,

we get

n− wt(ϕc)− wt(ϕc) < 0.

The inequality clearly does not hold if one of the weights is 0. If both weights are non-zero,
then we will have wt(ϕc) + wt(ϕc) = n − 2 which again contradicts the above inequality. The
conclusion is that either the first or the second correlator satisfies condition (iii) and hence one
of the two correlators must vanish according to the inductive assumption. ■
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4 Second structure connection and blowups

Let us recall the notation already fixed in Sections 3.1 and 3.3. From now on, for a com-
plex variety Y , we denote by H(Y ) := H∗(Y,C) and H̃(Y ) respectively the cohomology and
the reduced cohomology of Y with complex coefficients. Using the direct sum decomposi-
tion H(Bl(X)) = H(X) ⊕ H̃(E), we define the H(X)-component (resp. H̃(E)-component) of
a vector v ∈ H(Bl(X)) to be the projection of v on H(X) (resp. H̃(E)).

We will view quantum cohomology of Bl(X) as a family of Frobenius manifolds parametrized
by the Novikov variables q = (q1, . . . , qr+1) ∈ (C∗)r+1 defined in Section 3.3. Recall that
qr+1 = Qn−1. We will be interested in the Laurent series expansion of the second structure
connection of Bl(X) with respect to Q at Q = 0, while the remaining parameters q1, . . . , qr
remain fixed. The main goal in this section is to determine the leading order terms of this
expansion.

4.1 Period vectors for the blowup

Let us denote by ρ̃ and ρ the operators of classical cup product multiplications by respec-
tively c1(T Bl(X)) and c1(TX). Let θ̃ and θ be the grading operators of the Frobenius structures
underlying the quantum cohomologies of respectively Bl(X) and X (see (2.10)). In the lemma
below, we will need the following notation. Suppose that A : C→ End(H) is an End(H)-valued
smooth function. Let m be the standard coordinate on C. We define right differential operator
on C, to be a formal expression of the form

L
(
m,
←−
∂ m

)
=

r∑
k=0

Bk(m)
←−
∂ k

m, (4.1)

where the coefficients Bk(m) ∈ End(H) depend smoothly on m. We define the action of L
on A by

A(m)L
(
m,
←−
∂ m

)
:=

r∑
k=0

∂km(A(m) ◦Bk(m)),

where ◦ is the composition operation in End(V ). Given two right differential operators L1

and L2, there exists a unique right differential operator L1 ◦ L2, such that,(
A(m)L1

(
m,
←−
∂ m

))
L2

(
m,
←−
∂ m

)
=: A(m)(L1 ◦ L2)

(
m,
←−
∂ m

)
.

We say that L1 ◦ L2 is the composition of L1 and L2. One can check that this operation is
associative and therefore, the set of all right differential operators of the form (4.1) has a structure
of an associative algebra acting from the right on the space of smooth End(H)-valued functions
on C.

Lemma 4.1.

(a) The following formula holds:

Ĩ(−m)(λ) := eρ̃∂λ∂m

(
λθ̃+m−1/2

Γ
(
θ̃ +m+ 1/2

)) =

(
λθ̃+m−1/2

Γ
(
θ̃ +m+ 1/2

)) eρ̃←−∂ m ,

where the first identity is just a definition and
←−
∂ m denotes the right action by a derivation

with respect to m.
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(b) The following identity holds:

Ĩ(−m)
(
Q−1λ

)
=

(
λθ̃+m−1/2

Γ
(
θ̃ +m+ 1/2

)) eQρ̃
←−
∂ mQ−(θ̃+m−1/2)Q−ρ̃.

Proof. (a) By definition

eρ̃∂λ∂m

(
λθ̃+m−1/2

Γ
(
θ̃ +m+ 1/2

)) =

∞∑
k=0

1

k!
ρ̃k∂km

(
λθ̃+m−k−1/2

Γ
(
θ̃ +m− k + 1/2

))

=
∞∑
k=0

1

k!
∂km

(
λθ̃+m−1/2

Γ
(
θ̃ +m+ 1/2

)) ρ̃k,
where we used that ρ̃θ̃ =

(
θ̃+1

)
ρ̃. The above expression is by definition the right action of eρ̃

←−
∂ m

on λθ̃+m−1/2/Γ
(
θ̃ +m+ 1/2

)
.

(b) Using the formula from part (a), we get that the identity that we have to prove is
equivalent to the following conjugation formulas:

Qθ̃+mQ−Qρ̃Q−(θ̃+m) = Q−ρ̃,

and

Q−(θ̃+m)eρ̃
←−
∂ mQθ̃+m = Q−Qρ̃eQρ̃

←−
∂ m . (4.2)

The first identity follows easily from
[
θ̃, ρ̃
]
= −ρ̃. Let us prove (4.2). To begin with, note

that this is an identity between operators acting from the right. We will use the following fact.
Suppose that we have an associative algebra A acting on a vector space V from the right, that
is, v · (AB) = (v ·A) ·B for all A,B ∈ A and v ∈ V . Then the following formula holds:

v ·
(
eABe−A

)
= v ·

(
eadA(B)

)
, (4.3)

where adA(X) = AX − XA. In our case, A is the algebra of differential operators in m with
coefficients in End(H∗(Bl(X))), that is, as a vector space A consists of elements of the form

k0∑
k=0

ck(m)
←−
∂ k

m, ck(m) ∈ End(H∗(Bl(X))),

and the product in A is determined by the natural composition of endomorphisms of H∗(Bl(X))
and the commutation relation

[
m,
←−
∂ m

]
= 1. Let us apply the conjugation formula (4.3) to (4.2).

The main difficulty is to prove that

adk
θ̃+m

(
ρ̃
←−
∂ m

)
= (−1)kρ̃

←−
∂ m + (−1)k−1kρ̃, (4.4)

for all k ≥ 0. We argue by induction on k. For k = 0, the identity is true. Suppose that it is
true for k. Then we get[

θ̃ +m, (−1)kρ̃
←−
∂ m + (−1)k−1kρ̃

]
= (−1)k

(
− ρ̃
←−
∂ m + ρ̃

)
+ (−1)kkρ̃

= (−1)k+1ρ̃
←−
∂ m + (−1)k(k + 1)ρ̃,

where we used that
[
θ̃, ρ̃
]
= −ρ̃ and

[
m,
←−
∂ m

]
= 1. Using the conjugation formula (4.3) and

formula (4.4), we get that the left-hand side of (4.2) is equal to

exp

( ∞∑
k=0

1

k!
(− logQ)k

(
(−1)kρ̃

←−
∂ m + (−1)k−1kρ̃

))
= eQρ̃

←−
∂ me−(logQ)Qρ̃,

which is the same as the right-hand side of (4.2). ■
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Put q = (q1, . . . , qr) and let S(t, q,Q, z) be the calibration of the blowup Bl(X). Let us
recall the fundamental solution of the second structure connection for the quantum cohomology
of Bl(X)

I(−m)(t, q,Q, λ) =

∞∑
k=0

(−1)kSk(t, q,Q)∂kλ Ĩ
(−m)(λ).

Recalling Lemma 4.1, we get

I(−m)
(
t, q,Q,Q−1λ

)
Qρ̃Qθ̃+m−1/2

=

∞∑
i,l=0

(−1)lQlSl(t, q,Q)
∂im
i!

(
λθ̃+m−l−1/2

Γ
(
θ̃ +m− l + 1/2

)(Qρ̃)i) . (4.5)

Let us extend the Hodge grading operator θ of X to H∗(Bl(X)) in such a way that θ
(
ek
)
= n

2 e
k

for all 1 ≤ k ≤ n− 1. Let ∆ := θ̃ − θ, then in the basis

ϕi, 1 ≤ i ≤ N, ek, 1 ≤ k ≤ n− 1 (4.6)

of H∗(Bl(X)), the operator ∆ takes the form

∆(ϕi) = 0, 1 ≤ i ≤ N, ∆
(
ek
)
= −kek, 1 ≤ k ≤ n− 1.

Let us point out that the basis of H∗(Bl(X)) dual to the basis (4.6) with respect to the Poincaré
pairing is given by ϕi (1 ≤ i ≤ N), ek (1 ≤ k ≤ n−1), where ϕi (1 ≤ i ≤ N) is a basis of H∗(X)
dual to ϕi (1 ≤ i ≤ N) with respect to the Poincaré pairing (on X) and ek := (−1)n−1en−k.

Lemma 4.2. Suppose that t =
∑N

b=2 tbϕb ∈ H∗(X) and that l ≥ 1. Then

Q∆Qk+l
(
Sl(t, q,Q)ek

)
=

n−1∑
k′′=1

∞∑
d=0

〈
ψl−1ek, ek

′′〉
0,2,dℓ

ek′′ +
〈
ψl−1ek, 1

〉
0,2,dℓ

Qn(−1)n−1ϕN

+O
(
QH̃(E) +Qn+1H(X)

)
,

where the O-term denotes a power series in Q with values in H(Bl(X)) whose H̃(E)-component
involves only positive powers of Q and its H(X)-component involves only powers of Q of de-
gree ≥ n+ 1.

Proof. Recall that every β̃ ∈ Eff(Bl(X)) has the form β̃ = β + dℓ for some β ∈ Eff(X) and
d ∈ Z. Recalling the definition of the calibration, we get

Q∆Qk+l
(
Sl(t, q,Q)ek

)
= Q∆Qk+l

∑
β̃∈Eff(Bl(X))

(
N∑
b=1

〈
ekψl−1, ϕb

〉
0,2,β+dℓ

(t)ϕb

+

n−1∑
k′′=1

〈
ekψl−1, ek

′′〉
0,2,β+dℓ

(t)ek′′

)
qβQ−d(n−1).

Let us examine first the correlator

〈
ekψl−1, ϕb

〉
0,2,β+dℓ

(t) =

∞∑
r=0

N∑
b1,...,br=2

〈
ekψl−1, ϕb, ϕb1 , . . . , ϕbr

〉
0,2+r,β+dℓ

tb1 · · · tbr .

There are 3 cases.
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Case 1: if β = 0. Then the correlator is a twisted GW invariant of E and since ϕb|E = 0
for 2 ≤ b ≤ N , we may assume that b = 1, that is, ϕb = ϕ1 = 1. For similar reasons, we
may assume that r = 0. The dimension of the virtual fundamental cycle ofM0,2(Bl(X), dℓ) is
(d+ 1)(n− 1). Therefore, k + l − 1 = (d+ 1)(n− 1) or equivalently k + l − d(n− 1) = n, that
is, in this case the correlator coincides with the term of order Qn on the right-hand side of the
formula that we want to prove.

Case 2: if β ̸= 0 and the correlator does not satisfy condition (ii) in Gathmann’s vanishing
theorem. Then d ≤ 0 and k − 1 ≤ 0, that is, k = 1. If d ≤ −1, then k + l − d(n − 1) ≥
k + l + n − 1 ≥ n + 1, so the correlator contributes to the terms of order O

(
Qn+1H(X)

)
. It

remains to consider the case when k = 1 and d = 0. We will prove that if the correlator〈
eψl−1, ϕb

〉
0,2,β

(t) is non-zero, then l ≥ n.
First, by using the divisor equation we may reduce to the cases when 2 ≤ b ≤ N . Indeed,

if b = 1 then by using the string equation
〈
eψl−1, 1

〉
0,2,β

(t) =
〈
eψl−2〉

0,1,β
(t). Since β ̸= 0,

there exists a divisor class p ∈ H2(X), such that,
∫
β p ̸= 0. Recalling the divisor equation, we

get
〈
eψl−2, p

〉
0,2,β

=
∫
β p
〈
eψl−2〉

0,1,β
, that is, the correlator for b = 1 can be expressed in terms

of correlators involving only 2 ≤ b ≤ N .
Suppose now that 2 ≤ b ≤ N . Recalling the divisor equation, we get〈

eψl−1, ϕb
〉
0,2,β

(t) =
〈
e, ψl, ϕb

〉
0,3,β

(t),

which according to the topological recursion relations (TRR) can be written as

∑
β′+β′′=β

∑
d∈Z

n−1∑
j=1

〈
ψl−1, ej

〉
0,2,β′+dℓ

(t)⟨ej , e, ϕb⟩0,3,β′′−dℓ(t)

+
N∑
a=1

〈
ψl−1, ϕa

〉
0,2,β′+dℓ

(t)⟨ϕa, e, ϕb⟩0,3,β′′−dℓ(t)

)
.

Let us consider the two correlators that involve β′. If β′ = 0, then in both correlators d > 0 and
in the second correlator ϕa = 1. Since t|E = 0 we may assume that t = 0. By the dimension
formula, we get l − 1 + j = (d + 1)(n − 1) for the 1st correlator and l − 1 = (d + 1)(n − 1)
for the second correlator. In both cases, since d ≥ 1 and n ≥ 2, we have l ≥ n. Suppose
now that β′ ̸= 0 and that the 1st (resp. second) correlator does not satisfy condition (ii) in
Gathmann’s vanishing theorem, that is j = 1 and d ≤ 0. Note that for the correlators involving
β′′ we must have β′′ ̸= 0 because ϕb|E = 0 and d ̸= 0 due to the divisor equation for the
divisor class e. We get d < 0. Therefore, the correlator involving β′′ satisfies both conditions
(i) and (ii) in Gathmann’s vanishing theorem. Therefore, condition (iii) must fail, that is,
n − j − 1 ≥ (−d + 1)(n − 1) and 0 ≥ (−d + 1)(n − 1). Since −d ≥ 1, both inequalities lead to
a contradiction. It remains only the possibility that β′ ̸= 0 and that the correlators involving
β′ satisfy condition (ii) in Gathmann’s vanishing theorem. Then condition (iii) must fail, so
j − 1 + l − 1 ≥ (d + 1)(n − 1) and l − 1 ≥ (d + 1)(n − 1). If d ≥ 1, then these inequalities will
imply that l ≥ n + 1. If d = 0, then β′′ = 0, otherwise the correlator involving β′′ will be 0
by the divisor equation. But then the correlator becomes

∫
Bl(X) ej ∪ e ∪ ϕb which is 0 because

ϕb ∪ e = 0. Finally, if d ≤ −1, then, since ϕb|E = 0 we must have β′′ ̸= 0, so the correlator
involving β′′ satisfies conditions (i) and (ii) in Gathmann’s vanishing theorem. The 3rd condition
must fail, that is, n − j − 1 ≥ (−d + 1)(n − 1) and 0 ≥ (−d + 1)(n − 1). Both inequalities are
impossible and this completes the analysis in the second case.

Case 3: if β ̸= 0 and the correlator does satisfy condition (ii). Then condition (iii) in
Gathmann’s vanishing theorem does not hold, that is,

k − 1 ≥ (d+ 1)(n− 1)− l + 1 = d(n− 1) + n− l.
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This inequality is equivalent to k+ l− d(n− 1) ≥ n+1. We get that the correlators in this case
contribute to the terms of order O

(
Qn+1

)
.

Similarly, let us examine the correlators

〈
ekψl−1, ek

′′〉
0,2,β+dℓ

(t) =
∞∑
r=0

N∑
b1,...,br=2

〈
ekψl−1, ek

′′
, ϕb1 , . . . , ϕbr

〉
0,2+r,β+dℓ

tb1 · · · tbr .

Since ∆(ek′′) = −(n− k′′)ek′′ , we get that we have to prove that if the above correlator is non-
zero, then k + l − d(n− 1)− (n− k′′) ≥ 0 and that if the equality holds, then r = 0 and β = 0.
Again we will consider 3 cases.

Case 1: if β = 0. Just like above, r = 0 because we can identify the correlator with a twisted
GW invariant of the exceptional divisor and the restriction of ϕbi to E is 0. Using the dimension
formula for the virtual fundamental cycle, we get

k + l − 1 + k′′ = dim
[
M0,2(Bl(X), dℓ)

]virt
= n− 1 + (n− 1)d.

We get

k + l − d(n− 1)− (n− k′′) = k + l + k′′ − n− d(n− 1) = 0.

Cases 2: if β ̸= 0 and condition (ii) does not hold. Then d ≤ 0 and k − 1 + k′′ − 1 ≤ 0, that is,
k = k′′ = 1. If d ≤ −1, then

k + l − d(n− 1)− (n− k′′) ≥ k + l + n− 1− n+ k′′ = 1 + l ≥ 2.

The correlator contributes to the terms of order O
(
Q2
)
. Suppose that d = 0. The inser-

tion ek
′′
= e can be removed via the divisor equation, that is, the correlator in front of tb1 · · · tbr

takes the form〈
ekψl−1, ek

′′
, ϕb1 , . . . , ϕbr

〉
0,2+r,β

=
〈
e2ψl−2, ϕb1 , . . . , ϕbr

〉
0,1+r,β

.

The above correlator does satisfy condition (ii) of Proposition 3.4. Therefore, in order to have
a non-trivial contribution, condition (iii) in Gathmann’s vanishing theorem must fail, that is,
1 ≥ n− 1− l + 2 or equivalently l ≥ n. We get

k + l − d(n− 1)− (n− k′′) = 1 + l − (n− 1) = 2 + l − n ≥ 2 > 0,

so the equality that we need to prove holds.

Case 3: if β ̸= 0 and condition (ii) holds. In other words, conditions (i) and (ii) in Gathmann’s
vanishing theorem (see Proposition 3.4) hold for the correlators〈

ekψl−1, ek
′′
, ϕb1 , . . . , ϕbr

〉
0,2+r,β+dℓ

.

Again, in order to have a non-trivial contribution, condition (iii) must fail, so

k − 1 + k′′ − 1 ≥ (d+ 1)(n− 1)− l + 1 = d(n− 1) + n− l,

or equivalently k + l + k′′ ≥ 2 + n+ d(n− 1). We get

k + l − d(n− 1)− (n− k′′) = k + l + k′′ − n− d(n− 1) ≥ 2 > 0.

This completes the proof of the lemma. ■
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Note that

ρ̃iek = (c1(TX)− (n− 1)e)iek = (−n+ 1)iek+i,

and that θ̃
(
ek+i

)
=
(
n
2 − k − i

)
ek+i. Therefore, using formula (4.5) and Lemma 4.2, we get the

following proposition.

Proposition 4.3. The following formula holds:(
Q∆I(−m)

(
t, q,Q,Q−1λ

)
Qρ̃Qθ̃+m−1/2Q−∆

)
ek

=
∞∑

l,d=0

n−1−k∑
i=0

n−1∑
k′′=1

〈
ek+iψl−1, ek

′′〉
0,2,dℓ

ek′′(−∂λ)l
(−(n− 1)∂m)i

i!

(
λ

n−1
2

+m−k−i

Γ
(
n−1
2 +m− k − i+ 1

))

+
∞∑

l,d=0

n−1−k∑
i=0

〈
ek+iψl−1, 1

〉
0,2,dℓ

(−1)n−1QnϕN (−∂λ)l
(−(n− 1)∂m)i

i!

×

(
λ

n−1
2

+m−k−i

Γ
(
n−1
2 +m− k − i+ 1

))+O
(
QH̃(E) +Qn+1H(X)

)
,

where 1 ≤ k ≤ n− 1 and the notation involving O is the same as in Lemma 4.2.

Proposition 4.4. If 2 ≤ a ≤ N , then the following formula holds:

(
Q∆I(−m)

(
t, q,Q,Q−1λ

)
Qρ̃Qθ̃+m−1/2Q−∆

)
ϕa =

λθ+m−1/2

Γ(θ +m+ 1/2)
ϕa +O(Q).

Moreover, in the above expansion, the H(X)-component of the coefficient in front of Qm for
0 ≤ m ≤ n− 1 is a Laurent polynomial in λ1/2 (with coefficients in H(X)).

Proof. Using formula (4.5), we get that the left-hand side of the formula that we want to prove
is equal to

Q∆
∞∑

i,l=0

(−1)lQlSl(t, q,Q)
∂im
i!

(
λθ̃+m−l−1/2

Γ(θ̃ +m− l + 1/2)
(Qρ̃)i

)
ϕa.

Since ρ̃ϕa = ρϕa, the above formula takes the form

∞∑
l=0

∞∑
i=0

Q∆+l+iSl(t, q,Q)ρiϕa(−∂λ)l
∂im
i!

(
λ(n−1)/2+m−i−deg(ϕa)

Γ((n+ 1)/2 +m− i− deg(ϕa))

)
. (4.7)

Note that the term in the above double sum corresponding to l = i = 0 coincides with the leading
order term on the right-hand side of the formula that we have to prove. Therefore, recalling the
definition of the calibration, we get that we have to prove the following two statements. First,
if l + i > 0, then the following expression

N∑
b=1

〈
ρiϕaψ

l−1, ϕb
〉
0,2,β+dℓ

(t)ϕbQl+i−d(n−1) +

n−1∑
k=1

〈
ρiϕaψ

l−1, ek
〉
0,2,β+dℓ

(t)ekQ
k+l+i−d(n−1)−n

has order at least O(Q) for all β+dℓ ∈ Eff(Bl(X)). Second, there are only finitely many d and l,
such that, in the first sum the coefficient in front of Qm for 0 ≤ m ≤ n− 1 is non-zero. Let us
consider the correlators in the first sum.

Case 1: if β = 0. Then the correlator is a twisted GW invariant of the exceptional divisor E
and since ϕa|E = 0, we get that the correlator must be 0.
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Case 2: if β ̸= 0 and condition (ii) in Gathmann’s vanishing theorem does not hold.
Then d ≤ 0 and we get l + i − d(n − 1) ≥ l + i > 0. In order for the correlator to con-
tribute to the coefficient in front of Qm for some 0 ≤ m ≤ n− 1, we must have −1 ≤ d ≤ 0 and
0 ≤ l < n. Clearly, there are only finitely many d and l satisfying these inequalities.

Case 3: if β ̸= 0 and condition (ii) holds. Then condition (iii) in Gathmann’s vanishing
theorem must fail, that is, 0 ≥ (d+1)(n− 1)− l+1 or equivalently l− d(n− 1) ≥ n. The power
of Q is l + i− d(n− 1) ≥ n+ i. Therefore, the correlators satisfying the conditions of this case
contribute only to the coefficients in front of Qm with m ≥ n.

The argument for the correlators in the second sum is similar.
Case 1: if β = 0. Then the correlator is a twisted GW invariant of the exceptional divisor E

and since ϕa|E = 0, we get that the correlator must be 0.
Case 2: if β ̸= 0 and condition (ii) in Gathmann’s vanishing theorem does not hold. Then

d ≤ 0 and k = 1. The divisor equation implies that if d = 0, then the correlator vanishes.
Therefore, d ≤ −1. We get k + l + i− d(n− 1)− n = l + i− (d+ 1)(n− 1) ≥ l + i > 0.

Case 3: if β ̸= 0 and condition (ii) holds. Then condition (iii) in Gathmann’s vanishing
theorem must fail, that is, k− 1 ≥ (d+1)(n− 1)− l+1 or equivalently k+ l− d(n− 1) ≥ n+1.
The power of Q is k + l + i− d(n− 1)− n ≥ i+ 1 ≥ 1. ■

Proposition 4.5. The following formula holds:

(
Q∆I(−m)

(
t, q,Q,Q−1λ

)
Qρ̃Qθ̃+m−1/2Q−∆

)
ϕ1 =

λθ+m−1/2

Γ(θ +m+ 1/2)
ϕ1

+
∑
d,l≥0

n−1∑
i=0

n−1∑
k=1

〈
(−(n− 1)e)iψl−1, ek

〉
0,2,dℓ

ek(−∂λ)l
∂im
i!

(
λ(n−1)/2+m−i

Γ((n+ 1)/2 +m− i)

)
(4.8)

+

∞∑
l=1

∑
β∈Eff(X)

〈
ψl−1, e

〉
0,2,β

(t)e1q
βQl−n+1(−∂λ)l

(
λ(n−1)/2+m

Γ((n+ 1)/2 +m)

)
+O(Q), (4.9)

where ek = (−1)n−1en−k and the correlator〈
(−(n− 1)e)iψl−1, ek

〉
0,2,dℓ

=
〈
(−(n− 1)e)iψl, ek, 1

〉
0,3,dℓ

can be defined also for l = 0.

Proof. Note that if i > 0,then ρ̃i = ρi + (−(n− 1)e)i. Just like in the proof of Proposition 4.4,
we get that the left-hand side of the identity that we would like to prove is equal to the sum
of (4.7) with a = 1 and

∞∑
l=0

∞∑
i=1

Q∆+l+iSl(t, q,Q)(−(n− 1)e)i(−∂λ)l
∂im
i!

(
λ(n−1)/2+m−i

Γ((n+ 1)/2 +m− i)

)
. (4.10)

Let us discuss first the contribution of (4.7). The same argument as in the proof of Proposi-
tion 4.4 yields that if i > 0, then the corresponding terms in the sum have order at least O(Q).
If i = 0 and l = 0, then the corresponding term in the sum becomes λθ+m−1/2/Γ(θ +m+ 1/2)
which is precisely the first term on the right-hand side of the formula that we would like to
prove. Finally, we are left with the case i = 0 and l ≥ 1. By definition, Q∆+lSl(t, q,Q)ϕ1 is

∑
β+dℓ

N∑
b=1

〈
ψl−1, ϕb

〉
0,2,β+dℓ

(t)ϕbQl−d(n−1) +

n−1∑
k=1

〈
ψl−1, ek

〉
0,2,β+dℓ

(t)ekq
βQk+l−d(n−1)−n, (4.11)

where the first sum is over all effective curve classes β + dℓ ∈ Eff(Bl(X)). Let us consider the
following 3 cases for the correlators in (4.11).
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Case 1: if β = 0. we may assume that t = 0 because t|E = 0. The sum over b is non-zero
only if ϕb = 1, that is, b = 1. Recalling the formula for the dimension of the moduli space, we
get

l − 1 = −1 + n+ d(n− 1) ⇒ l − d(n− 1) = n.

Therefore, in this case the contribution has order O(Qn). The sum over k in (4.11) (when β = 0)
is independent ofQ because by matching the degree of the correlator insertion with the dimension
of the virtual fundamental cycle we get k+ l−1 = −1+n+d(n−1). Therefore, the contribution
to the sum (4.7) with a = 1 of the terms with i = 0, l ≥ 1, and degree β = 0 is

∞∑
l=1

∞∑
d=0

〈
ψl−1, ek

〉
0,2,dℓ

ek(−∂λ)l
(

λ(n−1)/2+m

Γ((n+ 1)/2 +m)

)
.

Note that the above sum coincides with the i = 0 component of (4.8).
Case 2: if β ̸= 0 and condition (ii) in Gathmann’s vanishing theorem does not hold. Since

d ≤ 0 and l ≥ 1 the sum over b has order at least O(Q). For the sum over k, only for k = 1
condition (ii) does not hold and if d ≤ −1 then the term has order at least O(Q). Therefore, only
the terms with k = 1 and d = 0 satisfy the conditions of this case and do not have order O(Q).
The corresponding contribution to the sum (4.7) with a = 1 becomes

∑
l≥1

〈
ψl−1, e

〉
0,2,β

(t)e1q
βQ1+l−n(−∂λ)l

(
λ(n−1)/2+m

Γ((n+ 1)/2 +m)

)
.

Note that the above sum coincides with the sum in (4.9).
Case 3: if β ̸= 0 and condition (ii) holds. Then condition (iii) does not hold. For the

correlators in the sum over b we get 0 ≥ (d+1)(n− 1)− l+1 = d(n− 1)+n− l. This inequality
implies that the sum over b has order O(Qn). Similarly, for the correlators in the sum over k,
we get

k − 1 ≥ (d+ 1)(n− 1)− l + 1 = d(n− 1) + n− l ⇒ k + l − d(n− 1)− n ≥ 1.

In other words, the sum over k has order at least O(Q).
This completes the analysis of the contributions from the sum (4.7) with a = 1. It remains

to analyze the contributions from the sum (4.10). This is done in a similar way. To begin with,
note that the sum of the terms with l = 0 is equal to

n∑
i=1

Q∆+i(−(n− 1)e)i(−∂λ)l
∂im
i!

(
λ(n−1)/2+m−i

Γ((n+ 1)/2 +m− i)

)
.

Note that only the term with i = n depends on Q, that is, it has order O(Qn). Therefore, up
to terms of order O(Q) the above sum coincides with the sum of the terms in (4.8) with l = 0
and i ≥ 1. Suppose that l > 0. By definition, Q∆+l+iSl(t, q,Q)ei is equal to

∑
β+dℓ

N∑
b=1

〈
eiψl−1, ϕb

〉
0,2,β+dℓ

(t)ϕbQl+i−d(n−1)

+

n−1∑
k=1

〈
eiψl−1, ek

〉
0,2,β+dℓ

(t)ekq
βQk+l+i−d(n−1)−n.

Let us consider the following 3 cases for the correlators in the above sum.
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Case 1: if β = 0. Again since t|E = 0, we may assume that t = 0. Let us consider first the
correlators in the sum over b. Since ϕb|E = 0 for b > 1, the only non-trivial contribution will come
from the term with b = 1. The dimension constraint now yields i+ l−1 = −1+n+d(n−1) and
hence l+i−d(n−1) = n. Therefore, the contribution to (4.10) has order O(Qn). Let us consider
now the correlators in the sum over k. The dimension constraint takes the form i+ l− 1 + k =
−1 + n+ d(n− 1) and hence k + l + i− d(n− 1)− n = 0. Therefore, the contribution of these
terms to the sum (4.10) is

∞∑
l=1

n−1∑
i,k=1

∞∑
d=0

〈
(−(n− 1)e)iψl−1, ek

〉
0,2,dℓ

ek(−∂λ)l
∂im
i!

(
λ(n−1)/2+m−i

Γ((n+ 1)/2 +m− i)

)
.

The above sum coincides with the sum of the terms in (4.8) with l ≥ 1 and i ≥ 1.

Note that at this point all terms in the formula that we would like to prove are already
matched with contributions from (4.7) and (4.10). It remains only to check that in the remaining
two cases the contributions have order O(Q).

Case 2: if β ̸= 0 and condition (ii) does not hold. For the sum over b, since d ≤ 0 and l ≥
1, the powers of Q are positive. For the sum over k, in addition to d ≤ 0, we also have
i− 1 + k − 1 = 0, that is, i = k = 1. If d ≤ −1, then the power of Q is positive. Suppose that
d = 0. Using the divisor equation we get

〈
eψl−1, e

〉
0,2,β

(t) =
〈
e2ψl−2〉

0,1,β
(t). The latter satisfies

both conditions (i) and (ii) of Gathmann’s vanishing theorem. In order for the correlator to be
non-zero, condition (iii) must fail 1 ≥ (d+ 1)(n− 1)− l + 2 = d(n− 1) + n− l + 1. The power
of Q becomes

k + l + i− d(n− 1)− n = 2 + l − d(n− 1)− n ≥ 2.

Case 3: if β ̸= 0 and condition (ii) holds. Then condition (iii) must fail. For the correlators in
the sum over b, we get i−1 ≥ (d+1)(n−1)− l+1 = d(n−1)+n− l. Therefore, the power of Q
is l+i−d(n−1) ≥ n+1. For the correlators in the sum over k, we get i−1+k−1 ≥ d(n−1)+n−l,
that is, the power of Q is k + l + i− d(n− 1)− n ≥ 2. ■

4.2 Quantum cohomology of the blowup

Let us recall the result of Bayer [3]. Suppose that t ∈ H̃∗(X) ⊂ H∗(Bl(X)), that is, t1 =
tN+1 = · · · = tN+n−1 = 0. Let us denote by Ω̃i(t, q,Q) (1 ≤ i ≤ N + n− 1) the linear operator
in H∗(Bl(X)) defined by quantum multiplication ϕi•t,q,Q for 1 ≤ i ≤ N and by quantum
multiplication by ek•t,q,Q for i = N + k, 1 ≤ k ≤ n − 1. Slightly abusing the notation let us

denote by the same letters Ω̃i the matrices of the corresponding linear operators with respect to
the basis ϕi (1 ≤ i ≤ N + n− 1), where recall that ϕN+k := ek (1 ≤ k ≤ n− 1). Note that the
matrix of ∆ is diagonal with diagonal entries 0, . . . , 0,−1,−2, . . . ,−n+ 1 (0 appears N times).
The main observation of Bayer (see [3, Section 3.4]) can be stated as follows.

Proposition 4.6. The matrices of the linear operators Ω̃i (1 ≤ i ≤ N + n− 1) with respect to
the basis Q−∆ϕi (1 ≤ i ≤ N + n− 1) have the following Laurent series expansions at Q = 0:

Q∆Ω̃i(t, q,Q)Q−∆ =

[
Ωi(t, q) +O

(
Qn−1) O(Qn)

O(1) δi,1 Idn−1+O(Q)

]
, 1 ≤ i ≤ N, (4.12)

where Idn−1 is the identity matrix of size (n− 1)× (n− 1) and

Q∆Ω̃N+a(t, q,Q)Q−∆ = Q−a
[
O(Qn) O(Qn)
O(1) ϵa +O

(
Q2
)] , 1 ≤ a ≤ n− 1, (4.13)
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where Ωi(t, q) is the matrix of the linear operator in H∗(X) defined by quantum multiplication
by ϕi•t,q with respect to the basis ϕi (1 ≤ i ≤ N) and ϵ is the following (n− 1)× (n− 1)-matrix:

ϵ =


0 0 · · · 0 (−1)n
1 0 · · · 0
...

...
. . .

...
0 0 · · · 0 0
0 0 · · · 1 0

 .

Proof. The proof is based on Gathmann’s vanishing theorem and it is very similar to the proof
of Lemma 4.2. Since the proofs of (4.12) and (4.13) are similar, let us prove only (4.13). We have

Q∆
(
ea •

(
Q−∆ek

))
=

∑
β̃=β+dℓ

 N∑
j=1

〈
ea, ek, ϕj

〉
0,3,β+dℓ

(t)ϕj

+

n−1∑
l=1

〈
ea, ek, el

〉
0,3,β+dℓ

(t)elQ−l

)
qβQk−d(n−1).

Let us examine the correlators in the sum over j, that is,〈
ea, ek, ϕj

〉
0,3,β+dℓ

(t)Qk−d(n−1).

There are 3 cases.
Case 1: if β = 0. The correlator is a twisted GW invariant of the exceptional divisor E. The

restriction ϕj |E is non-zero only if ϕj = 1, that is, j = N . Recalling the string equation, we get
that the correlator is non-zero only if ϕj = 1 and d = 0. Therefore, the contribution takes the
form ∫

Bl(X)
ea ∪ ek ∪ 1 ϕNQ

k = (−1)n−1Qn−aδa+k,n ϕN .

Case 2: if β ̸= 0 and condition (ii) in Gathmann’s vanishing theorem does not hold. Here
we have in mind the correlator

〈
ea, ek, ϕj

〉
0,3,β+dℓ

(t). Note that the weight of this correlator
is a− 1 + k − 1. If condition (ii) does not hold, then a − 1 + k − 1 ≤ 0 and d ≤ 0. Since
a, k ≥ 1, this case is possible only if a = k = 1. Moreover, if d = 0, then the correlator vanishes
by the divisor equation. Therefore, we may assume that d ≤ −1. The power of Q becomes
k−d(n−1) ≥ 1+n−1 = n, that is, the contribution in this case has order O(Qn) = O

(
Qn+1−a).

Case 3: if β ̸= 0 and condition (ii) holds. According to Gathmann’s vanishing theorem,
condition (iii) does not hold, that is,

a− 1 + k − 1 ≥ (d+ 1)(n− 1) = d(n− 1) + n− 1 ⇒ k − d(n− 1) ≥ n+ 1− a.

We get that the contribution in this case has order O
(
Qn+1−a).

Combining the results of the 3 cases, we get that the sum over j has the form

Q−a
(
(−1)n−1δa+k,nQ

nϕN +O
(
Qn+1

))
.

Let us examine the correlators in the sum over l. Just like above, there are 3 cases.
Case 1: if β = 0. The correlator

〈
ea, ek, el

〉
0,3,dℓ

(t) can be computed explicitly. Indeed,
such a correlator is a twisted GW invariant of the exceptional divisor, so it is independent
of t ∈ H∗(X), that is, we may substitute t = 0. Moreover, since dℓ must be an effective curve
class in E, we have d ≥ 0. Recall that el = (−1)n−1en−l and note that the dimension of the
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virtual fundamental cycle ofM0,3(Bl(X), dℓ) is d(n − 1) + n. Therefore, a + k − l = d(n − 1).
We conclude that d = 0 or d = 1, that is,

〈
ea, ek, el

〉
0,3,dℓ

(t) =


(−1)n if d = 1 and l = a+ k − n+ 1,

1 if d = 0 and l = a+ k,

0 otherwise.

The contribution to the sum over l becomes{
(−1)nea+k−n+1Q−a if a+ k > n− 1,

ea+kQ−a if a+ k ≤ n− 1.
(4.14)

Note that the matrix ϵa has entries

ϵaij =


(−1)n if j = i+ n− 1− a,
1 if i = j + a,

0 otherwise.

Comparing with formula (4.14), we get that the contribution in this case to formula (4.13)
coincides with the matrix Q−aϵa.

Case 2: if β ̸= 0 and condition (ii) does not hold. Then d ≤ 0 and a−1+k−1+n− l−1 ≤ 0.
Since a, k, n− l ≥ 1, this case is possible only if a = k = 1 and l = n − 1. Since β ̸= 0,
the divisor equation implies that d ̸= 0, that is, d ≤ −1. In other words, if condition (ii) in
Gathmann’s vanishing theorem does not hold, then the power of Q, must be k − l− d(n− 1) ≥
1− (n− 1) + n− 1 = 1 = −a+ 2.

Case 3: if β ̸= 0 and condition (ii) holds. Then condition (iii) must fail, that is, a− 1 + k −
1 + n− l − 1 ≥ (d+ 1)(n− 1) = d(n− 1) + n− 1, or equivalently k − l − d(n− 1) ≥ −a+ 2.

Combining the results of these 3 cases, we get that the contribution of the sum over l matches
the (2,2)-block of the matrix on the right-hand side in formula (4.13) with the factor Q−a

inserted.
In order to complete the argument, we have to repeat the above discussion by replacing ek

with ϕi (1 ≤ i ≤ N), that is, we have to determine the contribution to the right-hand side
of (4.13) of the following expression:

Q∆
(
ea •

(
Q−∆ϕi

))
=

∑
β̃=β+dℓ

 N∑
j=1

〈
ea, ϕi, ϕ

j
〉
0,3,β+dℓ

(t)ϕj +

n−1∑
l=1

〈
ea, ϕi, el

〉
0,3,β+dℓ

(t)elQ−l

 qβQ−d(n−1).

First, let us determine the contribution of the correlators in the sum over j.
Case 1: if β = 0. The correlator could be non-zero only if ϕj = 1 and d = 0. In the latter

case, since
∫
Bl(X) e

a∪ϕi∪1 = 0, we get that the correlator still vanishes. There is no contribution
in this case.

Case 2: if β ̸= 0 and condition (ii) does not hold. Then d ≤ 0 and the weight a− 1 ≤ 0, that
is, a = 1. Due to divisor equation, d ̸= 0, so d ≤ −1 and −d(n − 1) ≥ n − 1 = n − a. We get
that the contribution in this case has order O

(
Qn−1).

Case 3: if β ̸= 0 and condition (ii) does hold. Then condition (iii) does not hold, so
a− 1 ≥ (d+ 1)(n− 1) and −d(n − 1) ≥ n − a. We get that the contribution in this case is
still of order O(Qn−a).

Combining the results of the 3 cases, we get that the order of the elements in the (1,1)-block
of the matrix Q∆Ω̃N+aQ

−∆ is O(Qn−a), that is, the same as in formula (4.13).
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Finally, it remains to determine the contribution of the correlators in the sum over l.
Case 1: if β = 0. The correlator could be non-zero only if ϕi = 1, that is, i = 1 and d = 0.

We get that the contribution in this case is δi,1e
aQ−a.

Case 2: if β ̸= 0 and condition (ii) does not hold. Then d ≤ 0 and the weight a − 1 +
n − l − 1 ≤ 0, that is, a = n − l = 1. Due to divisor equation, d ̸= 0, so d ≤ −1 and
−l − d(n− 1) ≥ −l + n− 1 = 0 = −a+ 1. The contribution in this case has order O

(
Q−a+1

)
.

Case 3: if β ̸= 0 and condition (ii) does hold. Then condition (iii) must fails. We get

a− 1 + n− l − 1 ≥ (d+ 1)(n− 1) ⇒ −l − d(n− 1) ≥ −a+ 1.

The contribution in this case also has order O
(
Q−a+1

)
.

Combining the results in the 3 cases we get that the elements in the (2,1)-block of the ma-
trix Q∆Ω̃N+aQ

−∆ have the form Q−a(Ea,1+O(Q)), where Ea,1 denotes the matrix whose (a, 1)-
entry is 1 and the remaining entries are 0. ■

5 The exceptional component of a reflection vector

Suppose that α ∈ H∗(Bl(X)) is a reflection vector. Let us decompose α = αe + αb, where
αe ∈ H̃∗(E) and αb ∈ H∗(X). We will refer to αe and αb as respectively the exceptional and
the base components of α. Using Proposition 4.3, we would like to classify the exceptional
components of the reflection vectors.

5.1 Dependence on the Novikov variables

Since the quantum cohomology is a Frobenius manifold depending on the parameters q :=
(q1, . . . , qr) and qr+1 := Qn−1, the reflection vectors depend on qi too. We claim that if α is
a reflection vector, then

α = q−p11 · · · q−prr q−er+1β, (5.1)

where β ∈ H∗(Bl(X)) is independent of qi (1 ≤ i ≤ r+1). To proof this fact, we will make use of
the divisor equation. Suppose that the basis of divisor classes is part of the basis {ϕi}1≤i≤N+n−1,
such that, pi = ϕi+1 for 1 ≤ i ≤ r and pr+1 = e = ϕN+1. Let τi (1 ≤ i ≤ r + 1) be the
linear coordinates corresponding to the divisor classes pi, that is, τi := ti+1 for 1 ≤ i ≤ r
and τr+1 = tN+1. Using the divisor equation we get that the calibration satisfies the following
differential equations:

z
∂

∂τi
S(t, q,Q, z) = pi • S(t, q,Q, z),

zqi
∂

∂qi
S(t, q,Q, z) = z

∂

∂τi
S(t, q,Q, z)− S(t, q,Q, z)pi ∪ .

Therefore,

S(t, q,Q, z) = T (t, q,Q, z)e
∑r+1

i=1 τipi∪/z,

where for fixed z the operator series T (t, q,Q, z) is a function on the variables

t1, q1e
t2 , . . . , qre

tr+1 , tr+2, . . . , tN , qr+1e
tN+1 , tN+2, . . . , tN+n−1. (5.2)

As we already pointed out before (see Section 2.5), due to the divisor equation, the operators
of quantum multiplication ϕi•t,q,Q are represented by matrices whose entries are functions in
the variables (2.5) too. Since the canonical coordinates ui(t, q,Q) are eigenvalues of E•t,q,Q, it
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follows that they have the same property. Moreover, using the chain rule, we get that the partial
derivatives

∂uj

∂ta
are also functions in (5.2). On the other hand, if α is a reflection vector, then

the Laurent series expansion of I
(−m)
α (t, q,Q, λ) at a point λ = ui(t, q,Q) has coefficients that

are rational functions in the canonical coordinates uj(t, q,Q) and their partial derivatives
∂uj

∂ta
(see Section 2.3). Therefore,(

∂

∂τi
− qi

∂

∂qi

)
I(−m)
α (t, q,Q, λ) = 0. (5.3)

By definition,

I(−m)(t, q,Q, λ) = S
(
t, q,Q,−∂−1λ

)
Ĩ−m(λ) = T

(
t, q,Q,−∂−1λ

)
e−

∑r+1
i=1 τipi∪∂λ Ĩ(−m)(λ)

= T
(
t, q,Q,−∂−1λ

)
Ĩ−m(λ)e−

∑r+1
i=1 τipi ,

where for the last equality we used the following relation (see also the proof of Lemma 4.1 (a)):

−p ∪ ∂λ
λθ+α−1

Γ(θ + α)
=

λθ+α−1

Γ(θ + α)
(−p).

Since I
(−m)
α (t, q,Q, λ) = I(−m)(t, q,Q, λ)α, from equation (5.3) we get

qi
∂α

∂qi
+ pi ∪ α = 0, ∀1 ≤ i ≤ r + 1.

Our claim that the reflection vector has the form (5.1) follows.

5.2 Canonical coordinates

We would like to determine the dependence of the canonical coordinates ui(t, q,Q) (1 ≤ i ≤
N + n− 1) on Q, where the parameter t ∈ H̃(X), that is, t1 = tN+1 = · · · = tN+n−1 = 0. Using
the identity ui = Ẽ(ui), we get

ui(t, q,Q) =
N∑
a=2

(1− deg ϕa)ta
∂ui
∂ta

(t, q,Q) +
r∑

j=1

ρj
∂ui
∂τj

(t, q,Q)− (n− 1)
∂ui
∂tN+1

(t, q,Q),

where ρj are the coefficients in the decomposition c1(TX) =
∑N

j=1 ρjpj and τj = tj+1. The above
formula allows us to reduce the problem to investigating the dependence on Q of the partial
derivatives ∂ui

∂tj
(1 ≤ i ≤ N + n− 1, 1 ≤ j ≤ N + 1). The advantage now is that the eigenvalues

of the operator Ω̃j(t, q,Q) = ϕj•t,q,Q of quantum multiplication by ϕj are precisely ∂ui
∂tj

(1 ≤ i ≤
N + n− 1).

Lemma 5.1. Suppose that U(Q) is a square matrix of size k × k whose entries are functions
holomorphic at Q = 0.

(a) There exists an integer b > 0, such that, every eigenvalue of U(Q) has an expansion of the
form λ0 +

∑∞
i=1 λiQ

i/b.

(b) If λ0 is an eigenvalue of U(0) of multiplicity 1, then U(Q) has a unique eigenvalue of
multiplicity one of the form λ0 +

∑∞
i=1 λiQ

i.

Proof. The eigenvalues are roots of the characteristic polynomial det(λ−U(Q)). This is a monic
polynomial in λ of degree k with coefficients in C{Q} — the ring of convergent power se-
ries in Q. Therefore, in order to prove (a), it is sufficient to prove the following statement.
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Let f(Q,λ) ∈ C{Q}[λ] be a monic polynomial. Then the roots of f(Q,λ) have the expansion
stated in the lemma. Let us decompose

f(0, λ) = (λ− w1)
b1 · · · (λ− ws)

bs ,

where wi ̸= wj for i ̸= j. Recalling Hensel’s lemma (see [22, Chapter 2, Section 2]), we
get that f(Q,λ) = f1(Q,λ) · · · fr(Q,λ), where fi(Q,λ) ∈ C{Q}[λ] is a monic polynomials of
degree bi, such that, fi(0, λ) = (λ − wi)

bi . Note that if bi = 1 for some i, then the unique zero
of fi(Q,λ) = 0 is a holomorphic at Q = 0 and its value at Q = 0 is wi. Therefore, part (b) is an
elementary consequence of Hensel’s lemma. If s > 1, then the lemma follows from the inductive
assumption. Suppose that s = 1, that is,

f(Q,λ) = λk + a1(Q)λk−1 + · · ·+ ak(Q),

where ai(0) = 0. We may assume that the sub-leading coefficient a1(Q) = 0. Indeed, using
the substitution λ 7→ λ − a1(Q)/k we can transform the polynomial to one for which the sub-
leading coefficient is 0. The roots of the two polynomials are related by a shift of a1(Q)/k, so it is
sufficient to prove our claim for one of them. Let ord(ai) be the order of vanishing of ai at Q = 0.
If ai(Q) = 0, then we define the order of vanishing to be +∞. Put ν := min1≤i≤k

ord(ai)
i .

Substituting λ = Qνµ in the equation f(Q,λ) = 0 and dividing by Qνk, we get

µk +

k∑
i=2

ai(Q)Q−νiµk−i = 0.

Since ord(ai) ≥ νi with equality for at leats one i, we get that the left-hand side of the above
equation is a monic polynomial g

(
Q1/b, µ

)
in C

{
Q1/b

}
[µ] for some integer b > 0. Note that g(0, µ)

has at least two different zeroes because its sub-leading coefficient is 0. Therefore, just like above,
we can use Hensel’s lemma to reduce the proof to a case in which the inductive assumption can
be applied. This completes the proof. ■

Proposition 5.2. Let uj(t, q,Q) (1 ≤ j ≤ N + n − 1) be the canonical coordinates of the

quantum cohomology of Bl(X), where the parameter t ∈ H̃(X). After renumbering, the canonical
coordinates split into two groups

uj(t, q,Q) ∈ C{Q}, 1 ≤ j ≤ N,

and

uj(t, q,Q) = −(n− 1)vkQ
−1 +O(1), j = N + k, 1 ≤ k ≤ n− 1,

where vk (1 ≤ k ≤ n− 1) are the solutions of the equation λn−1 = (−1)n.

Proof. Let us apply the above lemma to the matrix of the linear operator

N∑
a=2

(1− deg ϕa)taΩ̃a(t, q,Q) +

r∑
j=1

ρjΩ̃j+1(t, q,Q) +QΩ̃N+1(t, q,Q) (5.4)

with respect to the basis Q−∆ϕi (1 ≤ i ≤ N +n− 1). Recalling Proposition 4.6, we get that the
entries of the matrix of the operator (5.4) are holomorphic at Q = 0 and that its specialization
to Q = 0 has the form[

E•t,q 0
∗ ϵ

]
.
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The eigenvalues of the above matrix are the canonical coordinates uXi (t, q) (1 ≤ i ≤ N) of the
quantum cohomology of X and the solutions vk (1 ≤ k ≤ n− 1) of the equation λn−1 = (−1)n.
Note that for a generic choice of t the eigenvalues are pairwise distinct. On the other hand, the
canonical vector fields ∂

∂uj
(1 ≤ j ≤ N + n − 1) form an eigenbasis for the operator (5.4). Let

us enumerate the canonical coordinates in such a way that the eigenvalues corresponding to ∂
∂uj

for 1 ≤ j ≤ N and j = N+k with 1 ≤ k ≤ n−1 are respectively uXj (t, q)+O(Q) and vk+O(Q).
Recall that the eigenvalues of the operators Ω̃a(t, q,Q) are

∂uj

∂ta
(t, q,Q) (1 ≤ j ≤ N + n − 1).

Recalling Lemma 5.1 (b), we get that the functions

E(uj) +Q
∂uj
∂tN+1

, 1 ≤ j ≤ N + n− 1

are holomorphic at Q = 0, where E :=
∑N

a=2(1−deg(ϕa))ta∂/∂ta+
∑r

j=1 ρj∂/∂tj+1. Moreover,
the restriction to Q = 0 satisfies(

E(uj) +Q
∂uj
∂tN+1

)∣∣∣∣
Q=0

=

{
uXj (t, q) if 1 ≤ j ≤ N,
vk if j = N + k.

On the other hand, note that E(uj) are the eigenvalues of the matrix

N∑
a=2

(1− deg ϕa)taΩ̃a(t, q,Q) +
r∑

j=1

ρjΩ̃j+1(t, q,Q)

and that the restriction of the above matrix at Q = 0 is[
E•t,q 0
∗ 0

]
.

Recalling Lemma 5.1, we get thatN of the eigenvalues E(uj) (1 ≤ j ≤ N+n−1) are holomorphic
at Q = 0 and have the form uXi (t, q) + O(Q) (1 ≤ i ≤ N), while the remaining n − 1 ones
have order O(Qα) for some rational number α > 0. Similarly, by applying Lemma 5.1 to
the matrix QΩ̃N+1, we get that its eigenvalues Q

∂uj

∂tN+1
split into two groups. The first group

consist of n − 1 functions holomorphic at Q = 0 with an expansion of the form vk + O(Q),
while the second group consist of N functions that have an expansion in possibly fractional
powers of Q of order O

(
Qβ
)
for some β > 0. Let (t, q) be generic, such that, the canonical

coordinates uXi (t, q) (1 ≤ i ≤ N) are pairwise distinct and non-zero. Then for every 1 ≤
j ≤ N + n − 1, the sum E(uj) +Q

∂uj

∂tN+1
̸= 0. Therefore, the two numbers E(uj) and Q

∂uj

∂tN+1

can not be vanishing at Q = 0, that is, either E(uj) is holomorphic at Q = 0 of the form
uXi (t, q) + O(Q) or Q

∂uj

∂tN+1
is holomorphic at Q = 0 of the form vk + O(Q). In the first case,

since E(uj) is holomorphic at Q = 0 and the sum E(uj) +Q
∂uj

∂tN+1
is also holomorphic at Q = 0,

we get that Q
∂uj

∂tN+1
is holomorphic at Q = 0. Similarly, the holomorphicity of Q

∂uj

∂tN+1
implies

that E(uj) is holomorphic. Therefore, E(uj) and Q
∂uj

∂tN+1
are holomorphic at Q = 0 for all j. In

particular, the numbers α and β must be integral. Note that since E(uj) and Q
∂uj

∂tN+1
can not

vanish simultaneously at Q = 0, we get that for every 1 ≤ j ≤ N + n− 1 either

E(uj) = uXi (t, q) +O(Q), Q
∂uj
∂tN+1

= O(Q)

for some i or

E(uj) = O(Q), Q
∂uj
∂tN+1

= vk +O(Q)
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for some k. In the first case, we will get that

uj(t, q,Q) = E(uj)− (n− 1)
∂uj
∂tN+1

∈ C{Q},

while in the second case

uj(t, q,Q) = E(uj)− (n− 1)
∂uj
∂tN+1

= −(n− 1)vkQ
−1 +O(1). ■

5.3 Twisted periods of Pn−1

Let us recall the reduced cohomology H̃(E) of the exceptional divisor. It has a basis given by ei

(1 ≤ i ≤ n− 1). The Poincaré pairing on H(Bl(X)) induces a non-degenerate pairing on H̃(E):(
ei, ej

)
= (−1)n−1δi+j,n, 1 ≤ i, j ≤ n− 1.

The twisted periods will be multi-valued analytic functions with values in H̃(E). Let us define
the following linear operators on H̃(E):

twθ
(
ei
)
:=
(n
2
− i
)
ei, twρ

(
ei
)
:=

{
−(n− 1)ei+1 if 1 ≤ i < n− 1,

0 if i = n− 1.

Let us define first the calibrated twisted periods:

tw
Ĩ
(−m)
β (λ) = e

twρ∂λ∂m

(
λ

twθ+m−1/2

Γ
(
twθ +m+ 1/2

))β, β ∈ H̃(E),

and the twisted calibration

twS(Q, z) =

∞∑
k=0

twSk(Q)z−k ∈ End
(
H̃(E)

)[[
z−1
]]
,

where twS0(Q) = 1 and

(
twSk(Q)ei, ej

)
=
∞∑
d=0

〈
eiψk−1, ej

〉
0,2,dℓ

Q−d(n−1), 1 ≤ i, j ≤ n− 1.

Note that in the above sum only one value of d contributes, because the degree of the cohomology
class in the correlator, that is, k − 1 + i + j must be equal to the dimension of the virtual
fundamental cycle ofM0,2(Bl(X), dℓ) which is (n−1)(d+1) and we get d(n−1) = k+ i+ j−n.
The twisted periods are defined by

twI
(−m)
β (Q,λ) :=

∞∑
l=0

twSl(Q)(−∂λ)l
tw
Ĩ
(−m)
β (λ), β ∈ H̃(E).

The twisted periods satisfy a system of ODEs with respect to Q and λ. Let us derive these
differential equations.

Lemma 5.3. We have(
λ− twρ

)
∂λ

tw
Ĩ
(−m)
β (λ) =

(
twθ +m− 1

2

)
tw
Ĩ
(−m)
β (λ).

The proof is straightforward and it is left as an exercise.
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Lemma 5.4. We have

Q∂Q
twSl +

twθtwSl − twSl
twθ = −ltwSl.

Proof. Let us apply the operator on the left-hand side to ei and compute the pairing with ej

for an arbitrary 1 ≤ i, j ≤ n− 1. We get

Q∂Q
(
twSle

i, ej
)
+
(
twθtwSle

i, ej
)
−
(
twSl

twθei, ej
)
.

Since twθei =
(
n
2 − i

)
ei and twθ is skew-symmetric with respect to the pairing ( , ), the above

expression becomes

Q∂Q
(
twSle

i, ej
)
− (n− i− j)

(
twSle

i, ej
)
.

We saw above that the expression
(
twSle

i, ej
)
is proportional to Q−d(n−1) where d(n − 1) =

l + i+ j − n. Therefore, the above expression becomes −l
(
twSle

i, ej
)
. ■

In order to state the next result we need to introduce the linear operator

e•tw : H̃(E)→ H̃(E), ei 7→ e •tw ei,

where the quantum product is defined by(
e •tw ei, ej

)
=
∞∑
d=0

〈
e, ei, ej

〉
0,3,dℓ

Q−d(n−1).

For dimensional reasons, that is, 1 + i + j = n + d(n − 1), we get that the contributions to
the quantum product could be non-trivial only in degree d = 0 and d = 1. Recalling our
computations from Section 3.4, we get the following formulas:

e •tw ei =

{
ei+1 if 1 ≤ i ≤ n− 2,

(−1)nQ−(n−1)e if i = n− 1.

In other words, the matrix of e•tw with respect to the basis e, e2, . . . , en−1 is

e•tw =


0 0 · · · 0 (−1)nQ−(n−1)
1 0 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 .
Lemma 5.5. We have

Q∂Q
twSl = (n− 1)e •tw twSl−1 +

twSl−1
twρ, ∀l ≥ 1.

Proof. The lemma is an easy consequence of the divisor equation and the topological recursion
relations for the GW invariants of the blowup Bl(X). We have, by the divisor equation,〈

e, eiψl, ej
〉
0,3,dℓ

= −d
〈
eiψl, ej

〉
0,2,dℓ

+
〈
e ∪ eiψl−1, ej

〉
0,3,dℓ

.

The left-hand side, according to the topological recursion relations is equal to∑
d′+d′′=d

n−1∑
k=1

〈
eiψl−1, ek

〉
0,2,d′ℓ

〈
ek, e, ej

〉
0,3,d′′ℓ

.

Multiplying the above identity by (n− 1)Q−d(n−1) and summing over all d ≥ 0, we get(
Sle

i, (n− 1)e •tw ej
)
= Q∂Q

(
Sl+1e

i, ej
)
+
(
Sl(n− 1)e ∪ ei, ej

)
.

Note that the above expression is 0 for i = n − 1 because en = (−1)n−1ϕN is a cohomol-
ogy class on Bl(X) whose restriction to the exceptional divisor E is 0. Therefore, we may
replace (n− 1)e ∪ ei with −twρ(ei). The lemma follows. ■
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Using Lemmas 5.3, 5.4 and 5.5, we get that the twisted periods satisfy the following system
of differential equations

(λ+ (n− 1)e•tw)∂λ twI(−m)
α (Q,λ) =

(
twθ +m− 1

2

)
twI(−m)

α (Q,λ), (5.5)

Q∂Q
twI(−m)

α (Q,λ) = −(n− 1)e •tw ∂λ twI(−m)
α (Q,λ), (5.6)

where α = Q
twρβ with β ∈ H̃(E) independent of Q and λ. Note that the determinant

det(λ+ (n− 1)e•tw) = λn−1 +
(
(n− 1)Q−1

)n−1
.

We get that the twisted periods are multivalued analytic functions on the complement of the
hypersurface in C∗ × C defined by the equation (Qλ)n−1 + (n− 1)n−1 = 0.

5.4 Periods of Pn−2

We would like to compute the monodromy of the system of differential equations (5.5)–(5.6).
We will do this by identifying the twisted periods with the periods of Pn−2. To begin with, let us
recall the definition of the periods of Pn−2. We have H∗

(
Pn−2) = C[p]/pn−1, where p = c1(O(1))

is the hyperplane class. We have an isomorphism of vector spaces

H̃(E) ∼= H
(
Pn−2), ei 7→ pi−1.

Note that under this isomorphism twθ coincides with the grading operator θPn−2 and twρ coincides
with −c1

(
TPn−2)∪. Therefore, the calibrated periods in the twisted GW theory of Pn−1 and the

GW theory of Pn−2 are related by e
twθπi

tw
Ĩ
(−m)
β (λ) = Ĩ

(−m)
σ(β) (λ), where σ(β) := eπiθβ, where θ is

the grading operator of Pn−2.

Let us compare the S-matrices. In the GW theory of Pn−2, we have

S(q, z)−11 = 1 +

∞∑
d=1

qd∏d
m=1(p−mz)n−1

,

where q is the Novikov variable corresponding to O(1). Using the divisor equation (−zq∂q +
p∪)S(q, z)−1 = S(q, z)−1p•, where p• is the operator of quantum multiplication by p, we get

S(q, z)−1pi = pi +
∞∑
d=1

qd(p− dz)i∏d
m=1(p−mz)n−1

, 0 ≤ i ≤ n− 2. (5.7)

On the other hand, the twisted S-matrix twS(Q, z) can be computed from the S-matrix of the
blowup Bl(Pn) of Pn at one point which is known explicitly. Namely, let us recall that Bl(Pn) is
the submanifold of Pn−1 × Pn defined by the quadratic equations xiyj = xjyi (0 ≤ i, j ≤ n− 1),
where x = [x0, . . . , xn−1] and y = [y0, . . . , yn] are the homogeneous coordinate systems on respec-
tively Pn−1 and Pn. We have two projection maps π1 : Bl(Pn) → Pn−1 and π2 : Bl(Pn)→ Pn.
Note that π2 is the projection of the blowup — the exceptional divisor E is the fiber over
[0, 0, . . . , 0, 1] ∈ Pn. Let L1 and L2 be the pullbacks of the hyperplane bundles O(1) on respec-
tively Pn−1 and Pn. Let us denote by blS(q1, q2, z) the S-matrix in the GW theory of Bl(Pn),
where q1 and q2 are the Novikov variables corresponding to the line bundles L1 and L2. Then
we have

blS(q1, q2, z)
−11 =

∑
d1,d2≥0

qd11 q
d2
2

∏0
m=−∞(p2 − p1 −mz)∏d1

m=1(p1 −mz)n
∏d2

m=1(p2 −mz)
∏d2−d1

m=−∞(p2 − p1 −mz)
,
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where q1 and q2 are the Novikov variables. The degree class in Bl(Pn) corresponding to
a pair (d1, d2) is d1e1 + d2e2, where e1 is the class of a line in E and e2 = π−12 (line in Pn

avoiding [0, 0, . . . , 0, 1]). It can be checked that the cohomology ring of the blowup is

H(Bl(Pn)) = C[p1, p2]/⟨p2(p2 − p1) = 0, pn1 = 0⟩

and that O(E) = L2L
−1
1 , that is, the Poincaré dual of the exceptional divisor E is e = p2 − p1.

In order to compute the twisted S-matrix twS, we have to restrict blS to q2 = 0 and substitute
q1 = Q−(n−1). We get

blS
(
Q−(n−1), 0, z

)−1
1 = 1 +

∞∑
d=1

Q−d(n−1)
∏0

m=−d+1(p2 − p1 −mz)∏d
m=1(p1 −mz)n

. (5.8)

Note that the numerator is proportional to p2 − p1. Using the relation p2(p2 − p1) = 0, we get
that p1 −mz can be replaced by p1 − p2 −mz = −e−mz. The above formula takes the form

blS
(
Q−(n−1), 0, z

)−1
1 = 1 +

∞∑
d=1

(−1)dnQ−d(n−1)e
(e+ dz)n

∏d−1
m=1(e+mz)n−1

. (5.9)

Using the above formula and the divisor equation(
− 1

n− 1
zQ∂Q + e∪

)
blS
(
Q−(n−1), 0, z

)−1
= blS

(
Q−(n−1), 0, z

)−1
e•,

whose proof is the same as the proof of Lemma 5.5, we get

twS(Q, z)−1ei = ei +
∞∑
d=1

(−1)dnQ−d(n−1)e
(e+ dz)n−i

∏d−1
m=1(e+mz)n−1

, 1 ≤ i ≤ n− 1, (5.10)

where the right-hand side should be expanded into a power series in z−1 and e should be identified
with the linear operator

e∪tw : H̃(E)→ H̃(E), e ∪tw ei :=

{
ei+1 if 1 ≤ i ≤ n− 2,

0 if i = n− 1.

Comparing formulas (5.7) and (5.10), we get that if we put q = (−1)nQ−(n−1), then the matrices
of S(q, z) and twS(Q,−z) with respect to respectively the bases 1, p, . . . , pn−2 and e, e2, . . . , en−1

coincide. Now we are in position to prove the following key formula.

Proposition 5.6. Under the isomorphism H̃(E) ∼= H
(
Pn−2) the following identity holds:

twI
(−m)
β (Q,λ) = e−πiθ I

(−m)
σ(β)

(
−Q−(n−1), λ

)
,

where σ = eπiθ and θ is the grading operator of Pn−2.

Proof. By definition,

twI
(−m)
β (Q,λ) =

∑
l∈Z

n−1∑
i=1

Res dzzl−1(−∂λ)l
(tw

Ĩ
(−m)
β (λ), twS(Q,−z)−1ei

)
ei,

where the residue is defined formally as the coefficient in front of dz/z. Under the isomorphism
H̃(E) ∼= H(Pn−2) the period

tw
Ĩ
(−m)
β (λ) = e−πiθ Ĩ

(−m)
σ(β) (λ), twS(Q,−z)−1ei = S

(
(−1)nQ−(n−1), z

)−1
pi−1,
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and ei = (−1)n−1pn−1−i. Note that the Poincaré pairing on H
(
Pn−2) differs from the pairing

on H̃(E) by the sign (−1)n−1. The above formula for the period takes the form

twI
(−m)
β (Q,λ) =

∑
l∈Z

n−1∑
i=1

Res dzzl−1(−∂λ)l

×
(
e−πiθ Ĩ

(−m)
σ(β) (λ), S

(
(−1)nQ−(n−1), z

)−1
pi−1

)
pn−1−i.

Since eπiθp = −peπiθ, using formula (5.7), we get

eπiθS(q, z)−1pi−1 = eπi(
n
2
−i)S

(
(−1)n−1q,−z

)−1
pi−1.

The formula for the period takes the form

twI
(−m)
β (Q,λ) =

∑
l∈Z

n−1∑
i=1

Res dzzl−1(−∂λ)l

×
(
Ĩ
(−m)
σ(β) (λ), S

(
−Q−(n−1),−z

)−1
pi−1

)
σ−1

(
pn−1−i

)
,

where we used that σ−1
(
pn−1−i

)
= eπi(

n
2
−i)pn−1−i. Clearly, the right-hand side of the above

identity coincides with σ−1
(
I
(−m)
σ(β)

(
−Q−(n−1), λ

))
. The lemma follows. ■

5.5 Monodromy of the twisted periods of Pn−1

Let us describe the monodromy group of the system of differential equations (5.5)–(5.6), that
is, the monodromy of the twisted periods of Pn−1. According to Proposition 5.6, it is sufficient
to recall the monodromy group for the periods of Pn−2. Let us first fix q = 1 and λ◦ ∈ R>0

sufficiently large — any λ◦ > n− 1 works. The value of the period I(−m)(q, λ) depends on the
choice of a path from (1, λ◦) to (q, λ) avoiding the discriminant

{(q, λ) | det(λ− (n− 1)p•) = 0}.

For fixed q, the equation of the discriminant has n− 1 solutions

uk(q) := (n− 1)η−2kq1/(n−1), 0 ≤ k ≤ n− 2,

where η = eπi/(n−1). Let us focus first on the monodromy of the twisted periods for q = 1. The
fundamental group

π1(C \ {u0(1), . . . , un−2(1)}, λ◦)

is a free group generated by the simple loops γ◦k corresponding to the paths C◦k from λ◦ to uk(1)
defined as follows. C◦k consists of two pieces. First, an arc on the circle with center 0 and
radius λ◦ starting at λ◦ and rotating clockwise on angle 2πik/(n− 1). The second piece is the
straight line segment from λ◦η−2k to uk(1) = (n−1)η−2k. It turns out that the reflection vector
corresponding to the simple loop γ◦k is precisely Ψ(O(k)), where Ψ is the Iritani’s map for the
integral structure of the quantum cohomology of Pn−2 (see formula (1.2)), that is,

Ψ(O(k)) = (2π)
3−n
2 Γ(1 + p)n−1e2πikp.

If q ∈ C∗ := C \ {0} is arbitrary, then we construct the path
(
q, λ◦q1/(n−1)

)
by letting q vary

continuously along some reference path. This path allows us to determine the value of I
(−m)
α (q, λ)

at λ = λ◦q1/(n−1) which we declare to be the base point of C \ {u0(q), . . . , un−2(q)}. Let γk(q)
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be the simple loop obtained from γ◦k by rescaling λ ∈ γ◦k 7→ λq1/(n−1). The reflection vectors
corresponding to γk(q) are precisely

Ψq(O(k)) = (2π)
3−n
2 Γ(1 + p)n−1q−pe2πikp.

The proof of the above facts in the case of P2 (that is n = 4) can be found in [28]. In
general, the argument is straightforward to generalize. Now let us apply the above construc-
tion and Proposition 5.6 in order to describe the monodromy of the twisted periods of Pn−1.
We have q = −Q−(n−1). Let us assume that Q ∈ R>0 is a real number. We pick a refer-
ence path from 1 to q consisting of the interval

[
1, Q−(n−1)

]
and the arc in the upper half-

plane from Q−(n−1) to q = −Q−(n−1). Note that with such a choice of the reference path
q1/(n−1) = ηQ−1. Therefore, γk(q) becomes a simple loop around uk(q) = (n − 1)η−2k+1Q−1

which are precisely the singularities of the differential equation (5.5). We get the following
corollary.

Corollary 5.7. If β ∈ H̃(E) is such that the analytic continuation of twI
(−m)
β (Q,λ) along γk(q)

is twI
(−m)
−β (Q,λ), then β must be proportional to

Ψ(OE(−k + 1)) = (2π)
1−n
2 Γ(Bl(X))Q−e(n−1)(2πi)deg ch(OE(−k + 1)),

where OE(−k + 1) := O(−(k − 1)E)−O(−kE).

Proof. According to the above discussion and Proposition 5.6, under the isomorphism H̃(E) ∼=
H
(
Pn−2), σ(β) must be proportional to Ψq(O(k)), that is, β is proportional to

e−πiθ (2π)
3−n
2 Γ(1 + p)n−1q−pe2πkp = (2π)(3−n)/2i2−nΓ(1− p)n−1qpe−2πikp.

Note that qp = eπipQ−p(n−1). Therefore, under the isomorphism H̃(E) ∼= H
(
Pn−2), the above

expression becomes

(2π)(3−n)/2i2−nΓ(1− e)n−1Q−e(n−1)e(−2k+1)πiee.

We have to check that the above expression is proportional to the image of the Iritani map
for Bl(X) of the exceptional object O((−k + 1)E)−O(−kE). We have

Γ(Bl(X)) = Γ(X)Γ(1− e)nΓ(1 + e),

Γ(1− e)Γ(1 + e) =
2πie

eπie − e−πie
=

2πie

e2πie − 1
eπie,

and

(2πi)deg ch(O((−k + 1)E)−O(−kE)) = e−2πike
(
e2πie − 1

)
.

Since Γ(X) ∪ e = e, the image of the Iritani map becomes

(2π)(3−n)/2iΓ(1− e)n−1Q−e(n−1)e(−2k+1)πiee.

The claim of the lemma follows. ■
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5.6 Isomonodromic analytic continuation

Let D(u, r) be the open disk in C with center u and radius r. Put Dr := D(0, r). Let ϵ > 0
be a real number, V ⊂ C an open subset, and ui : Dϵ → V (1 ≤ i ≤ m) be m holomorphic
functions, such that, there exists a positive real number δ > 0 satisfying

(i) The m disks D(ui(0), δ) (1 ≤ i ≤ m) are pairwise disjoint and contained in V .

(ii) We have ui(Q) ∈ D(ui(0), δ) for all Q ∈ Dϵ.

Suppose that I is a multi-valued analytic function on Dϵ×V \Σ with values in a finite dimensional
vector space H, where

Σ := {(Q,λ) ∈ Dϵ × V | λ = ui(Q) for some i}.

Let us fix λ◦ ∈ V , such that, Dϵ×{λ◦} is disjoint from Σ. Then I is analytic at (Q,λ) = (0, λ◦)
and I extends analytically along any path in Dϵ × V \ Σ starting at (0, λ◦). In particular,
we can extend uniquely I(Q,λ) for all Q ∈ Dϵ and λ sufficiently close to λ◦. Let us ex-
pand I(Q,λ) =

∑∞
d=0 Id(λ)Q

d, where each coefficient Id is an H-valued analytic function at
λ = λ◦. Clearly, Id(λ) extends analytically along any path in V \ {u1(0), . . . , um(0)}.

Lemma 5.8. Suppose that γ is a closed loop based at λ◦ in

V \D(u1(0), δ) ⊔ · · · ⊔D(um(0), δ),

such that, for every fixed Q ̸= 0, the analytic extension of I(Q,λ) along the path {Q} × γ
transforms I(Q,λ) into A(I(Q,λ)), where λ is sufficiently close to λ◦ and A ∈ GL(H) is a lin-
ear operator. If the operator A is independent of Q, then the analytic continuation along γ
transforms the coefficient Id(λ) into A(Id(λ)).

Proof. Since Id(λ) =
1
d!

∂dI
∂Qd (0, λ) by replacing the function I(Q,λ) with its partial derivative

1
d!

∂dI
∂Qd (Q,λ), we can reduce the general case to the case when d = 0.
Let us cover the path γ with small closed disks Dj (1 ≤ j ≤ N), such that,

(i) Dj is disjoint from D(ui(0), δ) for all i.

(ii) Dj ∩Dj+1 ̸= ∅.

(iii) DN = D1.

In other words, the union of the disks Dj give a fattening of the path γ. Let I(Q,λj) ∀λj ∈ Dj

be the analytic extension of I(Q,λ) along γ. Let us fix an arbitrary ϵ′ > 0. There exists
a small ρj > 0, such that, I(Q,λj) is a uniformly continuous function in (Q,λ) ∈ Dρj × Dj .
Therefore, there exists 0 < δ′j < ρj , such that,

∥I(Q,λj)− I(0, λj)∥ < ϵ′, ∀(Q,λj) ∈ Dδ′j
×Dj ,

where ∥ ∥ is any norm on H — for example fix an isomorphism H ∼= Rdim(H) and choose the
standard Euclidean metric. Since there are only finitely many disks Dj , we can choose ρ and δ′

that work for all j simultaneously, that is, ρj = ρ and δ′j = δ′. Using the triangle inequality,
we get

∥I(0, λN )−AI(0, λ1)∥ ≤ ∥I(0, λN )− I(Q,λN )∥+ ∥I(Q,λN )−AI(Q,λ1)∥
+ ∥A∥∥I(Q,λ1)− I(0, λ1)∥.

Note that the middle term on the right-hand side of the inequality is 0 by definition. Choos-
ing |Q| < δ′, we get that the right-hand side of the above inequality is bounded by ϵ′(1 + ∥A∥).
Since ϵ′ can be chosen arbitrary small, we get I(0, λN ) = A(I(0, λ1)) which is exactly what we
had to prove. ■
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We will need a result which is slightly more general then Lemma 5.8. Namely, suppose that I
is a multi-valued analytic function on D∗ϵ × V \ Σ, where D∗ϵ := Dϵ \ {0} is the punctured disk.

Definition 5.9. The singularity of I(Q,λ) at Q = 0 is said to be at most logarithmic if the
following two conditions hold:

(i) The function has an expansion of the form

I(Q,λ) =
n∑

s=0

∞∑
d=0

Is,d(λ)Q
d(logQ)s,

where λ is sufficiently close to λ◦ and Q ∈ Dϵ \ (−ϵ, 0].
(ii) The functions Is(Q,λ) :=

∑∞
d=0 Is,d(λ)Q

d (0 ≤ s ≤ n) extend analytically along any path
in Dϵ × V \ Σ.

Remark 5.10. Condition (ii) might be redundant but we could not prove it in this generality.
For our purposes, both conditions are easy to verify, because I(Q,λ) will be a solution to an
ODE in Q that has a Fuchsian singularity at Q = 0.

Proposition 5.11. Suppose that I is a multi-valued analytic function on D∗ϵ × V \ Σ and that
it has at most a logarithmic singularity at Q = 0. Furthermore, suppose that γ is a closed loop
based at λ◦ in

V \D(u1(0), δ) ⊔ · · · ⊔D(um(0), δ),

such that, for every fixed Q ∈ Dϵ\(−ϵ, 0], the analytic extension of I(Q,λ) along the path {Q} × γ
transforms I(Q,λ) into A(I(Q,λ)), where λ is sufficiently close to λ◦ and A ∈ GL(H) is a lin-
ear operator. If the operator A is independent of Q, then the analytic continuation along γ
transforms the coefficient Is,d(λ) into A(Is,d(λ)).

Proof. Let Is(Q,λ) be as in condition (ii) in Definition 5.9. We have I(Q,λ) =
∑n

s=0 Is(Q,λ)

× (logQ)s. The analytic continuation along γ yields A(I(Q,λ)) =
∑n

s=0 Ĩs(Q,λ)(logQ)s, where

Ĩs(Q,λ) is the analytic extension of Is(Q,λ) along γ. It is easy to prove by letting Q→ 0 that
such an identity is possible only if the coefficients in front of the powers of logQ are equal, that
is, A(Is(Q,λ)) = Ĩs(Q,λ). It remains only to recall Lemma 5.8. ■

5.7 Vanishing of the base component

Let α = Q−(n−1)eβ, where β ∈ H∗(Bl(X)) is a vector independent of Q and t. Let β = βe + βb.
We would like to extract the leading order terms in the power series expansion at Q = 0 of

Q∆+m+(n−1)/2I(−m)
(
t, q,Q,Q−1λ

)
α, (5.11)

where m > 0 is a sufficiently large integer, that is, we choose m so big that the operator
θ̃ +m+ 1/2 has only positive eigenvalues. Moreover, we would like to determine the structure
of the following terms in the expansion up to order Qn. Note that

Q∆Q−θ̃−m+ 1
2Q−ρ̃α = Q−m−(n−1)/2

(
βe +Qdeg(Q−ρβb)

)
.

Therefore, we have

Q∆+m+(n−1)/2I(−m)
(
t, q,Q,Q−1λ

)
α =

(
Q∆I(−m)

(
t, q,Q,Q−1λ

)
Qρ̃Qθ̃+m− 1

2Q−∆
)

×
(
βe +Qdeg(Q−ρβb)

)
.
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Let us look at the contribution of βe to (5.11), that is, the expression(
Q∆I(−m)

(
t, q,Q,Q−1λ

)
Qρ̃Qθ̃+m− 1

2Q−∆
)
βe. (5.12)

According to Proposition 4.3, the leading order term of the H̃(E)-component of (5.12) is at
degree 0 and it is precisely twI

(−m)
βe

(1, λ), that is, the twisted period of Pn−1 at Q = 1. The
leading order term of the H(X)-component of (5.12) is at degree n and the corresponding
coefficient in front of Qn is given by

∞∑
l,d=0

(−∂λ)l
〈
ψl−1Ĩ

(−m)
βe

(λ), 1
〉
0,2,dℓ

(−1)n−1ϕN , (5.13)

where

Ĩ
(−m)
βe

(λ) = e−(n−1)e∂λ∂m

(
λθ̃+m−1/2

Γ(θ̃ +m+ 1/2)

)
βe

is the calibrated period of Bl(X) and for l = 0 the correlator should be understood via the string
equation as

〈
ψlĨ

(−m)
βe

(λ), 1, 1
〉
0,3,dℓ

.
Let us look at the contribution to (5.11) corresponding to βb, that is, the expression(

Q∆I(−m)
(
t, q,Q,Q−1λ

)
Qρ̃Qθ̃+m− 1

2Q−∆
)
Qdeg(Q−ρβb). (5.14)

Let us decompose βb =
∑N

a=1 βb,aϕa. The H(X)-component of (5.14) is a power series in Q
whose coefficients are polynomials in logQ whose coefficients are in H(X). According to Propo-
sitions (4.5) and (4.4), the coefficient in front of QM (logQ)0 with 0 ≤M ≤ n has the form∑

a : deg(ϕa)=M

λθ+m−1/2

Γ(θ +m+ 1/2)
βb,aϕa +

∑
a′ : deg(ϕa′ )<M

βb,a′fM,a′(λ), (5.15)

where fM,a′(λ) is the H(X)-component of the coefficient in front of QM−deg(ϕa′ ) in the expansion
at Q = 0 of(

Q∆I(−m)
(
t, q,Q,Q−1λ

)
Qρ̃Qθ̃+m− 1

2Q−∆
)
ϕa′ .

Let us summarize our analysis.

Proposition 5.12. Let α = Q−(n−1)eβ, where β ∈ H(Bl(X)) is independent of t and Q. Then

(a) The H(X)-component of (5.11) expands as a power series in Q whose coefficients are
polynomials in logQ. The coefficient in front of (logQ)0QM for 0 ≤ M ≤ n − 1 is given
by (5.15), while for M = n it is given by the sum of (5.15) (with M = n) and (5.13).

(b) If βb,1 = 0, then the H̃(E)-component of (5.11) expands as a power series in Q. The
corresponding leading order term is twI

(−m)
βe

(1, λ).

Let us discuss now the analytic properties of the series (5.13). It is convenient to introduce
the following series:

Φβ(Q,λ) :=
∞∑

l,d=0

(−∂λ)l
〈
ψl−1Ĩ(−m)(λ)Q−(n−1)eβ, 1

〉
0,2,dℓ

Q−d(n−1), β ∈ H̃(E).

Note that (5.13) coincides with Φβe(1, λ)(−1)n−1ϕN . Recalling the definition of the period
vector I

(−m)
α (t, q,Q, λ), we get

Φβ(Q,λ) =
(
I
(−m)

Q−(n−1)eβ
(t, 0, Q, λ), 1

)
, ∀β ∈ H̃(E).
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Proposition 5.13. Let Q be a positive real number and γk(q) with q = −Q−(n−1) be the same
simple loop as in Corollary 5.7. If

β = Ψ(OE(−k + 1)) = (2π)(1−n)/2Γ(1− e)n−1Q−(n−1)ee(−2k+1)πie2πie,

then the analytic continuation of Φβ(Q,λ) along γk(q) is −Φβ(Q,λ).

The proof of Proposition 5.13 will be given in Section 6.

5.8 Proof of Theorem 1.7

Now we are in position to prove the main result of this paper. Let us fix t ∈ H̃(X) and the
Novikov variables q = (q1, . . . , qr) of X to be generic, such that, the quantum cohomology of X
is semisimple and the conclusions of Proposition 5.2 hold. Let us pick a real number R > 0, such
that, uj(t, q, 0) ∈ DR for all 1 ≤ j ≤ N , where recall that DR denotes the circle with center 0
and radius R. Let us choose a real number ϵ > 0 so small that the quantum cup product of
the blowup Bl(X) at (t, q,Q) is convergent for all |Q| < ϵ, uj(t, q,Q) ∈ DR for all |Q| < ϵ
and 1 ≤ j ≤ N , and R < (n− 1)ϵ−1. We would like to use the results from Section (5.6) in the
following settings: the domain V := {λ | |λ| > Rϵ}, m := n − 1, and the (n − 1) holomorphic
functions (denoted by ui in Section 5.6) will be given by QuN+k(t, q,Q), 1 ≤ k ≤ n − 1. Here
we are using Proposition 5.2 to conclude that QuN+k(t, q,Q) = −(n − 1)vk + O(Q) is analytic
at Q = 0. Let us choose δ > 0, such that, the disks D(−(n − 1)vk, 2δ) (1 ≤ k ≤ n − 1) are
pairwise disjoint. If necessary, we decrease ϵ even further so that condition (ii) given in the
beginning of Section 5.6 is satisfied. Note that condition (i) is satisfied according to our choice
of δ. Before we continue further let us fix the solutions vk of λn−1 = (−1)n to be given by
vk = −η−2k+1, where η := eπi/(n−1). Then −(n− 1)vk = (n− 1)η−2k+1. Finally, for a reference
point λ◦ ∈ V we pick any positive real λ◦ > (n− 1) > Rϵ.

Let us define the loop γk in V \D
(
(n− 1)η−1, δ

)
⊔ · · · ⊔D

(
(n− 1)η−2n+3, δ

)
to be the simple

loop around (n − 1)η−2k+1 based at λ◦ corresponding to the path from λ◦ to (n − 1)η−2k+1

consisting of the following two pieces: an arc along the circle |λ| = λ◦ obtained by rotating
from λ◦ clock-wise on angle (2k − 1)π/(n − 1) and the second piece is the straight segment
from λ◦η−2k+1 to (n− 1)η−2k+1.

Suppose now that Q ∈ Dϵ is a positive real number. Note that by re-scaling the path γk,
we obtain a path γk · Q−1 which is a simple loop around (n − 1)η−2k+1Q−1. The simple loop
γk goes around (n − 1)η−2k+1 along a circle with center (n − 1)η−2k+1 and radius r, where
δ < r < 2δ. We claim that by decreasing ϵ if necessary, we can arrange that the circle with center
(n− 1)η−2k+1Q−1 and radius rQ−1 contains the canonical coordinate uN+k(t, q,Q). Indeed, we
have ∣∣uN+k(t, q,Q)− (n− 1)η−2k+1Q−1

∣∣ = ∣∣QuN+k(t, q,Q)− (n− 1)η−2k+1
∣∣Q−1

and since
∣∣QuN+k(t, q,Q)− (n− 1)η−2k+1

∣∣ has order O(Q), by choosing ϵ small enough we can
arrange that

∣∣QuN+k(t, q,Q)− (n− 1)η−2k+1
∣∣ < r for all |Q| < ϵ. In other words, the re-scaled

loop γk · Q−1 is a simple loop around the canonical coordinate uN+k(t, q,Q). Let us denote
by α ∈ H(Bl(X)) the reflection vector corresponding to the simple loop γk ·Q−1. Let us recall
Proposition 5.11 for the series (5.11), that is,

I(Q,λ) := Q∆+m+(n−1)/2I(−m)
(
t, q,Q,Q−1λ

)
α.

The singularities of I(Q,λ) are precisely at Q−1λ = uj(t, q,Q) for 1 ≤ j ≤ N + k, that is,
λ = Quj(t, q,Q). Note that by definition of R, the first N singularities Quj(t, q,Q) (1 ≤ j ≤ N)
are in DRϵ. Therefore, I(Q,λ) is a multi-valued analytic function in (Q,λ) ∈ Dϵ × V \ Σ. Al-
though we are not going to give a complete proof, let us outline how to prove that I(Q,λ) has
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at most logarithmic singularity at Q = 0 (see Definition 5.9). Recall the divisor equation (5.3)
with i = r + 1. Note that qr+1∂qr+1 = 1

n−1Q∂Q. Combining the divisor equation and the dif-
ferential equation of the second structure connection with respect to τr+1 = tN+1, it is easy to
prove that for every λ ∈ V \D

(
(n− 1)η−1, δ

)
⊔ · · · ⊔D

(
(n− 1)η−2n+3, δ

)
the function I(Q,λ) is

a solution to a differential equation that has a Fuchsian singularity at Q = 0. Now the conclusion
follows from the theory of Fuchsian singularities.

The analytic continuation of I(Q,λ) along γk transforms I(Q,λ) into −I(Q,λ) because
when λ changes along γk, Q

−1λ changes along γk ·Q−1 which is the simple loop used to define
the reflection vector α. Let us look at the expansion of I(Q,λ) at Q = 0 in the powers of Q
and logQ. To begin with, we know that α = Q−(n−1)eβ where β ∈ H(Bl(X)) is independent of t
and Q (it could depend on q). Let us decompose β = βe+βb, where βe ∈ H̃(E) and βb ∈ H(X).
Put βb =:

∑N
i=1 βb,iϕi. We claim that βb = 0. According to Proposition 5.12 (a), the coefficient

in front of Q0(logQ)0 in the expansion of the H(X)-component of I(Q,λ) is

λθ+m−1/2

Γ(θ +m+ 1/2)
βb,1ϕ1 =

λm+(n−1)/2

Γ(m+ (n+ 1)/2)
βb,1ϕ1.

According to Proposition 5.11, the analytic continuation along γk of the above expression should
change the sign. However, the function λm+(n−1)/2 is invariant under the analytic continuation
along γk. Therefore, the only possibility is that βb,1 = 0. Suppose that M is the smallest
number, such that, βb,a ̸= 0 for some ϕa of degree M . If M ≤ n − 1, then since βb,a′ = 0
for all a′, such that, deg(ϕa′) < M , Proposition 5.12 (a) yields that the coefficient in front of
QM (logQ)0 in the expansion of the H(X)-component of I(Q,λ) is∑

a:deg(ϕa)=M

λθ+m−1/2

Γ(θ +m+ 1/2)
βb,aϕa.

Just like before, the above expression is invariant under the analytic continuation along γk,
while Proposition 5.11 implies that the analytic continuation must change the sign. The con-
clusion is again that βb,a = 0 for all a for which ϕa has degree M . We get that all βb,a = 0
except possibly for βb,N . Let us postpone the analysis of βb,N and consider βe first. Recalling

Proposition 5.12 (b), we get that the coefficient in front of Q0 in the expansion of the H̃(E)-
component of I(Q,λ) is the twisted period twI

(−m)
βe

(1, λ). Therefore, the analytic continuation
of twI

(−m)
βe

(1, λ) along γk must be twI
(−m)
−βe

(1, λ). Recalling Corollary 5.7, we get that βe must
be proportional to

Ψ(OE(−k + 1)) = (2π)
1−n
2 Γ(Bl(X))(2πi)deg ch(OE(−k + 1)).

Let us prove that βb,N = 0. According to Proposition 5.12, the coefficient in front of Qn(logQ)0

in the expansion of the H(X)-component of I(Q,λ) is(
λm−(n+1)/2

Γ(m+ (1− n)/2)
βb,N +Φβe(1, λ)(−1)n−1

)
ϕN .

Let us analytically continue the above expression along γk. Just like above, the analytic contin-
uation should change the sign. However, recalling Proposition 5.13, we get(

λm−(n+1)/2

Γ(m+ (1− n)/2)
βb,N − Φβe(1, λ)(−1)n−1

)
ϕN .

Therefore, βb,N = 0 and this completes the proof of our claim that βb = 0. Moreover, we proved
that β = βe is proportional to Ψ(OE(−k+1)). In order to conclude that the proportionality coef-
ficient is±1, we need only to check that the Euler pairing ⟨Ψ(OE(−k + 1)),Ψ(OE(−k + 1))⟩ = 1.
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For simplicity, let us consider only the case when k = 1. In fact, the general case follows easily by
using analytic continuation with respect to q around q = 0: the clock-wise analytic continuation
transforms Ψq(OE(−k + 1)) to Ψq(OE(−k + 1)⊗O(−E)) = Ψq(OE(−k)). We have

Ψq(OE) = (2π)(1−n)/2Γ(1− e)n−1qe(2πie),

where q = −Q−(n−1) and the branch of log q is fixed in such a way that qe = eπieQ−(n−1)e.
Recalling formula (2.6), after a straightforward computation, we get ⟨Ψq(OE),Ψq(OE)⟩ = 1.

6 Mirror model for the twisted periods

The goal in this section is to prove Proposition 5.13. The idea is to prove that the Laplace
transform of Φβ(Q,λ) with respect to λ can be identified with an appropriate oscillatory integral
whose integration cycle is swept out by a family of vanishing cycles. Once this is done, the state-
ment of the proposition follows easily by an elementary local computation. It is more convenient
to construct an oscillatory integral when q := −Q−(n−1) is a positive real number. Therefore,
let us reformulate the statement of Proposition 5.13 by analytically continuing Φβ(Q,λ) with
respect to Q along an arc in the counter-clockwise direction connecting the rays R>0 and ηR>0,
where η := eπi/(n−1). Note that the value of logQ will change to log |Q| + πi

n−1 . In other

words, we will assume that Q = ηq−1/(n−1) where q ∈ R>0 is a positive real number. Note that
Q−(n−1)e = e−πieqe and that the formula for Φβ(Q,λ) takes the form

Φβ(q, λ) =

∞∑
l,d=0

(−∂λ)l
〈
ψl−1Ĩ(−m)(λ)qee−πieβ, 1

〉
0,2,dℓ

(−q)d. (6.1)

Furthermore, it is sufficient to prove Proposition 5.13 only in the case when k = 0, because
the general case will follow from that one by taking an appropriate analytic continuation with
respect to q around q = 0. Let us assume k = 0, so that

e−πieβ = (2π)(1−n)/2Γ(1− e)n−1(2πie).

Note that γ0(q) is a simple loop approaching u0(q) = (n − 1)q1/(n−1) ∈ R>0 along the positive
real axis. From now on we assume the above settings and denote Φβ(Q,λ) and u0(q) simply
by respectively Φ(q, λ) and u(q). We have to prove that the analytic continuation of Φ(q, λ)
along γ0(q) is −Φ(q, λ). Finally, let us point out that in the previous sections we denoted by q
the sequence of Novikov variables (q1, . . . , qr) of X, while in this section we denote by q just
a positive real number. We will never have to deal with X, so there will be no confusion in
doing so.

6.1 Contour integral

The Gromov–Witten invariants involved in the definition of the series Φ(q, λ) can be extracted
from formula (5.8). Indeed, we have

Φ(q, λ) =
∞∑
l=0

(−∂λ)l
(
blSl(−q, 0)Ĩ(−m)(λ)qee−πieβ, 1

)
=

∞∑
l=0

(−∂λ)l
(
Ĩ(−m)(λ)qee−πieβ, blSl(−q, 0)T 1

)
.
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Recall that blS(−q, 0,−∂λ)T = blS(−q, 0, ∂λ)−1. Using formula (5.9), we get

Φ(q, λ) =

∫
Bl(X)

∞∑
d=0

(−1)dn(−q)de∂λ
(e∂λ + d)n

∏d−1
i=1 (e∂λ + i)n−1

∂
d(n−1)
λ Ĩ(−m)(λ)qee−πieβ. (6.2)

Using that θe = e(θ−1), we get the relation Ĩ(−m)(λ)e = e∂λĨ
(−m)(λ) (see Lemma 4.1 (a)), where

slightly abusing the notation we denoted by e the operator of classical cup product multiplication
by e. Therefore,

Ĩ(−m)(λ)qee−πieβ = qe∂λ(2π)(1−n)/2Γ(1− e∂λ)n−1(2πie∂λ)Ĩ(−m)(λ)1

= qe∂λ(2π)(1−n)/2Γ(1− e∂λ)n−1(2πie∂λ)e−(n−1)e∂λ∂m
(

λ
n
2
+m− 1

2

Γ
(
n
2 +m+ 1

2

)) .
Let us substitute the above formula for Ĩ(−m)(λ)qee−πieβ in (6.2). Note that everywhere the
operator e comes together with the differentiation operator ∂λ. On the other hand, since in the
entire expression only the coefficient in front of en contributes, we may remove ∂λ from e∂λ and
apply to the entire expression the differential operator ∂nλ , that is, change ∂

d(n−1)
λ to ∂

d(n−1)+n
λ .

We get the following formula for Φ(q, λ)

(2π)(1−n)/22πi

∞∑
d=0

∫
Bl(X)

(−1)dn+dqd+ee2

(e+ d)n
∏d−1

i=1 (e+ i)n−1
Γ(1− e)n−1

×∂d(n−1)+n
λ e−(n−1)e∂m

(
λ

n
2
+m− 1

2

Γ
(
n
2 +m+ 1

2

)) .
Note that

∂
d(n−1)+n
λ e−(n−1)e∂m

(
λ

n
2
+m− 1

2

Γ
(
n
2 +m+ 1

2

)) =
λ−

n
2
−(n−1)(d+e)+m− 1

2

Γ
(
− n

2 − (n− 1)(d+ e) +m+ 1
2

)
and

Γ(1− e) = (−e)(−e− 1) · · · (−e− d)Γ(−e− d) = (−1)d+1e(e+ 1) · · · (e+ d)Γ(−e− d).

Since
∫
Bl(X) e

n = (−1)n−1, we can replace
∫
Bl(X) with (−1)n−1Rese=0

de
en+1 . Note that dn+ d+

(d+ 1)(n− 1) + n− 1 = 2dn+ 2n− 2 is an even number, so that the signs that appear in our
formula cancel out exactly. We get

Φ(q, λ) = (2π)(1−n)/22πi

∞∑
d=0

Rese=0
de

d+ e
qd+eΓ(−d− e)n−1

× λ−
n
2
−(n−1)(d+e)+m− 1

2

Γ(−n
2 − (n− 1)(d+ e) +m+ 1

2)
.

Let us substitute x := −e− d, then the above formula becomes

Φ(q, λ) = (2π)(1−n)/22πi

∞∑
d=0

Resx=−d
dx

x
q−xΓ(x)n−1

λ−
n
2
+(n−1)x+m− 1

2

Γ
(
−n

2 + (n− 1)x+m+ 1
2

) .
The sum of infinitely many residues can be replaced with an integral of the form

∫ ϵ+i∞
ϵ−i∞ dx,

where ϵ > 0 is a positive real number. Let us sketch the proof of this claim. Let us fix a real
number δ ∈

(
1
2 , 1
)
, such that, µ := (n− 1)

(
δ − 1/2

)
∈
(
1
2 , 1
)
. Suppose that K ≥ 1 is an integer.
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0 ϵ−K + 1−K

ϵ− iK

ϵ+ iK

CK

Figure 1. Integration contours.

Let us consider the rectangular contour given by the boundary of the rectangle with vertices
ϵ− iK, δ−K − iK, δ−K + iK, and ϵ+ iK. The contour is divided into two parts: the straight
line segment [ϵ− iK, ϵ+ iK] and its complement which we denote by CK — see Figure 1 where
these two pieces are colored respectively with blue and red. By the Cauchy residue formula,
the integral along this contour coincides with the partial sum 2πi

∑K−1
d=0 Resx=−d. On the other

hand, using the standard asymptotic estimates for the Γ-function (see Appendix A), one can
prove that if λ > (n − 1)q1/(n−1) is a real number then the integral along CK tends to 0 when
K →∞. We get

Φ(q, λ) = (2π)(1−n)/2
∫ ϵ+i∞

ϵ−i∞
q−xΓ(x)n−1

λ−
n
2
+(n−1)x+m− 1

2

Γ
(
− n

2 + (n− 1)x+m+ 1
2

) dx
x
. (6.3)

Let us denote by G(q, λ) the right-hand side of (6.3). Note that G(q, λ), after replacing 1/x
with Γ(x)/Γ(x + 1), becomes a Mellin–Barnes integral. The analytic properties of such inte-
grals are well known (see [2, 32]). Using the standard asymptotic estimates for the Γ-function
it is easy to prove that the integral is convergent for all positive real λ and that it is diver-
gent for Im(λ) ̸= 0. Since the series (6.1), viewed as a Laurent series in λ−1, is convergent
for |λ| > u(q) = (n− 1)q1/(n−1), we get that Φ(q, λ) is the analytic continuation of the restric-
tion of G(q, λ) to the interval

[
(n− 1)q1/(n−1),+∞

)
.

Lemma 6.1. The Mellin–Barnes integral G(q, λ) is 0 for all 0 < λ ≤ (n− 1)q1/(n−1).

Proof. Let R > 0 be a sufficiently big positive number. Let us fix δ ∈ (0, 1). We would like to
deform the contour ϵ+iR into the contour consisting of the 3 linear pieces −i−s (−∞ < s ≤ −ϵ),
si+ ϵ ( −1 ≤ s ≤ 1), and i+ s (ϵ ≤ s < +∞). The integral G(q, λ) is a limit as R →∞ of the
integral over si + ϵ (−T ≤ s ≤ T ) where T :=

√
R2 − ϵ2, while the integral over the deformed

contour is a limit as R→∞ of the integral over the contour consisting of the 3 linear pieces −i−s
(−
√
R2 − 1 < s ≤ −ϵ), si+ϵ ( −1 ≤ s ≤ 1), and i+s

(
ϵ ≤ s <

√
R2 − 1

)
. The difference between

the two integrals is an integral over the two arcs CR : Reiθ (arcsin(1/R) ≤ θ ≤ arcsinT/R) and
CR : Reiθ (− arcsin(T/R) ≤ θ ≤ − arcsin 1/R). One has to prove that

lim
R→+∞

∫
CR or CR

q−xΓ(x)n−1
λ−

n
2
+(n−1)x+m− 1

2

Γ
(
− n

2 + (n− 1)x+m+ 1
2

) dx
x

= 0.

This is proved in the same way as in [8, Section 5]. Namely, divide CR into two pieces C ′R : Reiθ

(arcsin(1/R) ≤ θ ≤ δ) and C ′′R : Reiθ (δ ≤ θ ≤ arcsinT/R) and then use the standard asymptotic
estimates for the Γ-function and the assumption |λ| ≤ (n− 1)q1/(n−1).
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Finally, to complete the proof. Note that the integral is independent of ϵ > 0, because
the Γ-functions in G(q, λ) do not have poles on the positive real axis. Letting ϵ → +∞ and
using again the standard asymptotic estimates for the Γ-function, we get that G(q, λ) = 0
for λ ≤ (n− 1)q1/(n−1). ■

Using the above lemma, we get∫ ∞
u(q)

e−λsG(q, λ)dλ =

∫ ∞
0

e−λsG(q, λ)dλ.

Substituting G(q, λ) with the corresponding Mellin–Barnes integral, exchanging the order of
integration and using that∫ ∞

0
e−λs

λ−
n
2
+(n−1)x+m− 1

2

Γ
(
−n

2 + (n− 1)x+m+ 1
2

)dλ = s
n
2
−(n−1)x−m− 1

2 ,

we get∫ ∞
u(q)

e−λsG(q, λ)dλ = (2π)(1−n)/2
∫ ϵ+i∞

ϵ−i∞
q−xΓ(x)n−1s

n
2
−(n−1)x−m− 1

2
dx

x
. (6.4)

6.2 Oscillatory integral

Let us consider the following family of functions

f(x, q) = x1 + · · ·+ xn−2 +
q

x1 · · ·xn−2
(
1 + x2n−1 + x2n

)
,

where q is a positive real number and

x = (x1, . . . , xn) ∈ V := Cn \
{
x1 · · ·xn−2

(
1 + x2n−1 + x2n

)
= 0
}
.

Let Γ := Rn−2
>0 × R2 ⊂ V , that is, Γ is the real n-dimensional cycle in V consisting of points

x = (x1, . . . , xn), such that, the first n − 2 coordinates are positive real numbers and the last
two ones are arbitrary real numbers. Note that the cycle Γ belongs to the following group of
semi-infinite homology cycles:

lim←−Hn(V,Re(f(x, q)) > M,Z) ∼= Zn−1,

where the inverse limit is taken over all M ∈ R.

Proposition 6.2. Under the above notation the following identity holds:

2i

∫
Γ
e−f(x,q)

dx1 ∧ · · · ∧ dxn
x1 · · ·xn−2(1 + x2n−1 + x2n)

=

∫ ϵ+i∞

ϵ−i∞
q−xΓ(x)n−1

dx

x
,

where the orientation of Γ is induced from the standard orientation on Rn.

Proof. Let us integrate out xn−1 and xn. Using polar coordinates xn−1 = r cos θ and xn =
r sin θ, since dxn−1 ∧ dxn = rdr ∧ θ, we get∫

R2

e−K(1+x2
n−1+x2

n)
dxn−1 ∧ dxn
1 + x2n−1 + x2n

=

∫ ∞
0

e−K(1+r2)

∫ 2π

0

rdr ∧ dθ

1 + r2
= π

∫ ∞
1

e−Kudu

u
,
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whereK is a positive real number and for the second equality we used the substitution u = 1+r2.
Applying the above formula to our oscillatory integral, we get∫

Γ
e−f(x,q)

dx1 ∧ · · · ∧ dxn

x1 · · ·xn−2
(
1 + x2n−1 + x2n

)
= π

∫
Rn−2
>0

∫ ∞
1

e
−(x1+···+xn−2+

qu
x1···xn−2

)du

u

dx1 · · · dxn−2
x1 · · ·xn−2

, (6.5)

where dx1 · · · dxn−2 is the standard Lebesgue measure on Rn−2
>0 . On the other hand, let us recall

the oscillatory integral

J(q) :=

∫
Rn−2
>0

exp

(
−
(
x1 + · · ·+ xn−2 +

q

x1 · · ·xn−2

))
dx1 · · · dxn−2
x1 · · ·xn−2

.

Note that the Mellin transform of J(q) is

{MJ}(x) =
∫ ∞
0

qx−1J(q)dq = Γ(x)n−1.

Recalling the Mellin inversion theorem, we get

J(q) =
1

2πi

∫ ϵ+i∞

ϵ−i∞
q−xΓ(x)n−1dx,

where ϵ > 0 is a positive real number. Let us apply the above formula to (6.5). Namely, on the
right-hand side of (6.5), after exchanging the order of the integration, we get

π

∫ ∞
1

J(qu)
du

u
=

1

2i

∫ ∞
1

∫ ϵ+i∞

ϵ−i∞
(qu)−xΓ(x)n−1dx

du

u
.

Exchanging again the order of integration and using that∫ ∞
1

u−x
du

u
=
u−x

−x

∣∣∣∣u=∞
u=1

=
1

x
,

we get the formula stated in the proposition. ■

6.3 Laplace transform

The function f(x, q) has a minimum over x ∈ Γ achieved at the critical point x1 = · · · = xn−2 =
q1/(n−1), xn−1 = xn−2 = 0. Note that the corresponding critical value is u(q) = (n− 1)q1/(n−1).
Let us consider the map Γ→ [u(q),+∞), x 7→ f(x, q). The fiber over λ ∈ (u(q),+∞) is the real
algebraic hypersurface Γλ ⊂ Γ defined by

x1 + · · ·+ xn−2 +
q

x1 · · ·xn−2
(
1 + x2n−1 + x2n

)
= λ.

It is easy to see that Γλ is compact and it has the homotopy type of a sphere. Indeed, the map

Γ \ {u(q)} → (u(q),+∞), x 7→ f(x, q)

is proper and regular. Therefore, according to the Ehresmann’s fibration theorem, it must be
a locally trivial fibration and hence a trivial fibration, because (u(q),+∞) is a contractible man-
ifold. If λ is sufficiently close to u(q), then Γλ is contained in a Morse coordinate neighborhood



Reflection Vectors and Quantum Cohomology of Blowups 55

of the critical point
(
q1/(n−1), . . . , q1/(n−1), 0, 0

)
. Switching to Morse coordinates for f , we get

that the fiber Γλ is diffeomorphic to the (n− 1)-dimensional sphere.
Let use denote by Γ≤λ the subset of Γ defined by the inequality

x1 + · · ·+ xn−2 +
q

x1 · · ·xn−2
(
1 + x2n−1 + x2n

)
≤ λ.

Note that Γ≤λ is a manifold with boundary and its boundary is precisely ∂Γ≤λ = Γλ. Put

I(q, λ) :=
∫
Γ≤λ

(λ− f(x, q))m−
n
2
− 1

2

Γ
(
m− n

2 + 1
2

) ω,

where

ω :=
dx1 ∧ · · · ∧ dxn

x1 · · ·xn−2
(
1 + x2n−1 + x2n

) .
Lemma 6.3. The following formula holds:∫

Γ
e−f(x,q)sω = sm−

n
2
+ 1

2

∫ ∞
u(q)

e−λsI(q, λ)dλ.

Proof. Using Fubini’s theorem, we transform

I(q, λ) =
∫ λ

u(q)

(λ− µ)m−
n
2
− 1

2

Γ
(
m− n

2 + 1
2

) ∫
Γµ

ω

df
dµ.

Therefore,∫ ∞
u(q)

e−λsI(q, λ)dλ =

∫ ∞
u(q)

∫ λ

u(q)
e−λs

(λ− µ)m−
n
2
− 1

2

Γ
(
m− n

2 + 1
2

) ∫
Γµ

ω

df
dµdλ.

Exchanging the order of the integration, we get∫ ∞
u(q)

(∫ ∞
µ

e−λs
(λ− µ)m−

n
2
− 1

2

Γ
(
m− n

2 + 1
2

) dλ)∫
Γµ

ω

df
dµ = s−m+n

2
− 1

2

∫ ∞
u(q)

e−µs
∫
Γµ

ω

df
dµ.

Recalling again Fubini’s theorem we get that the above iterated integral coincides with∫
Γ
e−f(x,q)sω.

The formula stated in the lemma follows. ■

According to the above lemma, the Laplace transform of the integral I(q, λ) is given by the
following formula:∫ ∞

u(q)
e−λsI(q, λ) = s−m+n

2
− 1

2

∫
Γ
e−f(x,q)sω =: F (s).

Let us recall Proposition 6.2 and note that f(x, q) has the following rescaling symmetry:

f
(
s · x, sn−1q

)
= f(x, q)s,

where

s · (x1, . . . , xn) = (sx1, . . . , sxn−2, xn−1, xn).
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Note that if s > 0 is a positive real number, then the integration cycle and the holomorphic
form ω are invariant under the rescaling action by s. Therefore, the formula from Proposition 6.2
yields the following formula:∫

Γ
e−f(x,q)sω =

1

2i

∫ ϵ+i∞

ϵ−i∞
q−xΓ(x)n−1s−(n−1)x

dx

x
.

Therefore, the function

F (s) =
1

2i

∫ ϵ+i∞

ϵ−i∞
q−xΓ(x)n−1s−(n−1)x−m+n

2
− 1

2
dx

x
.

Comparing the above formula with (6.4) and using that the Laplace transformation is injective
on smooth functions, we get that G(q, λ) = 2i(2π)(n−1)/2I(q, λ). Finally, in order to complete
the proof of Proposition 5.13, we need only to check that the analytic continuation of I(q, λ)
around λ = u(q) = (n − 1)q1/(n−1) transforms I(q, λ) into −I(q, λ). This however is a local
computation. Indeed, if λ is sufficiently close to (n − 1)q1/(n−1), then the integration cycle
defining I(q, λ) is sufficiently close to the critical point

(
q1/(n−1), . . . , q1/(n−1), 0, 0

)
. By switching

to Morse coordinates, we get∫
Γµ

ω/df = (µ− u(q))
n
2
−1P (q, µ),

where P (q, µ) is holomorphic at µ = u(q) (see [1, Section 12.1, Lemma 2]). Therefore,

I(q, λ) =
∫ λ

u(q)

(λ− µ)m−
n
2
− 1

2

Γ
(
m− n

2 + 1
2

) (µ− u(q))n
2
−1P (q, µ)dµ. (6.6)

Changing the variables µ − u(q) = t(λ − u(q)), we get λ − µ = (1 − t)(λ − u(q)) and dµ =
(λ− u(q))dt, we get∫ λ

u(q)

(λ− µ)m−
n
2
− 1

2

Γ
(
m− n

2 + 1
2

) (µ− u(q))i+n
2
−1dµ =

∫ 1

0

(1− t)m−
n
2
− 1

2

Γ
(
m− n

2 + 1
2

) ti+n
2
−1dt (λ− u(q))i+m−1/2

= Γ(i+ n/2)
(λ− u(q))i+m−1/2

Γ(i+m+ 1/2)
.

Substituting the Taylor series expansion of P (q, µ) =
∑∞

i=0 Pi(q)(µ− u(q))i at µ = u(q) in (6.6)
and using the above formula, we get

I(q, λ) = (λ− u(q))m−1/2
∞∑
i=0

Γ(i+ n/2)

Γ(i+m+ 1/2)
Pi(q)(λ− u(q))i.

The above expansion is clearly anti-invariant under the analytic continuation around λ = u(q).

A Bending the contour

For the sake of completeness we would like to prove that if λ is a positive real number, such
that, λ > (n− 1)q1/(n−1), then

lim
K→+∞

∫
CK

q−xλ(n−1)x
Γ(x)n−1

Γ
(
−n

2 + (n− 1)x+m+ 1
2

) dx
x

= 0,
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where CK is the contour defined in Section 6.1 (see Figure 1). The integrand of the above
integral differs from the integrand in (6.3) by the constant factor λ−

n
2
+m− 1

2 . Therefore, the
vanishing result needed in the derivation of (6.3) follows from the above statement.

Let us consider first the upper horizontal part of CK , that is, x = a+ iK, δ−K ≤ a ≤ ϵ. The
estimate in this case is a direct consequence of the Stirling’s formula for the gamma function.
Namely, recall that if x = a+ ib /∈ (−∞, 0], then

|Γ(x)| =
√
2πe−a−|b||Arg(x)||x|a−1/2(1 + o(1)),

where −π < Arg(x) < π and o(1) → 0 uniformly when |x| → ∞ in any proper subsector
−π < α ≤ Arg(x) ≤ β < π. Put c := −n

2 +m+ 1
2 . Using Stirling’s formula, we get

|Γ((n− 1)x+ c)| =
√
2πe−(n−1)a−c−(n−1)|b||Arg(x+c/(n−1))|

× |(n− 1)x+ c|(n−1)a+c−1/2(1 + o(1)).

Note that |Arg(x+ c/(n− 1))| ≤ |Arg(x)| because we may choose m so big that c > 0 while

|(n− 1)x+ c|(n−1)a+c−1/2 = (n− 1)(n−1)a|x|(n−1)a+c−1/2O(1).

Moreover, both (n − 1)x + c and x belong to the sector −3π
4 ≤ Arg(x) ≤ 3π

4 for all x in the
horizontal integration contour. Therefore, we have an estimate of the form

|Γ((n− 1)x+ c)|−1 ≤ const(n− 1)−(n−1)a|x|−(n−1)a−c+1/2e(n−1)a+(n−1)|b||Arg(x+c/(n−1))|,

for all x in the upper horizontal part of CK , where the constant is independent of K. Note
that |q−xλ(n−1)x| = q−aλ(n−1)a. Combining all these estimates together, we get that the absolute
value of the integrand along the upper horizontal contour can be bounded from above by

const((n− 1)q1/(n−1)/λ)(n−1)a|x|−m−1/2|da| ≤ constK−m−1/2|da|,

where we used that λ > (n − 1)q1/(n−1) and |x|2 ≤ K2 + (K + ϵ − δ)2 ≤ (1 + |ϵ − δ|)2K2 for
all x = a+ iK (δ −K ≤ a ≤ ϵ). Therefore, up to a constant independent of K the integral is
bounded by K−m+1/2 which proves that the integral vanishes in the limit K →∞.

The estimate for the lower horizontal part of CK , that is, x = a− iK, δ −K ≤ a ≤ ϵ is the
same as above. Let us consider the vertical part x = δ−K+ ib, −K ≤ b ≤ K. In order to apply
Stirling’s formula, let us first recall the reflection formula for the gamma function

Γ(x) = Γ(1− x)−1 2πi

e2πix − 1
eπix.

If x is on the vertical part of the integration contour, then −x belongs to a proper subsector
of −π < Arg(x) < π in which the Stirling’s formula for Γ(1 − x) = (−x)Γ(−x) can be applied,
that is,

|Γ(x)| =
√
2π

e−πb∣∣e2πiae−2πb − 1
∣∣ |x|a−1/2e−a+|b||Arg(−x)|(1 + o(1)),

where x = a+ ib. Similarly,

|Γ((n− 1)x+ c)| =
√
2π

e−π(n−1)b∣∣e2πi((n−1)a+c)e−2π(n−1)b − 1
∣∣ |(n− 1)x+ c|(n−1)a+c−1/2

× e−(n−1)a−c+(n−1)|b||Arg(−x−c/(n−1))|(1 + o(1)).
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Note that if x = a+ib is on the integration contour, then a = δ−K and (n−1)a+c = µ+m−K,
where µ = (n − 1)(δ − 1/2). Therefore, e2πia = e2πiδ and e2πi((n−1)a+c) = e2πiµ are constants
independent of K. Moreover, we chose both µ and δ to be non-integers, so e2πiδ−1 and e2πiµ−1
are non-zero. We get

|Γ(x)|n−1

|Γ((n− 1)x+ c)x|
≤ const

∣∣e2πiµe−2π(n−1)b − 1
∣∣∣∣e2πiδe−2πb − 1

∣∣n−1 |x|(n−1)(a−1/2)−1

|(n− 1)x+ c|(n−1)a+c−1/2

× e(n−1)|b|(|Arg(−x))|−|Arg(−x−c/(n−1))|(1 + o(1)).

The first fraction is clearly a bounded function in b ∈ R. For the second one, we have

|x|(n−1)(a−1/2)−1

|(n− 1)x+ c|(n−1)a+c−1/2 ≤ const
|x|−m−1/2

(n− 1)(n−1)a
.

Finally, for the exponential term, let us look at the triangle formed by vectors −x and −x −
c/(n−1). The area of this triangle is |b|c

2(n−1) . On the other hand, the difference θ := |Arg(−x))|−
|Arg(−x− c/(n− 1))| as K →∞ tends to 0 uniformly in x = δ−K + ib for |b| ≤ K. Therefore,
up to a constant independent of K we can bound θ from above by sin θ. Using that the area of
the triangle is also 1

2 |x||x+ c/(n− 1)| sin θ, we get

(n− 1)|b|(|Arg(−x))| − |Arg(−x− c/(n− 1))|

= (n− 1)|b|θ ≤ const |b| sin θ ≤ const
b2c

|x||(n− 1)x+ c|
.

The above expression is bounded by a constant independent ofK. We get the following estimate:

|Γ(x)|n−1

|Γ((n− 1)x+ c)x|
≤ constK−m−1/2(n− 1)(n−1)K

for all x = δ − K + ib, −K ≤ b ≤ K, where the constant is independent of K. Finally, since∣∣q−xλ(n−1)x∣∣ = q−aλ(n−1)a, we get the following estimate:∣∣∣∣q−xλ(n−1)x Γ(x)n−1

Γ((n− 1)x+ c)x

∣∣∣∣ ≤ const
(
(n− 1)q

1
n−1 /λ

)(n−1)K
K−m−1/2.

Since λ > (n−1)q
1

n−1 the integral along the vertical segment of CK , up to a constant, is bounded
by K−m+1/2. Therefore, the integral vanishes in the limit K →∞.
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