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Abstract. We develop a framework for systematic study of symmetry transformations of
sigma-model currents in a special situation, when symmetries have a well-defined projection
onto the target space. We then apply this formalism to pure spinor sigma-models, and de-
scribe the resulting geometric structures in the target space (which in our approach includes
the pure spinor ghosts). We perform a detailed study of the transformation properties of
currents, using the formalism of equivariant cohomology. We clarify the descent procedure
for the “universal” deformation corresponding to changing the overall scale of the worldsheet
action. We also study the contact terms in the OPE of BRST currents, and derive some
relations between currents and vertex operators which perhaps have not been previously
acknowledged. We also clarify the geometrical meaning of the “minimalistic” BV action for
pure spinors in AdS.
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1 Introduction

Consider a two-dimensional sigma-model invariant under some group of symmetries. Infinitesi-
mal symmetries form a Lie algebra g. For each ξ ∈ g, there is a corresponding infinitesimal field
transformation δξ. The Lagrangian is invariant up to a total derivative:

δξL = dα⟨ξ⟩. (1.1)

We consider the Lagrangian as a two-form on the worldsheet; α is a one-form. We use angular
brackets, to emphasize that α depends on ξ linearly. Noether charge, which we denote Q⟨ξ⟩, is
given by an integral of a conserved current over a space-like contour on the worldsheet

Q⟨ξ⟩ =
∮
j⟨ξ⟩.

The charges transform covariantly up to constant cocycles

δξQ⟨η⟩ = Q⟨[ξ, η]⟩+ C⟨ξ, η⟩,

where C⟨ξ, η⟩ is constant (i.e., field-independent). In many cases, it is true that C⟨ξ, η⟩ = 0, and
we will here assume that this is the case. Then, it follows that the currents transform covariantly
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up to a total derivative

δξj⟨η⟩ = j⟨[ξ, η]⟩+ dΨ⟨ξ, η⟩. (1.2)

In this paper, we will investigate various general properties of α and Ψ, and the relation between
them, in one special case. This special case is when the symmetries are “projectable to the target
space”, in the sense which we explain now.

1.1 Symmetries projectable to the target space

The phase space is usually the cotangent bundle over the configuration space. Symmetries act in
the cotangent space. In this paper, we will concentrate on a special case, when the symmetries
have a well-defined projection on the configuration space. (This is not true in general, since the
symmetry transformation of coordinates may depend on momenta.) Moreover, we assume that
an infinitesimal symmetry ξ corresponds to a vector field v⟨ξ⟩ on the target space. (This would
not be the case if derivatives of the fields were involved.)

In this special case, α⟨ξ⟩ of equation (1.1) can be viewed as a one-form on the target space
linearly dependent on ξ as a parameter. Similarly, the Ψ of equation (1.2) can be viewed as
a function on the target space parametrized by ξ and η. We explain that α and Ψ should be
thought of as defining the cochains of the bicomplex d+dLie, where d is the de Rham differential
in the target space X, and dLie the differential of the Lie algebra cohomology complex. We derive
several relations between α, Ψ, and various objects associated with them. The first observation
is that there exists V , a 2-cochain of g with values in C∞(X), such that

(dLie + d)(V − α) =W − dα,

where W is constant on the target space; it defines a cohomology class [W ] ∈ H3(g,R). See
Section 2.

The relation between α and Ψ is discussed in Section 5. We formulate it in terms of the
“BRST model” of equivariant cohomology (see [8]):

dBRST(V − α) =W +Ψ+ · · · .

Details are described in Section 5.
As a first example, we consider the WZW model in Section 6. Then we discuss applications

to the pure spinor sigma-models.

1.2 Applications to pure spinor superstring

Our study is motivated mostly by the pure spinor sigma-model of [6], and it will be our main
example. We will restrict ourselves to Type II string. The corresponding sigma-model, in any
background, has the following distinguishing property. There are always two anticommuting
nilpotent symmetries, QL and QR:

{QL, QL} = {QR, QR} = {QL, QR} = 0

and two u(1) symmetries called “ghost numbers”. The QL and QR have charges (1, 0) and (0, 1),
correspondingly, under these two symmetries.

1.2.1 Universal vertex operator

The Lagrangian is only BRST invariant up to a total derivative

QLL = dαL, QRL = dαR, QLαL = dVLL,

QLαR +QRαL = dVLR, QRαR = dVRR.
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This defines the “universal vertex operator”

V = VLL + VLR + VRR, (QL +QR)V = 0.

It is the unintegrated vertex operator corresponding to the overall scale of the worldsheet ac-
tion. Its descent works off-shell on the worldsheet, and has a general description in any curved
background.

The case of flat space is special. In this case V is BRST exact

V = (λLΓ
mθL)(λRΓ

mθR) = −(QL +QR)

(
1

2
(Xm[(λLΓ

mθL)− (λRΓ
mθR)])

)
. (1.3)

Notice that (λLΓ
mθL)−(λRΓ

mθR) is the ghost number one vertex operator corresponding to the
translation. Generally speaking, exact vertices Q(vm(X)[(λLΓ

mθL)− (λRΓ
mθR)]) correspond to

infinitesimal target space diffeomorphisms. In particular, the V of equation (1.3) correspond to
space-time dilatations. Although the flat space V is BRST exact, there is still an obstacle to
being able to choose a BRST-invariant Lagrangian. It is a nontrivial element of H1

(
Q,Ω1(X)

)
– the ghost number one BRST cohomology in one-forms on the target space. While in general
background the obstacle is inH2(Q,C∞(X)), in flat space it is inH1

(
Q,Ω1(X)

)
. See Section 10.

1.2.2 BRST invariance of BRST currents

While the Lagrangian is only invariant up to a total derivative, the BRST currents are BRST
closed strictly (not just up to a total derivative). Moreover, they are actually BRST exact.
We will give a concise proof of this in Section 8. This is a consequence of the ghost number
symmetry, which acts on fields as a phase rotation.

1.2.3 Non-covariance of global symmetry currents

Generally speaking, currents transform covariantly only up to a total derivative. As a simple
example, consider superstring in flat space in pure spinor or Green–Schwarz formulation. The
supersymmetry currents are, schematically

SL = θLθLpL + ∂+XθL,

we have δLSL ≃ ∂x and δRSR ≃ ∂̄x. This is not covariant. (The covariant transformation would
have P = ∗dx on the right-hand side.) The difference is in the total derivative dx. There is
a cohomology class responsible for this non-covariance, equation (10.6).

1.2.4 Contact terms

The BRST currents j⟨QL⟩ and j⟨QR⟩ are holomorphic and antiholomorphic, respectively

j⟨QL⟩ = jLz dz, j⟨QR⟩ = jRz̄ dz̄.

In Section 9, we study the contact term in the OPE of jL and jR and formulate a conjecture
about its relation to the universal vertex operator.

1.2.5 Vertex operators corresponding to currents

In Sections 10 and 11, we apply our formalism to pure spinor sigma-models in flat space and AdS.
Global symmetry currents in AdS are invariant under psu(2, 2|4). To each global current ja
corresponds a ghost number one vertex operator Λa. Our formalism implies some relations
between them. We also clarify the geometrical meaning of the “minimalistic” B-field of [14].

In Section 12, we discuss some subtleties in taking the flat space limit of AdS.
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1.3 Previous work

There have been many studies of currents in sigma-model, in particular following [1]. We would
especially mention [15, 16, 18], which have some overlap with this work. Our treatment of the
worldsheet symplectic structure and global symmetries is similar to the one developed in greater
generality in [9] and [7]. It would be interesting to see if some results of our work could be
extended to more general case (dimension higher than two and symmetries not projectable to
the target space) using that more general approach.

2 Noether currents

2.1 Symmetries projectable onto the target space

Consider a classical field theory. Its phase space is T ∗F where F is the space of field configu-
rations. We assume that our theory is a sigma-model. This means that field configurations are
maps from the worldsheet Σ to the target space X:

F = Maps(Σ, X).

Suppose that the theory is invariant under a Lie group G, and the action of G comes from the
action on the target space X.

2.2 The structure of Noether currents

2.2.1 Symplectic structure on the phase space of classical sigma-model

The symplectic potential ϑ is a one-form on the phase space and a one-form on the worldsheet,
which is defined by considering the variation of the Lagrangian. Let us pick a solution of
classical equations of motion, and consider its infinitesimal deformation δ as an off-shell field
configuration. This means that our variation does not have to preserve the equations of motion,
but the original configuration which we are varying is on-shell. Since the original configuration
is on-shell, the variation of the Lagrangian is a total derivative of some 1-form on the worldsheet:

δL = dϑ.

Here d is the de Rham differential on the worldsheet, and δ is the de Rham differential on the
phase space. Pick a space-like closed oriented contour on the worldsheet, and let

∮
ϑ mean

the integral of ϑ over this contour. The “symplectic potential” (a.k.a. “pδq”) is defined as the
restriction of

∮
ϑ to on-shell variations:∮

ϑ|on-shell = pδq.

The density of symplectic form is the exterior derivative of ϑ on the phase space:

ω = δϑ.

2.2.2 Equivalence class of one-forms on the target space associated to a symmetry

Definition of α⟨ξ⟩. Consider a symmetry ξ of the target space. If ϑ is invariant under
the symmetry, then the Noether charge is the contraction of the infinitesimal symmetry vector
with pδq, i.e., Q⟨ξ⟩ = pδξq. In this case, the corresponding current is

j⟨ξ⟩ = ιξϑ = ϑ|δq 7→δξq.
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This formula for the current is only valid if the Lagrangian is invariant under the symmetry.
However, the Lagrangian might change by a total derivative

δξL = di∗α⟨ξ⟩,

where α is some 1-form on the target space, i : Σ −→ X is the field configuration of the sigma-
model, i∗α is the pullback of α to the worldsheet. The one-form α depends linearly on ξ ∈ g
as a parameter. Notice that we use angular brackets α⟨ξ⟩ to emphasize that the dependence is
linear.

In this case,

δξϑ = δi∗α⟨ξ⟩

and the current is

j⟨ξ⟩ = ιξϑ+ i∗α⟨ξ⟩. (2.1)

The Noether charge is the integral of the current over a space-like contour:

Q⟨ξ⟩ =
∮
τ=const

j⟨ξ⟩.

Indeed,

δQ⟨ξ⟩ = ιξ

∮
ω.

In terms of the momentum variables pI ,

j⟨ξ⟩ =
(
δξx

I
)
pI + i∗α⟨ξ⟩.

(The expansion of j⟨ξ⟩ in powers of p terminates at the linear term, because we are assuming
that the symmetry is projectable to the target space.)

Ambiguities in the definition of α⟨ξ⟩. The 1-form α is defined up to a total derivative
and up to a symmetry variation of a one-form

α⟨ξ⟩ ≃ α⟨ξ⟩+ d(smth⟨ξ⟩) + Lξ(smth).

The ambiguity of adding d(smth⟨ξ⟩) is because the current j⟨ξ⟩ is defined only up to a total
derivative.

The ambiguity of adding Lξ(smth) is because the Lagrangian L is given only up to a total
derivative. Replacing L with L+dΛ with Λ ∈ Ω1(X) is equivalent to a canonical transformation:

(
pI , x

I
)
7→

(
pI +

∂

∂xI
F, xI

)
(2.2)

for any F of the form

F =

∮
τ=const

i∗Λ,

where Λ is any 1-form on the target space. This would change

α⟨ξ⟩ 7→ α⟨ξ⟩+ LξΛ.
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2.3 Poisson bracket of charge with current

The charges satisfy

δξQ⟨η⟩ = {Q⟨ξ⟩,Q⟨η⟩} = Q⟨[ξ, η]⟩.

But the Poisson bracket of charge with current is more complicated. Let us choose, for each ξ ∈ g,
the corresponding α (i.e., “fix by hand” the ambiguity of adding d(. . .) to α), so that we have
a linear map

g −→ Ω1(X), ξ 7→ α⟨ξ⟩.

Then the charge-current Poisson bracket can be expressed through the Courant bracket:

{Q⟨ξ⟩, j⟨η⟩} = j⟨[(ξ, α⟨ξ⟩), (η, α⟨η⟩)]Courant⟩,

where

[(ξ, α⟨ξ⟩), (η, α⟨η⟩)]Courant = ([ξ, η],Lv⟨ξ⟩α⟨η⟩ − Lv⟨η⟩α⟨ξ⟩+ dιv⟨η⟩α⟨ξ⟩). (2.3)

Here the term Lv⟨ξ⟩α⟨η⟩ comes from
{∮

ξIpI , α⟨η⟩
}

and the term −Lv⟨η⟩α⟨ξ⟩ + dιv⟨η⟩α⟨ξ⟩ =

−ιv⟨η⟩dα⟨ξ⟩ comes from
{
ηIpI ,

∮
α⟨ξ⟩

}
.

2.4 Descent

The Lie algebra differential is defined as follows [10, 11, 12]:

(dLieα)⟨ξ ∧ η⟩ = Lv⟨ξ⟩α⟨η⟩ − Lv⟨η⟩α⟨ξ⟩ − α⟨[ξ, η]⟩.

In particular, the deviation of the current from transforming covariantly is

δξj⟨η⟩ − j⟨[ξ, η]⟩ = dLieα⟨ξ ∧ η⟩+ dιv⟨η⟩α⟨ξ⟩. (2.4)

Lemma 2.1. Exists V ⟨ξ ∧ η⟩ satisfying

(dLieα)⟨ξ ∧ η⟩ = d(V ⟨ξ ∧ η⟩). (2.5)

Proof. The Poisson bracket of charges is

{Q⟨ξ⟩,Q⟨η⟩} = Q⟨[ξ, η]⟩.

Consider field configurations which have p = 0 at τ = 0. For such configurations, equation (2.3)
implies∮

i∗
(
Lv⟨ξ⟩α⟨η⟩ − Lv⟨η⟩α⟨ξ⟩ − α⟨[ξ, η]⟩

)
= 0,

where the integral is over the spacial slice τ = 0. The image of this spacial slice in the target
space can be any one-dimensional closed contour. Therefore, Lv⟨ξ⟩α⟨η⟩ −Lv⟨η⟩α⟨ξ⟩ −α⟨[ξ, η]⟩ is
d-exact, equation (2.5). ■

Consider

W = dLieV. (2.6)

We observe that W is a function (0-form) and dW = 0; therefore W = const. Equation (2.6)
implies that W is exact as a 3-cocycle with coefficients in C∞(X). But since W = const, we
can as well consider W as a 3-cocycle of g with coefficients in R ⊂ C∞(X). Then we can ask
if it is exact in the cochain complex with constant coefficients. The question is: is it possible
to represent W as dLie(. . .) where . . . is constant on X? If it is not possible, then W defines
a nontrivial cohomology class with constant coefficients:

[W ] ∈ H3(g,R).
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2.4.1 Case [W ] = 0

In this case we can assume that dLieV = 0, by adding a constant to V .

Case H2(g, C∞(X)) = 0. In this case V = dLieu, we can modify α 7→ α + du, and then
dLieα = 0. Suppose that also H1

(
g,Ω1(X)

)
= 0, then we can choose the Lagrangian to be

g-invariant, and the currents g-covariant.

In Section 10.6, we consider an example where H2(g, C∞(X)) = 0 but H1
(
g,Ω1(X)

)
̸= 0.

Then, the Lagrangian can not be chosen to be invariant, and the currents cannot be chosen in
such a way that they would transform covariantly.1

Case H2(g, C∞(X)) ̸= 0. In this case, V ∈ H2(g, C∞(X)) is an obstacle to finding an
invariant Lagrangian. We may call it “generalized universal vertex operator”, because vertex
operators of pure spinor formalism provide an important example of this situation. The BRST
transformations generate a supercommutative Lie superalgebra R0|2, and H2

(
R0|2, C∞(X)

)
̸= 0.

This is precisely the BRST cohomology at ghost number two, corresponding to physical states,
therefore V is one of the physical states. This is the “universal vertex operator”, see Section 8.

2.5 Ascent

Equation (2.5) implies

(dLiedα)⟨ξ ∧ η⟩ = 0. (2.7)

Suppose that the first cohomology group of H1
(
g,Ω2(X)

)
= 0. Then equation (2.7) implies the

existence of a two-form B such that

dα⟨ξ⟩ = Lv⟨ξ⟩B.

We denote

H = dB.

Then

H +W = (dLie + d)(B − α+ V ).

It is often true that H1
(
g,Ω2(X)

)
= 0, by some version of Shapiro’s lemma [10, 12]. For

example, this is true for the super-Poincaré symmetries in the pure spinor formalism in flat
space, see Section 10.

3 BRST language for Lie algebra cohomology

Until this point we assumed that g is usual (not super) Lie algebra. When considering the
cohomology complex of Lie superalgebras, sign rules may be confusing. Here we will suggest
a formalism which automatically takes into account the ± signs.

Let M be a g-module. Let ρ denote the representation of g in M :

ρ : g → End(M).

The odd tangent space ΠTG is defined so that for all supermanifolds X:

Map(X,ΠTG) = Map
(
X × R0|1, G

)
.

1We want to thank the referee for correcting an error in the first version of this paper.
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Notice that the body of ΠTG is the space of “odd loops”:

(ΠTG)rd = Map
(
R0|1, G

)
.

As a slight variation of the construction in [2], we consider the following linear space:

C(g,M) =M ⊗G C
∞(ΠTG).

It is possible to consider a family, parameterized by a supermanifold X:

CX(g,M) =M ⊗G C
∞(X ×ΠTG).

We work in a formal neighborhood of the unit of G, and M does not have to be an integrable
representation. Elements of C(g,M) are M -valued functions of the form

(x, g) 7→ ρ(g(ψ))v
(
x, g(ψ)−1∂ψg(ψ)

)
. (3.1)

Here v ∈ C∞(X × Πg), ψ ∈ C∞
1̄
(X) is some odd function on X, and we use an abbreviated

notation:

g(ψ)−1∂ψg(ψ) =
∂

∂ζ
g(ψ)−1g(ψ + ζ),

where ζ is a Grassmann odd variable.2 It is useful to observe

∂ζ(g(ζ)
−1∂ζg(ζ)) = −1

2

{
g(ζ)−1∂ζg(ζ), g(ζ)

−1∂ζg(ζ)
}
.

We may decompose into the basis of g:

g(ζ)−1∂ζg(ζ) =
(
g(ζ)−1∂ζg(ζ)

)A
tA.

and introduce the “ghost” notation:

CA =
(
g(ζ)−1∂ζg(ζ)

)A
.

Elements of C(g,M) are in one-to-one correspondence with M -valued polynomial functions
on Πg:

v ∈M ⊗ S•(Πg)∗.

(Here S•(. . .) denotes the space of symmetric tensors of any rank, and therefore S•(Πg)∗ the
space of polynomial functions on Πg.) Given v, the corresponding function of the form equa-
tion (3.1) will be called Fv:

(Fv)(ζ, g) = ρ(g(ζ))v
(
g(ζ)−1∂ζg(ζ)

)
.

The differential of the Lie algebra cohomology complex is denoted dLie and defined as follows:

∂ζF = FdLie.

These definitions work for g a Lie superalgebra. If g is a usual (not super) Lie algebra, then we
can identify

M ⊗ S•(Πg)∗ = Hom

(⊕
n≥0

Λng,M

)
and our definition returns to the usual definition of Lie algebra cohomology complex.

2All we need from X is a Grassmann odd “constant” ψ. In this approach to supermanifolds, we get it by
considering families of constructions parameterized by a supermanifold X.
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4 Target space bicomplex

The central role in our considerations is played by two anticommuting differentials. One is dLie –
the differential in the Serre–Hochschild complex of a Lie superalgebra. Another is d – the
de Rham differential on X. Here we will discuss some basic properties of the bicomplex d+dLie.

Consider the nilpotent operator d+dLie acting on the cochains of g with values in differential
forms on X. It is related to the de Rham operator d by a similarity transformation:

d + dLie = eC
AιvA

(
d + d

(0)
Lie

)
e−C

AιvA , d
(0)
Lie =

1

2
CACBfAB

C ∂

∂CC
. (4.1)

where vA is the vector field on the target space corresponding to the infinitesimal symmetry. In
this work, we only need differential forms which are polynomial in the differentials. We do not
need pseudodifferential forms. Let us assume that the de Rham cohomology of X is R (constant
functions). Then, equation (4.1) implies that the cohomology of d + dLie is H•(g,R).

Let ω ∈ Ωn(X). Then

dLie
(
ιnv⟨C⟩ω

)
=

1

n+ 1
ιn+1
v⟨C⟩dω. (4.2)

To prove this, let us rewrite equation (4.1) as follows:

dLie e
CAιvA =

[
eC

AιvA ,d
]
+ eC

AιvAd
(0)
Lie.

Acting by the left-hand side and the right-hand side on ω, we get

dLie e
CAιvAω =

[
eC

AιvA , d
]
ω

since d
(0)
Lieω = 0. Consider the coefficient of Cn+1. Since ω is an n-form, only eC

AιvAdω con-

tributes from
[
eC

AιvA ,d
]
ω on the right-hand side, and equation (4.2) follows.

5 Transformation of currents

We will now investigate under which conditions the currents transform covariantly, i.e.,

δξj⟨η⟩
?
= j⟨[ξ, η]⟩. (5.1)

5.1 Currents transform in an extension of the adjoint representation

Currents transform covariantly up to a total derivative:

δξj⟨η⟩ = j⟨[ξ, η]⟩+ d(Ψ⟨ξ⟩⟨η⟩). (5.2)

This is the definition of Ψ⟨ξ⟩⟨η⟩. This defines an extension A of the adjoint representation of g:

0 −→ C∞(X)

R
−→ A −→ adg −→ 0.

The explicit expression for the cocycle Ψ follows from equations (2.4) and (2.5):

Ψ mod const ∈ Ext1
(
g,
C∞(X)

R

)
= H1

(
g,Hom

(
adg,

C∞(X)

R

))
,

Ψ⟨ξ⟩⟨η⟩ = V ⟨ξ ∧ η⟩+ ιv⟨η⟩α⟨ξ⟩, (5.3)

V ∈ H2

(
g,
C∞(X)

R

)
,

dV = dLieα. (5.4)

We will now develop a general formalism to understand equation (5.3).
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5.2 Some maps between complexes

For a Lie superalgebra g, let Cg be the Lie superalgebra generated by Lie derivatives Lξ and
contractions ιξ for ξ ∈ g, see [8, Section 10] where it is called gsuper or g[ϵ]; it has a differential.

Let M be a differential g-module, i.e., a representation of Cg with a compatible differen-
tial dM . In our case, M is the space of differential forms on X.

Consider a map

L : Cn(g,M) → Cn(g,Hom(g,M)), L(a) =
[
C 7→

[
η 7→ LMη (a(C))

]]
.

This map is homotopy trivial:

L = IdMLie + d
Hom(g,M)
Lie I, (5.5)

where

I : Cn(g,M) → Cn−1(g,Hom(g,M)), I(a) =
[
η 7→ ηA

∂

∂CA
a

]
.

Indeed, using the notations of Section 3,

FL = (ηg)
∂

∂g
F ,

i.e., the infinitesimal left shift of g by η. At the same time

FI = (ζηg)
∂

∂g
F .

Since dLie corresponds to ∂ζ , equation (5.5) follows. The construction so far only requires thatM
is a g-module.

But once M is a differential g-module, there is yet another map which we call J:

J : Cn(g,M) → Cn(g,Hom(g,M)), J(a) =
[
η 7→ −ιMη a

]
.

It intertwines the two complexes:

JdMLie = d
Hom(g,M)
Lie J.

Indeed, in notations of Section 3,

FJ = −ιMη F .

It acts just onM , and does not know anything about g(ζ).3 Notice that I+J intertwines cochain
complexes with values in M and Hom(g,M) with differential dM + dLie.

With these notations equation (5.3) can be written as follows:

Ψ = IV − Jα.

In particular, if α = 0, then equation (5.1) is satisfied:

� If Lagrangian is invariant, then currents transform covariantly.

But the precise conditions for the covariant transformation of currents are weaker than the
invariance of Lagrangian, and we will now derive it. We will start by establishing a relation to
the formalism of equivariant cohomology.

3For example,

JdLiedX
m = J

(
−1

2

(
γLΓ

mdθL
)
− 1

2

(
γRΓ

mdθR
))

= −1

2

(
γLΓ

mηL
)
− 1

2

(
γRΓ

mηR
)
,

dLieJdXm = dLie

(
ηm − 1

2

(
ηLΓ

mθL
)
− 1

2

(
ηRΓ

mθR
))

= −
(
ηLΓ

mγL
)
−

(
ηRΓ

mγR
)
+

1

2

(
ηLΓ

mγL
)
+

1

2

(
ηRΓ

mγR
)
− 1

2

(
ηLΓ

mγL
)
− 1

2

(
ηRΓ

mγR
)
.
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5.3 Relation to equivariant cohomology

Various relations between V , α, W and Ψ are encoded in the complex known as “BRST model
of equivariant cohomology”. We will now briefly review the construction of this complex, and
explain how it is useful in our context.

We will start with considering another complex, known as “Weil model”. This is a direct
product of two complexes, and the differential is the sum of two differentials, equation (5.6).
The BRST model is related to it by a similarity transformation, equation (5.7).

5.3.1 Weil model

Weil algebra W is a differential graded super-commutative algebra formed by generators4 C
and η with the differential

dW = η
∂

∂C
+

1

2
[C,C]

∂

∂C
+ [C, η]

∂

∂η
.

We consider the space of functions of C and η with values in M , with the differential

dtot = dW + dM , (5.6)

where dM is the differential of M .

5.3.2 BRST model

We have

e−ιAC
A
(dW + dM )eιAC

A
= dLie + dM + I+ J, (5.7)

where dLie is the Lie algebra cohomology differential with coefficients in Hom(S•adg,M).
(
In this

language I = η ∂
∂C .

)
The nilpotence of dLie+dM + I+ J follows from the nilpotence of dW + dM .

We have

(dLie + dM + I+ J)(V − α) =W +Ψ− dMα− Iα, (5.8)

where

W = dLieV, Ψ = IV − Jα.

It is useful to consider the “total ghost number” defined as follows:

Ntot = (form rank) + C
∂

∂C
+ 2η

∂

∂η
,

Ntot(V − α) = 2(V − α),

Ntot(W +Ψ− dα− Iα) = 3(W +Ψ− dα− Iα).

The grading table is

Ntot form C ∂
∂C 2η ∂

∂η

V 2 0 2 0

α 2 1 1 0

W 3 0 3 0

Ψ 3 0 1 2

dα 3 2 1 0

Iα 3 1 0 2

4Often C is called A and η is called F ; in [8] C is θ and η is ϕ.
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The term with
(
form, C ∂

∂C , 2η
∂
∂η

)
= (1, 2, 0) is missing in equation (5.8), because of equa-

tion (5.4). The nilpotence of dW +dM implies the nilpotence of dLie +dM + I+ J; this is called
“BRST model” in [8].

Therefore,

dLieΨ+ IW = 0, dMΨ = Jdα+ dLieIα. (5.9)

Since W is a constant

dLieΨ = 0 mod const.

(By const we mean constant in the target space, i.e., independent of X, θ, λ; it only depends
on C and η.) Indeed, this is necessary for the consistency with equation (5.2).

Equation (5.8) is not completely general. Without changing the range of gradings on the
right-hand side, we can generalize it as follows:

(dLie + dM + I+ J)(V − α+ φ) =W + (Ψ + dLieφ)− dMα− (Iα− dMφ),

where

φ ∈ C0
(
g,Hom

(
adg,M

0
))

= Hom
(
adg,M

0
)
.

The gradings on the right-hand side are still (0, 3, 0), (0, 1, 2) and (1, 0, 2). But φ can be removed
by adding an exact expression. Indeed, given ψ ∈ C1

(
g,M0

)
, the exact expression is: V ′ −α′ +

φ′ = (dLie + dM + I − J)ψ; α′ = −dMψ, V
′ = dLieψ and φ′ = Iψ. This corresponds to the

ambiguity of adding a total derivative to α.

5.4 Obstacles to covariance of currents

Equation (5.9) implies that the first obstacle to the covariance of currents is

[IW ] ∈ H2(g,Hom(adg,R)). (5.10)

If [IW ] = 0, then we correct Ψ by adding to it a constant, so that dLieΨ = 0. In that case, the
next obstacle is

[Ψ] ∈ H1(g,Hom(adg, C
∞(X))). (5.11)

In many situations, this cohomology group is zero due to Shapiro’s lemma, and currents trans-
form covariantly.

To summarize, the condition of the covariance of the currents is that we can choose Ψ = const.
When this is so, equation (5.3) implies

ιv⟨η⟩α⟨ξ⟩+ (ξ ↔ η) = const. (5.12)

This follows from equation (2.3) and equation (5.1) symmetrized under ξ ↔ η. When equa-
tion (5.12) holds, equation (5.1) becomes equivalent to

Lv⟨ξ⟩α⟨η⟩ − Lv⟨η⟩α⟨ξ⟩ − α⟨[ξ, η]⟩ = d

(
1

2
(ιv⟨ξ⟩α⟨η⟩ − ιv⟨η⟩α⟨ξ⟩)

)
.

This means that we can choose V as follows:

V ⟨ξ ∧ η⟩ = 1

2

(
ιv⟨ξ⟩α⟨η⟩ − ιv⟨η⟩α⟨ξ⟩

)
.

To summarize, here are the conditions for the currents transforming covariantly, i.e., δξj⟨η⟩ =
j⟨[ξ, η]⟩:

ιv⟨η⟩α⟨ξ⟩+ (ξ ↔ η) = C⟨ξ • η⟩, where C⟨ξ • η⟩ is constant, (5.13)

V ⟨ξ ∧ η⟩ = 1

2

(
ιv⟨ξ⟩α⟨η⟩ − ιv⟨η⟩α⟨ξ⟩

)
, (5.14)

where ξ • η stands for symmetric tensor product, and V is from equation (2.5).
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5.5 Strong covariance condition

Equation (5.12) can be strengthened, by requiring: C⟨ξ • η⟩ = 0. Then we have

ιv⟨ξ⟩α⟨η⟩+ ιv⟨η⟩α⟨ξ⟩ = 0.

This is equivalent to the existence of a 2-form b ∈ Ω2(X) such that

α⟨ξ⟩ = ιv⟨ξ⟩b.

Then

(dLieα)⟨ξ ∧ η⟩ = Lv⟨ξ⟩α⟨η⟩ − Lv⟨η⟩α⟨ξ⟩ − α⟨[ξ, η]⟩ = 1

2

(
Lv⟨ξ⟩ιη + ιv⟨η⟩Lξ − (ξ ↔ η)

)
b

= dιv⟨ξ⟩ιηb− ιv⟨ξ⟩ιηdb. (5.15)

In particular, if ιv⟨ξ⟩ιv⟨η⟩db = 0, then V ⟨ξ∧η⟩ = ιv⟨ξ⟩ιv⟨η⟩b (a.k.a. ιv⟨ξ⟩∧v⟨η⟩b) satisfies the cocycle
condition:

(dLieV )⟨ξ ∧ η ∧ ζ⟩ =
[
d, ιv⟨ξ⟩∧v⟨η⟩∧v⟨ζ⟩

]
b = 0.

Under this strong covariance condition,

(dLie + d + I+ J)(V − α+ b) = H = db.

5.6 Asymmetric covariance condition

It is also possible to formulate a weaker condition. We can ask that for some two symmetries ξ
and η:

δξj⟨η⟩ = j⟨[ξ, η]⟩

but perhaps δηj⟨ξ⟩ ≠ j⟨[η, ξ]⟩. This weaker condition follows directly from equations (2.3)
and (2.5):

V ⟨ξ ∧ η⟩ = −ιv⟨η⟩α⟨ξ⟩ mod const. (5.16)

This is not symmetric with respect to ξ ↔ η. For Ψ⟨η⟩⟨ξ⟩ we have, then

Ψ⟨η⟩⟨ξ⟩ = ιv⟨η⟩α⟨ξ⟩+ ιv⟨ξ⟩α⟨η⟩ mod const.

6 Case of WZW model

Here we will relate our considerations to the approach of [17] to WZW model. The target space
is the group manifold, and the symmetry is some combination of left and right shifts.

The non-invariance of the Lagrangian is due to the B-field not being strictly invariant:

Lv⟨ξ⟩B = ιv⟨ξ⟩dB + dιv⟨ξ⟩B. (6.1)

A special role in [17] is played by the one-forms λa such that

ιv⟨ξ⟩dB = ξadλa. (6.2)

Remember that α⟨ξ⟩ is defined up to d(. . .). Equations (6.1) and (6.2) imply that we can
choose α as follows:

α⟨ξ⟩ = ξaλa + ιv⟨ξ⟩B. (6.3)
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Therefore,

ιv⟨η⟩α⟨ξ⟩+ (ξ ↔ η) = ηaξb
(
ιv⟨ta⟩λb + ιv⟨tb⟩λa

)
. (6.4)

The obstacle to gauging in [17] was the right-hand side of equation (6.4), and is therefore very
similar to equation (5.13). All currents in WZW model do transform covariantly, therefore both
equations (5.13) and (5.14) are satisfied. However, only a subgroup can be gauged, where the
constant on the right-hand side of equation (5.13) is zero. The obstacle to gauging is C⟨ξ • η⟩.

It was shown in [17] that

Lv⟨ξ⟩λ⟨η⟩ = λ⟨[ξ, η]⟩.

Now we have

Lv⟨ξ⟩α⟨η⟩ − Lv⟨η⟩α⟨ξ⟩ − α⟨[ξ, η]⟩ = dιv⟨ξ⟩ιv⟨η⟩B − ιv⟨ξ⟩ιv⟨η⟩dB + λ⟨[ξ, η]⟩.

The last two terms actually cancel:

ιv⟨ξ⟩ιv⟨η⟩dB = λ⟨[ξ, η]⟩

and therefore

V ⟨ξ ∧ η⟩ = ιv⟨ξ⟩ιv⟨η⟩B =
1

2

(
ιv⟨ξ⟩α⟨η⟩ − ιv⟨η⟩α⟨ξ⟩

)
.

In the language of ghosts,

V =
1

2
ιv⟨C⟩α⟨C⟩.

Then, equation (4.2) implies that

W ⟨ξ ∧ η ∧ ζ⟩ = ιv⟨ξ⟩ιv⟨η⟩ιv⟨ζ⟩dB.

We have

(dLie + d + I+ J)(V − α+B) =W +Ψ+H + λ, (6.5)

where λ is from equation (6.3), considered as element of C0
(
g,Hom

(
g,Ω1(X)

))
, and other

elements are

W = dLieV ∈ C3(g,R),
Ψ = IV − Jα ∈ C1(g,Hom(g,R)),
H = dB ∈ C0

(
g,Ω3(X)

)
,

λ = −Iα+ JB ∈ C0
(
g,Hom

(
g,Ω1(X)

))
.

We have

IW + dLieΨ = 0,

JH + dλ = 0, (6.6)

Ψ = C(η, C), (6.7)

IΨ+ Jλ = 0. (6.8)

Notice that H + λ is equivariantly closed (i.e., annihilated by d + J) iff Jλ = 0. Equation (6.8)
implies that this is equivalent to

IΨ = 0.
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Under this condition, alsoW +Ψ is dLie+I-closed. Equation (6.7) implies that this is equivalent
to the vanishing of the obstacle to gauging in [17]:

C(η, η) = 0.

Equation (6.5) is the equivariant analogue of the WZW transgression relation

(dLie + d)(V − α+B) =W +H

replacing

d 7→ d + J, dLie 7→ dLie + I, H 7→ H + λ, W 7→W +Ψ,

d with d+ J and dLie with dLie + I. Notice that equation (6.5) does not require the cancellation
of anomaly in the sense of [17]. In fact, Jλ cancels with IΨ, equation (6.8).

7 Pure spinor sigma-model

In this section, we will give a very brief review of the pure spinor worldsheet sigma-model

Most of the applications in this paper are to the Type II pure spinor superstring sigma-
model [3, 6]. This sigma-model can be constructed for any consistent Type II supergravity
background. The set of fields includes some matter fields taking values in a supermanifold
(space-time), and the so-called “pure spinor ghosts”. The pure spinor ghosts are called λαL
and λα̂R, they are constrained to take values in a cone:(

λαLΓ
m
αβλ

β
L

)
=

(
λα̂RΓ

m
α̂β̂
λβ̂R

)
= 0,

where Γmαβ are the ten-dimensional gamma-matrices.

In special backgrounds, such as flat space and AdS5 × S5, the sigma-model has global sym-
metries, basically the isometries of the background. But, crucially, there are two fermionic
symmetries present at any background. They are denoted QL and QR and called “BRST sym-
metries”. They are both nilpotent and anticommuting:

{QL, QL} = {QR, QR} = {QL, QR} = 0.

Moreover, the Noether current corresponding to QL can be chosen to be holomorphic, and the
Noether current corresponding to QR antiholomorphic. They are

j+⟨QL⟩ = λαLdα+, j−⟨QR⟩ = λα̂Rdα̂−.

In flat space,

dα+ = pα+ +
1

2
∂+x

mΓmαβθ
β
L +

1

8

(
θγLΓ

m
γδ∂+θ

δ
L

)
Γmαβθ

β
L, (7.1)

dα̂− = pα̂− +
1

2
∂−x

mΓm
α̂β̂
θβ̂R +

1

8

(
θγ̂RΓ

m
γ̂δ̂
∂−θ

δ̂
R

)
Γm
α̂β̂
θβ̂R. (7.2)

8 Universal vertex operator

Pure spinor superstring in any curved background has a natural deformation, which is the change
of the overall scale of the Lagrangian. It can be thought of as varying the string tension 1

α′ . In this
section, we will explain how this “universal vertex operator” is related to α⟨Q⟩, equation (8.6).
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8.1 Definition for arbitrary curved background

Equation (2.5) implies

LQα⟨Q⟩ = 1

2
dV ⟨Q ∧Q⟩. (8.1)

An important role is played by the ghost number symmetry. In other words, we assume that X
is a graded supermanifold of degree one. (Where x and θ are of degree zero, and λ of degree
one.) Let N be the grading vector field

N = λαL
∂

∂λαL
+ λα̂R

∂

∂λα̂R

and f0 be a function of degree zero (i.e., a function of x and θ only). A direct examination of
the sigma-model Lagrangian in [6] shows that it is exactly invariant under N (since it is just
a phase rotation of ghosts and their momenta). Therefore,

α⟨N⟩ = 0.

Using the freedom of adding a total derivative to α⟨Q⟩, we can choose α⟨Q⟩ so that

ιNα⟨Q⟩ = 0. (8.2)

Indeed, if ιNα ̸= 0, we modify

α 7→ α− dιNα.

Also notice that we can choose V (N,Q) = 0. This is because N is just a phase rotation, therefore
LNα⟨Q⟩ = α⟨[N,Q]⟩. With equation (8.2) this implies

Ψ⟨QL⟩⟨N⟩ = Ψ⟨QR⟩⟨N⟩ = 0.

Therefore,

QLj⟨N⟩ = −j⟨QL⟩, (8.3)

QRj⟨N⟩ = −j⟨QR⟩. (8.4)

In other words, both j⟨QL⟩ and j⟨QR⟩ are BRST exact. Taking into account that LNV = 2V ,
equation (8.1) implies

V =
1

2
ιNdV = ιNLQα = −ιQα. (8.5)

Given equation (5.3), this is consistent with BRST currents being themselves BRST invariant,
in any background. As we know, they are both BRST exact, equations (8.3) and (8.4).

To summarize:

QL = dα⟨Q⟩, LQα⟨Q⟩ = d

(
−1

2
ιQα⟨Q⟩

)
. (8.6)

We must stress that this descent procedure does not require the use of the worldsheet equations
of motion. The second step, equation (8.6), involves purely geometrical objects in the target
space: vector field Q and one-form α⟨Q⟩. This works for all pure spinor backgrounds.
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8.2 Generalization

Suppose that g is a graded Lie superalgebra. The grading operator will be denoted n : g → g.
Let us assume that n is diagonalizable, and all its eigenvalues nonzero

(
in particular, exists n−1

)
.

Moreover, we will assume that there is a vector field N on X, a symmetry of the Lagrangian,
such that

[N, v⟨ξ⟩] = v⟨nξ⟩, LNα⟨ξ⟩ = α⟨nξ⟩, LNV ⟨ξ ∧ η⟩ = V ⟨nξ ∧ η⟩+ ⟨ξ ∧ nη⟩.

We can modify α as follows:

α⟨ξ⟩ 7→ α⟨ξ⟩ − dιNα
〈
n−1ξ

〉
.

Then the modified α satisfies

ιNα = 0.

We have

V ⟨nξ ∧ η + ξ ∧ nη⟩ = ιNdV ⟨ξ ∧ η⟩ = ιN
(
Lv⟨ξ⟩α⟨η⟩ − Lv⟨η⟩α⟨ξ⟩ − α⟨[ξ, η]⟩

)
= (−)ξ̄ιv⟨nξ⟩α⟨η⟩ − (−)η̄ιv⟨nη⟩α⟨ξ⟩. (8.7)

Suppose that equation (5.13) is satisfied, then equation (8.7) implies

V ⟨ξ ∧ η⟩ = 1

2

(
ιv⟨ξ⟩α⟨η⟩ − (ξ ↔ η)

)
.

This is a generalization of equation (8.5). If we assume that all eigenvalues of n are positive,
then it follows that V is a cocycle:

dLieV = 0.

If its cohomology class in H2(g, C∞(X)) is nonzero, then it is a generalization of the universal
vertex operator.

9 Contact terms

We will here study the contact terms in the OPE of left and right BRST currents. These contact
terms do not have classical analogue.

9.1 BRST currents and universal vertex

Since j⟨QL⟩ is holomorphic and j⟨QR⟩ is antiholomorphic, their OPE is purely a contact term:

j⟨QL⟩(z, z̄)j⟨QR⟩(0, 0) = V δ2(z, z̄).

Since both currents are exactly BRST invariant, it follows:

(QL +QR)V = 0.

We conjecture that V is in fact the universal vertex operator. (In particular, this implies that
the universal vertex operator has ghost number (1, 1).)

In flat space-time, the contact term is somewhat ill-defined, since the conserved currents are
only well-defined up to terms which vanish on-shell. However, in the general curved space-time,
there is no ambiguity. Indeed, all equations of motion have the conformal dimension (1, 1),
except those for pure spinor ghosts, which have dimension (1, 0) or (0, 1) (i.e., ∂−λL = · · · ).
The only possibility would be adding something proportional to ∂+λR to j⟨QL⟩, and something
proportional to ∂−λL to j⟨QR⟩. But that would have wrong ghost number.

We computed the contact terms in flat space (with the most economical definition of the
currents) and in AdS5 × S5. In both cases, the coefficient of δ2(z, z̄) in the contact term is the
universal vertex operator.
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9.2 Case of AdS5 × S5

The easiest way to compute them is to use

QLQR
(
STr

((
wLα+λ

α
L

)
(z, z̄)

)
STr

((
wR−λR

)
(0, 0)

))
= regular.

On the other hand, this is equal to

j+⟨QL⟩(z, z̄)j−⟨QR⟩(0, 0) + (QRj+⟨QL⟩(z, z̄))STr
(
wR−λR

)
(0, 0).

In the second term, QRj+⟨QL⟩(z, z̄) is zero on-shell. Whenever something is zero on-shell, there
is a corresponding vector field on the space of fields. In particular, the vector field corresponding
to QRj+⟨QL⟩(zz̄) is STr

(
λL

δ
δwR

−

)
. This implies

j+⟨QL⟩(zz̄) j−⟨QR⟩(0, 0) = STr(λLλR)δ
2(z, z̄).

9.3 Case of flat space

The contact term is due to the contraction of ∂+x and ∂−x in equations (7.1) and (7.2):

j+⟨QL⟩(zz̄) j−⟨QR⟩(0, 0) = (θLΓ
mλL)(θRΓ

mλR)δ
2(z, z̄).

10 Pure spinor sigma-model in flat space

10.1 Symmetries of the pure spinor sigma-model in flat space

The (manifest) symmetries of the pure spinor sigma-model in flat space are:

� The super-Poincaré group SP which is the semi-direct sum of the supersymmetry group
(translations and supersymmetries) and the Lorentz group. The Lie superalgebra of the
super-Poincaré group will be denoted sP (notation: sP = super-Poincaré)

� Two odd nilpotent symmetries QL and QR. The corresponding ghosts will be called χL
and χR.

The Lie superalgebra cohomology differential is

d
sP⊕R

0|2
BRST

= dsP + χLQL + χRQR.

Explicitly, each part is

dsP = cµ
∂

∂Xµ
+ γαL

(
∂

∂θαL
− 1

2
θβLΓ

µ
βα

∂

∂Xµ

)
+ γα̂R

(
∂

∂θα̂R
− 1

2
θβ̂RΓ

µ

β̂α̂

∂

∂Xµ

)
+

1

2
γαLγ

β
LΓ

µ
αβ

∂

∂cµ
+

1

2
γα̂Rγ

β̂
RΓ

µ

α̂β̂

∂

∂cµ

+ c[µν]
(
Xµ ∂

∂Xν
+

(
θLΓµν

∂

∂θL

)
+

(
θRΓµν

∂

∂θR

))
and

Q = χLλ
α
L

∂

∂θαL
+
χL
2
(λLΓ

µθL)
∂

∂Xµ
+ χRλ

α̂
R

∂

∂θα̂R
+
χR
2
(λRΓ

µθR)
∂

∂Xµ
.
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10.1.1 Supersymmetries

The infinitesimal supersymmetry transformations are

ξϵ = − 1

2
(ϵLΓ

µθL)
∂

∂Xµ
+ ϵαL

∂

∂θαL
+

(
1

2
(ϵLΓµ)α∂+X

µ +
1

8
(ϵLΓ

µθL)(∂+θLΓµ)α

)
∂

∂p+α

− 1

2
(ϵRΓ

µθR)
∂

∂Xµ
+ ϵα̂R

∂

∂θα̂R
+

(
1

2
(ϵRΓµ)α̂∂−X

µ +
1

8
(ϵRΓ

µθR)(∂−θRΓµ)α̂

)
∂

∂p−α̂
.

The corresponding one-form of equation (2.1) is

α|sP⟨γ, c⟩ =
1

4
(γLΓ

µθL)dXµ −
1

24
(γLΓ

µθL)(dθLΓµθL)

− 1

4
(γRΓ

µθR)dXµ +
1

24
(γRΓ

µθR)(dθRΓµθR).

10.1.2 BRST transformations

The BRST transformation is the following vector field on the space of worldsheet fields:

Q = λL
δ

δθL
+

1

2
(λLΓ

mθL)
δ

δXm
+ d+

δ

δw+

+

(
−1

2
∂+X

m(λLΓm) +
3

8
(λLΓ

mθL)(∂+θLΓm) +
1

8
(∂+λLΓ

mθL)(θLΓm)

)
δ

δp+

+ λR
δ

δθR
+

1

2
(λRΓ

mθR)
δ

δXm
+ d−

δ

δw−

+

(
−1

2
∂−X

m(λRΓm) +
3

8
(λRΓ

mθR)(∂−θRΓm) +
1

8
(∂−λRΓ

mθR)(θRΓm)

)
δ

δp−
.

The corresponding one-form of equation (2.1) is

α|R0|2⟨χ⟩ = − 1

4
χL(λLΓ

mθL)

(
dXm − 1

2
θLΓmdθL

)
+

1

4
χR(λRΓ

mθR)

(
dXm − 1

2
θRΓmdθR

)
.

It can be represented as

α⟨χ⟩ = ιQb, (10.1)

where

b = −1

4
((dθLΓ

mθL)− (dθRΓ
mθR)) dX

m +
1

8
(dθLΓ

mθL)(dθRΓ
mθR), (10.2)

db = −1

4
((dθLΓ

mdθL)− (dθRΓ
mdθR))dX

m +
1

8
(dθLΓ

mdθL)(dθRΓ
mθR)

− 1

8
(dθLΓ

mθL)(dθRΓ
mdθR)

=
1

4
((dθLΓ

mdθL)− (dθRΓ
mdθR))

(
−dXm +

1

2
(dθLΓ

mθL)−
1

2
(dθRΓ

mθR)

)
.

Therefore, ι2Qdb = 0 and equation (5.15) implies that equation (5.14) is satisfied and therefore
the BRST current is BRST closed:

Qj⟨Q⟩ = 0.

This is also true for general curved backgrounds, and is a consequence of the ghost number
symmetry, see equation (8.5).
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10.2 Ascending in form rank

Because of Shapiro’s lemma,

H1
(
sP,Ω2(X)

)
= 0. (10.3)

Therefore, exists b ∈ Ω2(X) such that

dα⟨ξ⟩ = Lξb for ξ ∈ sP. (10.4)

This is the same b as in equation (10.2), except equation (10.4) defines it unambiguously (while
equation (10.2) only defines b up to an expression having zero contraction with Q). Its exterior
derivative H = db is super-Poincaré invariant:

LξH = 0.

Equations (10.1) and (10.4) together imply for ξ ∈ sP and χ ∈ R0|2,

V ⟨ξ ∧ χ⟩ = ιχα⟨ξ⟩.

This is a particular case of the “asymmetric covariance”, equation (5.16). Namely, the BRST
currents are super-Poincaré-invariant, but the super-Poincaré currents are not BRST-closed, see
Section 10.5.2.

10.3 Descending in form rank

We will use the Faddeev–Popov language. Let γαL, γ
α̂
R be the ghosts for left and right supersym-

metries, cµ and c[µν] the ghosts for translations and rotations. We will also consider the BRST
symmetries. The ghosts for BRST symmetries will be denoted χL and χR. The descent goes as
follows:

dLieα = dV,

V =
1

8
(γLΓ

µθL)(γRΓµθR) +
1

4
(γLΓµγL)X

µ − 1

4
(γRΓµγR)X

µ − χL
8
(λLΓ

µθL)(γRΓµθR)

+
χR
8
(λRΓ

µθR)(γLΓµθL)−
χR
12

(λRΓ
µθR)(γRΓµθR) +

χL
12

(λLΓ
µθL)(γLΓµθL)

− χLχR
8

(λLΓ
µθL)(λRΓµθR), (10.5)

dLieV =W,

W =
1

4
(γLΓµγL)c

µ − 1

4
(γRΓµγR)c

µ. (10.6)

The last line of V contains (as the coefficient of χLχR) the universal vertex operator of flat
space, i.e., (λLΓ

µθL)(λRΓµθR).

The 3-cocycle W is nontrivial in H3(sP) ⊂ H3
(
sP⊕R

0|2
BRST

)
, it does not involve χL and χR.

In fact, it could not possibly contain χL and χR, because it is constant (does not depend on X,
θL, θR). The degree of χ equals the ghost number. Expressions with nonzero ghost number can
not be constant.

10.4 Relation between H = db and W

Now we have the relation

H +W = (d + dsP)(b− αsP + VsP)
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and its equivariant analogue

H + λsP +ΨsP +W = (d + dsP + IsP + JsP)(b− αsP + VsP).

Such relation exists because b exists because of equation (10.3). It is limited to sP ⊂ sP⊕R0|2,
because there is “no b for Q”. There is no such b which would satisfy LQb = dα⟨Q⟩. The
H1
Q

(
Ω2(X)

)
is nonzero.

10.5 Non-covariance of sP currents

10.5.1 sP currents are not sP-covariant

This is because IW is not zero in H2(g,Hom(adg,R)), see equation (5.10). This is different from
the case of WZW model. In the case of WZW model, IW is zero in H2(g,Hom(adg,R)), due
to the existence of the invariant C, see equation (6.7).

10.5.2 sP currents are not BRST closed

Since W is only nontrivial in H3(sP) ⊂ H3
(
sP⊕R

0|2
BRST

)
, the corresponding component of IW

is zero. In this case, the next obstacle, equation (5.11), is nontrivial:

Ψ ∈ H1
Q(HomsP(adsP, C

∞(X))).

Let us use

Ψ⟨χLQL + χRQR⟩⟨ϵLQL + ϵRQR⟩ = 0,

(χLQL + χRQR)Ψ⟨χLQL + χRQR⟩⟨ |sP⟩ = 0.

The first follows from the BRST closedness of the BRST current, and the second from IW ⟨Q •
Q⟩ = 0. Also, we use

(IW )⟨CsP • CsP⟩⟨ |sP⟩ = 0.(
We hope that the notations are not too confusing; CsP is the ghost for sP, and |sP means that

the argument (the η) is restricted to sP ⊂ sP⊕ R0|2.
)
It implies

QΨ⟨CsP⟩⟨ |sP⟩ = dsP(Ψ⟨Q⟩⟨ |sP⟩).

This implies that

Ψ⟨χLQL + χRQR⟩⟨ |sP⟩ mod (χLQL + χRQR)(. . .)

∈ H0
(
sP,Hom

(
adsP, H

1
(
R0|2, C∞(X)

)))
.

In other words, it is an intertwiner between the adjoint of sP and the ghost number one BRST
cohomology. This intertwiner associates to each element of sP the corresponding ghost number
one vertex operator. It is enough to compute Ψ⟨Q⟩ on an infinitesimal translation, i.e., η = ∂

∂Xm .
In this case, the IV in Ψ = IV − Jα does not contribute, and we are left with −Jα which gives

ι∂/∂Xmα⟨Q⟩ = −1

4
χL(λLΓmθL) +

1

4
χR(λRΓmθR).

Instead of being BRST closed, they satisfy

Qj⟨η⟩ = dΛ⟨η⟩,

where

Λ⟨η⟩ = Ψ⟨Q⟩⟨η⟩ = V ⟨η ∧Q⟩+ ιηα⟨Q⟩ = ιηα⟨Q⟩+ ιQα⟨η⟩.
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10.6 Cohomology of Q in one-forms

The last term in equation (10.5) is BRST exact:

χLχR
8

(λLΓ
µθL)(λRΓµθR) = (χLQL + χRQR)

(1
8
Xm(χR(λRΓ

mθR)− χL(λLΓ
mθR))

)
.

This implies that we can add a total derivative to α⟨Q⟩ so that the modified (improved) α⟨Q⟩
is BRST-closed. It is given by the following expression, which contains “bare” Xm:

αimpr⟨Q⟩ = 1

8
(χL(λLΓ

mθL)dX
m + χL(d(λLΓ

mθL))X
m

− χL(λLΓ
mθL)(θLΓ

mdθL)− (L↔ R)).

We still can not make the Lagrangian BRST-invariant, since αimpr represents a nontrivial coho-
mology class:

[αimpr] ∈ H1
(
Q,Ω1(X)

)
.

Moreover, the currents do not transform covariantly. Indeed, the right-hand side of equation (2.4)
becomes dιQαimpr⟨Q⟩ with

ιQαimpr⟨Q⟩ = −1

8
χLχR(λLΓ

mθL)(λRΓ
mθR) ̸= 0.

On-shell αimpr is BRST-equivalent to
1
8χL(λLΓ

mθL)
(
∂Xm− 1

2(θLΓ
m∂θL)

)
− (L↔ R). In a gen-

eral curved background, the universal vertex operator is a nontrivial element of H2(Q,C∞(X)).
But flat space is a special case. What would be a ghost-number-two universal vertex is now
BRST exact. Instead, what prevents the Lagrangian from being BRST invariant is a nontrivial
element of H1

(
Q,Ω1(X)

)
.

10.7 Covariance with respect to a smaller subalgebra

We can achieve covariance with respect to a smaller subalgebra h ⊂ sP, if the restriction of W
to h vanishes. For example, let h be the subalgebra preserving the half-BPS state, then W
vanishes. In fact,

V ⟨ξ ∧ η⟩ = (dLieU)⟨ξ ∧ η⟩ and dLie(α− dU) = 0.

This implies

α⟨ξ⟩ = dU⟨ξ⟩+ Lξf.

Then, the modified Lagrangian L− f is h-invariant.
We will now show this explicitly. We will denote X± = X0 ± X9. We will choose the mo-

mentum of the half-BPS state in direction X+, then the following bosonic generators annihilate
the state: ∂

∂X− ,
∂
∂Xi , where i runs from 1 to 8. The ten-dimensional gamma-matrices are

Γi•• =

(
0 σi

aḃ
σiȧb 0

)
, Γ+

•• =

(
0 0
0 δȧḃ

)
, Γ−

•• =

(
δab 0
0 0

)
,

Γi•• =

(
0 −σiaḃ

−σiȧb 0

)
, Γ+•• =

(
δab 0
0 0

)
, Γ−•• =

(
0 0

0 δȧḃ

)
.

We have to restrict

c+ = 0, γȧL = 0, γȧR = 0.
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The first line of equation (10.5) becomes

V = −1

8

(
γaLσ

i
aȧθ

ȧ
L

)(
γaRσ

i
aȧθ

ȧ
R

)
+

1

4

(
γaLσ

i
aȧθ

ȧ
L

)
ci − 1

4

(
γaRσ

i
aȧθ

ȧ
R

)
ci.

It is dLie-exact:

V = dLieU,

where

U =

(
− 1

16

(
θaLσ

i
aȧθ

ȧ
L

)(
γaRσ

i
aȧθ

ȧ
R

)
+

1

16

(
γaLσ

i
aȧθ

ȧ
L

)(
θaRσ

i
aȧθ

ȧ
R

)
+

1

4

(
θaLσ

i
aȧθ

ȧ
L

)
ci − 1

4

(
θaRσ

i
aȧθ

ȧ
R

)
ci
)

and

α =dU + dLief,

f =− 1

8

(
θaLdθ

a
L − θRdθR

)
X+ +

1

4

(
θaLσ

i
aȧθ

ȧ
L

)
dXi −

1

4

(
θaRσ

i
aȧθ

ȧ
R

)
dXi

− 1

8

(
θaLσ

i
aȧθ

ȧ
L

)(
dθaLσ

i
aȧθ

ȧ
L

)
+

1

8

(
θaRσ

i
aȧθ

ȧ
R

)(
dθaRσ

i
aȧθ

ȧ
R

)
− 1

8

(
θaLσ

i
aȧθ

ȧ
L

)(
dθȧLσ

i
aȧθ

a
L

)
+

1

8

(
θaRσ

i
aȧθ

ȧ
R

)(
dθȧRσ

i
aȧθ

a
R

)
− 1

16

(
θaLσ

i
aȧθ

ȧ
L

)(
θaRσ

i
aȧdθ

ȧ
R

)
− 1

16

(
θaRσ

i
aȧθ

ȧ
R

)(
dθaLσ

i
aȧθ

ȧ
L

)
+

1

16

(
θaRσ

i
aȧθ

ȧ
R

)(
θaLσ

i
aȧdθ

ȧ
L

)
+

1

16

(
θaLσ

i
aȧθ

ȧ
L

)(
dθaRσ

i
aȧθ

ȧ
R

)
.

11 Pure spinor sigma-model in AdS5 × S5

11.1 Lagrangian is invariant under psu(2, 2|4)

This is because H3(psu(2, 2|4)) = 0. It is useful to compare this to flat space. The flat space
limit of psu(2, 2|4) is sP5+5 ⊂ sP – the subalgebra of the super-Poincaré algebra, excluding
those Lorentz rotations which do not preserve the 5 + 5 split of the tangent space. We can
consider the differential psu(2, 2|4) as deformed differential of sP5+5:

dpsu(2,2|4) = dsP5+5
+ d′,

where d′ is a correction. Then W ∈ H3(sP5+5) gets cancelled by an element of H2(sP5+5):

W = d′STr(γLγR).

11.2 Universal vertex operator

α⟨ξ⟩ = 0 for ξ ∈ psu(2, 2|4),
α⟨QL⟩ = STr

((
dgg−1

)
1̄
λ3̄

)
, α⟨QR⟩ = −STr

((
dgg−1

)
3̄
λ1̄

)
.

Therefore,

V ⟨QL ∧QL⟩ = V ⟨QR ∧QR⟩ = 0, V ⟨QL ∧QR⟩ = STr(λ3̄λ1̄).
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The currents of the global symmetries are only Q-invariant up to a total derivative:

Qja = dΛa, Λa = d
(
STr

(
tag

−1(λ3 − λ1)g
))
.

But both BRST current and α⟨Q⟩ are strictly invariant under the global symmetries. Therefore,
equation (5.3) implies

Λa = ιtaα⟨Q⟩.

This can be directly verified:

STr
(
tag

−1(λ3 − λ1)g
)
= ιtaSTr

(
λ3

(
dgg−1

)
1
− λ1

(
dgg−1

)
3

)
.

This can be also interpreted in the following way. Since Lξα⟨Q⟩ = 0, we have

dιξα⟨Q⟩ = −ιξQL.

Here QL is the pullback of an exact two-form from the target space, and ιξQL is (by a slight
abuse of notations) the pullback of its contraction with ξ. Therefore,

ιξQL = Qj⟨ξ⟩.

11.3 “Minimalistic” B-field

According our general scheme, d(χLα⟨QL⟩+χRα⟨QR⟩) is the variation of the Lagrangian under
χLQL + χRQR. We would like to stress that the Lagrangian can not be seen as a geometrical
object on the target space. The Lagrangian is not a pullback of a differential form on the
worldsheet, as it contains terms like dX ∧∗dX and p∂̄X. But, one can ask: is it possible to find
such a 2-form B on the target space that its Lie derivative along χLQL+χRQR be equal to that
total derivative? The answer is negative, in fact d(χLα⟨QL⟩+χLα⟨QL⟩) is a nontrivial element

of H2
(
R0|2
BRST,Ω

2(X)
)
. But, it is possible to find such B if we do not require it to be smooth.

In fact,

d(χLα⟨QL⟩+ χRα⟨QR⟩) = LχLQL+χRQR
B, B = STr(J3(1− 2P31)J1)

Here P31 is some projector, which is a rational function of λL and λR. See [14] for details.
We will here list some properties of B and H = dB:

H = dB, ιQH = 0, eιQB = B − α+ V, H = (d + LQ)(B − α+ V ),

where Q = χLQL+χRQR. This is a particular case of equation (4.1), when the Lie superalgebra

is R0|2. The C-ghosts are χL and χR, and d
(0)
Lie = 0 because the Lie superalgebra R0|2 is abelian.

Moreover,

(I+ J)(B − α+ V ) = 0.

Therefore, H is a coboundary in the BRST model of equivariant cohomology:

H = (d + dLieR0|2 + I+ J)(B − α+ V ).

This can be extended to the full g = R0|2 ⊕ psu(2, 2|4), giving an analogue of equation (6.5):

H+ JpsuB +Ψ = (d + dLie + I+ J)(B − αR0|2 + V ),
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where the nonzero component of Ψ is

Ψ⟨χL, χR⟩⟨η⟩ = STr
(
ηg−1(χLλL − χRλR)g

)
, η ∈ psu(2, 2|4).

Here Jpsu is the contraction with η ∈ psu(2, 2|4).
The 2-form B is the key ingredient in the BV formulation of the AdS sigma-model developed

in [4, 5, 14]. The one-form JpsuB satisfies the analogue of equation (6.6) for λ of the WZW
model:

dJpsuB + JpsuH = 0.

In BV formalism of [14], ιvH = {SBV, v} for any vector field v on the target space, where
v = vµx⋆µ is the corresponding BV Hamiltonian. Therefore, JpsuB can be interpreted as a “topo-
logical current”. We hope to further investigate the properties of these currents in a future
publication.

12 Flat space limit of AdS5 × S5

Consider pure spinor superstring sigma-model with the target space AdS5 ×S5 of the radius R.
If the motion of the string is limited to a neighborhood of a point, then in the limit R → ∞
the space-time is effectively flat. The details of how the limit is taken were worked out, e.g.,
in [13]. Here we will address the following question: why is it that the Lagrangian in flat space
is only invariant up to a total derivative, while in AdS it is exactly invariant? This can be
understood in the following way. First of all, psu(2, 2|4) is actually not a deformation of sP, but
rather the deformation of a subalgebra sP5+5 ⊂ sP (the one which preserves the constant RR
5-form F5). Those Lorentz transformations which do not preserve F5 are broken in AdS, they
do not correspond to any elements of psu(2, 2|4). All other elements survive deformed, so that
sP5+5 ⊂ sP gets deformed to psu(2, 2|4). Unlike sP, sP5+5 has a nontrivial second cohomology
group H2(sP5+5,R), see equation (12.1). At the same time, dLie gets deformed. It turns out
that the obstacle W defined in equation (10.6) is cancelled by the deformation of dLie acting on
that element of H2(sP5+5,R).

We will now describe in detail how this happens.

12.1 Zooming on a point in AdS

The scale of the fundamental fields θ and x are

[x] = R−1, [θ] = [λ] = R−1/2, [p] = [w] = R−3/2.

The action up to order R−2 is

S =

∫
d2τ R−1L1 +R−2(L2 + L3 + L4)

=

∫
d2τ

[
R−1∂+θR∂−θL +R−2

(
1

2
∂+x∂−x+ L3 + L4

)]
with

L3 = −1

2
([θR, ∂+θR], ∂−x)−

1

2
(∂+x, [θL, ∂−θL]),

L4 = − 1

24
([θL, ∂+θL], [θL, ∂−θL])−

1

24
([θR, ∂+θR], [θR, ∂−θR])−

1

12
([θR, ∂+θR], [θL, ∂−θL])

− 1

6
([θR, ∂+θL], [θR, ∂−θL])−

1

6
([θL, ∂+θR], [θL, ∂−θR])−

1

3
([θL, ∂+θR], [θR, ∂−θL]).
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We introduce the first order formalism in the first term by introducing p̃ fields, such that
p1 = p1+ ∈ g1 and p3 = p3− ∈ g3. The relevant term in the action is substituted by

R−1∂+θR∂−θL 7−→ R−2(p̃1+∂−θL) +R−2(p̃3−∂+θR)−R−3p̃1+p̃3−.

Integrating out in p̃, we ga back to the original Lagrangian, in which case:

p̃1+ = R∂+θR, p̃3− = R∂−θL.

Now, we redefine the p̃ fields:

p1+ = p̃1+ +
1

2
[θL, ∂+x] +

1

24
[θL, [θL, ∂+θL]] +

1

24
[θL, [θR, ∂+θR]]

+
1

6
[θR, [θR, ∂+θL]] +

1

6
[θR, [θL, ∂+θR]],

p3− = p̃3− +
1

2
[θR, ∂−x] +

1

24
[θR, [θR, ∂−θR]] +

1

24
[θR, [θL, ∂−θL]]

+
1

6
[θL, [θL, ∂−θR]] +

1

6
[θL, [θR, ∂−θL]].

This makes the leading order on the action to be

S =

∫
d2τ R−2

[
(p1+∂−θL) + (p3−∂+θR) +

1

2
∂+x∂−x

]
.

12.2 How W arises in the flat space limit

The obstructionW , which is an element of the H3
(
sP⊕R

0|2
BRST,C

)
cohomology begins to appear

when we observe that the flat limit is obtained from AdS limit only after integrating by parts,
and then introducing the momentum p:

L
(p)
AdS = L

(p)
flat + dβ +O

(
R−3

)
such that dLieβ = −α+ dA, so that dLieLAdS = 0. The explicit formula is

β = −1

4
θLdθR +

1

24
[θR, θL][dθR, θL].

This β satisfies

α = −dpsuβ + dA

with

A =
1

4
[θR, γR]x+

1

24
[θR, θL][γR, θL]−

1

4
γLθR.

Therefore, dV = dgα = d(dgA) and then

V = dpsuA+ C,

where C is a constant in the target space:

C = STr(γLγR) = γαLγ
α̂
RSTr

(
TLα T

R
α̂

)
. (12.1)

Finally,

dpsuC = ([γL, γL]− [γR, γR])c =W.

See [15] for a previous discussion of this, and [13] for a somewhat similar story with the defor-
mation of the BRST operator.
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