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Abstract. We describe new q-deformations of the 3-dimensional Heisenberg algebra, the
simple Lie algebra sl2 and the Witt algebra. They are constructed through a realization
as differential operators. These operators are related to the modular group and q-deformed
rational numbers defined by Morier-Genoud and Ovsienko and lead to q-deformed Möbius
transformations acting on the hyperbolic plane.
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1 Introduction and results

The construction of q-deformed rational numbers by Morier-Genoud and Ovsienko [12] starts
from the observation that rational numbers are generated by the image of zero under the action
of the modular group PSL2(Z). This group is generated by the translation T (x) = x + 1 and
the inversion S(x) = −1/x. The only relations between these operations are S2 = id = (ST )3.

The q-deformed integers [n]q = 1 + q + q2 + · · · + qn−1 = 1−qn

1−q , where q ∈ C∗, satisfy the
relation [n + 1]q = q[n]q + 1. It is natural to introduce as q-analog to the translation T the
transformation Tq(x) = qx + 1. The map Sq(x) = −1/(qx) satisfies S2

q = id = (SqTq)
3. The q-

rational numbers are then defined by the image of zero under the action by Tq and Sq using for
example the continued fraction representation of a rational number. Since these operations are
Möbius transformations, we can represent them in matrix form as follows:

Tq =

(
q 1
0 1

)
and Sq =

(
0 −1
q 0

)
.

This coincides with the reduced Burau representation of the braid group B3 with parame-
ter t = −q [4]. Indeed the standard generators of B3 are represented by σ1 = Tq and σ2 =
SqTqSq =

(
1 0
−q q

)
. One easily checks the braid relation σ1σ2σ1 = σ2σ1σ2. The faithfulness of

specializations of the Burau representation (where q is not a formal parameter, but a non-zero
complex number) is an open question [3, Section 7]. It was studied for real values of q in [18].
In [14], a link to q-deformed rational numbers allows to partially solve the open question.

Using Taylor expansions of q-rational numbers, one can define q-real numbers [13] which are
power series in q with integer coefficients. A natural question is how to do analysis with these q-
real numbers? Basic functions on real numbers are monomials and the exponential function,
which are eigenfunctions of the vector fields associated to sl2(R)

(
acting on the completed

line RP1
)
. The goal of our investigation is to q-deform these vector fields and to analyze their

eigenfunctions.
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Following a suggestion of Valentin Ovsienko, we can associate to Tq a differential operator
D−1(q), which corresponds to the infinitesimal q-shift. For q = 1, we have D−1(1) = ∂ = d/dx.
This operator is given by

D−1 := (1 + (q − 1)x)∂.

One can directly check that D−1 commutes with Tq, where Tq acts on the space of functions
by precomposition. The starting point of the paper is the question whether there is a differential
operator associated to Sq. This would allow to define in some sense a Lie algebra for the modular
group PSL2(Z), or an infinitesimal version of the Burau representation of B3.

In the classical setting for q = 1, there is an operator which anti-commutes with S:

S ◦ x∂ + x∂ ◦ S = 0,

where S acts on the space of functions by precomposition. We introduce the differential opera-
tor D0, a q-deformed version of x∂, given by

D0 := (1 + (x− 1)q)D−1 = (1 + (x− 1)q)(1 + (q − 1)x)∂.

We will see that D0 anti-commutes with Sq. Together with D1 := Sq ◦D−1◦Sq, a deformation
of x2∂, we get three differential operators which are closed under the bracket (see Theorem 2.3):

Theorem 1.1. The operators D−1, D0 and D1 form a Lie algebra with brackets

[D0, D1] =
(
q2 − q + 1

)
D1 + (1− q)D0, [D0, D−1] = −

(
q2 − q + 1

)
D−1 + (1− q)D0,

[D−1, D1] = 2D0 + (1− q)(D1 −D−1).

The theorem tells us that the module over R[q] generated by D−1, D0 and D1 is a deformation
of the Lie algebra sl2(R) which we recover for q = 1. The Lie algebra sl2 being simple, it does not
allow for non-trivial deformations. Hence our deformation is isomorphic to sl2 as a Lie algebra,
but they are different as Z[q]-modules. This is similar to quantum groups.

A fundamental role is played by the Möbius transformation

gq(x) =
1 + (x− 1)q

1 + (q − 1)x
,

which is a deformation of the identity. It is the eigenfunction of D0 with eigenvalue q2−q+1 and
normalization gq(0) = 1 − q. We call it the q-rational transition map since it makes a passage
between two different q-deformations of rational numbers studied in [2]. More precisely (see
Theorem 2.7):

Theorem 1.2. The two q-deformations of rational numbers defined in [2, Definition 2.6] are
linked via

gq

([r
s

]♯
q

)
=
[r
s

]♭
q−1

.

This theorem comes from the interplay between gq, Tq and Sq given by gq ◦ Tq = Tq−1 ◦ gq
and gq ◦ Sq = Sq−1 ◦ gq (see Proposition 2.6). The q-rational transition map also satisfies a sort
of duality between q and x:

gq(x)gx(q) = 1.

The map gq, as well as its multiplicative inverse g−1
q = 1/gq, behave very well with the three

operators D−1, D0 and D1 (see Propositions 2.11 and 3.1):
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Proposition 1.3. The q-rational transition map gq and the differential operators D−1, D0,
and D1 interact in the following way:

(1) D0(gq) =
(
q2 − q + 1

)
gq, D−1(gq) = q + (1− q)gq, D1(gq) = (q − 1)gq + g2q ,

(2) gqD0 = (1− q)D0 +
(
q2 − q + 1

)
D1, gqD−1 = D0 + (1− q)D1,

(3) qg−1
q D0 = (q − 1)D0 +

(
q2 − q + 1

)
D−1, qg

−1
q D1 = D0 + (q − 1)D−1.

These relations allow a deformation of the Witt algebra, the complexification of the Lie
algebra of polynomial vector fields on the circle. The Witt algebra is described by a vector
space basis (ℓn)n∈Z with bracket given by

[ℓn, ℓm] = (m− n)ℓn+m.

This algebra can be realized as differential operators (or equivalently as vector fields) via
ℓn = xn−1∂. Putting for n > 1:

Dn = gn−1
q D1 and D−n =

(
qg−1

q

)n−1
D−1,

we get a deformation of the Witt algebra (see Theorem 3.2):

Theorem 1.4. The (Dn)n∈Z form a Lie algebra with bracket given by (where n, r > 0):

[D0, Dn] = n
(
q2 − q + 1

)
Dn +

(
q2 − q + 1

) n−1∑
k=1

(1− q)kDn−k + (1− q)nD0,

[Dn, Dn+r] = rD2n+r + (q − 1)rD2n+r−1,

[D−n, Dn] = 2nqn−1D0 + (2n− 1)qn−1(q − 1)(D−1 −D1),

[Dn+r, D−n] = (q − 1)qn−1(2n+ r − 1)Dr+1 −
(
q2 + (2n+ r − 2)q + 1

)
qn−1Dr,

− qn−1
(
q2 − q + 1

) r−1∑
k=1

(1− q)kDr−k − (1− q)rqn−1D0.

The remaining brackets [D0, D−n], [D−n, D−n−r] and [Dn, D−n−r] obey similar formulas.

Integrating the vector fields associated to D−1, D0 and D1 on the hyperbolic plane, we get
Möbius transformations. We speculate about a q-deformed hyperbolic plane on which these
transformations naturally act. The boundary of this deformed hyperbolic plane should be
the q-deformed real numbers. Other interesting open questions include the link between our q-
deformed sl2 and the quantum group Uq(sl2), or the existence of a central extension of our
deformed Witt algebra, which would give a deformed Virasoro algebra.

Deformations of rational numbers were introduced in [12], extended to real numbers in [13]
and to Gaussian integers in [17]. Many different deformations of the Witt algebra or its central
extension, the Virasoro algebra, have been introduced in the past: first in [6] and then in [5]
deforming the matrix Lie bracket to [A,B]q = qAB − q−1BA. This also deforms the Jacobi
identity. A similar construction was done in [9] viewing the Witt algebra as space of derivations

of C
[
x±1

]
and using the q-differential ∂q(f) = f(qx)−f(x)

qx−x . This was generalized in [8] to more
general σ-derivatives. Deforming the cocycle gives a q-Virasoro algebra in [10], developed into
a theory of q-deformed pseudo-differential operators in [11]. A deformation as Lie algebra in
terms of an operator product expansion is given in [19]. A similar proposal can be found in [7,
equation (1.3)], using a q-deformed Miura transformation. In [15, equation (38)], the deformation

[Tm(q), Tn(q)] = ([−n]q − [−m]q)(Tn+m

(
q2
)
− Tn+m(q))
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is studied. Yet another proposal from [16, formula (3.18)] gives operators Dn(q) for n ∈ Z
with commutator [Dn(q), Dm(q)] =

(
q − q−1

)
[n−m]qDn+m

(
q2
)
(removing the central exten-

sion). Finally, in [1], a two-dimensional deformation using elliptic algebras is studied. All these
approaches are different from ours.

Structure of the paper. In Section 2, we introduce and study the deformation of sl2,
the Heisenberg algebra and the q-rational transition map. This is broadened in Section 3 to
a deformed Witt algebra. In the final Section 4, we study the Möbius transformations associated
to these deformations.

2 Deformed sl2 and Heisenberg algebra

The group SL2 acts naturally on the projective line P1. We will work over R or C. Differentiating
this action at the identity gives a realization of the Lie algebra sl2 as vector fields on P1. Using
the two standard charts of P1 with transition function x 7→ 1/x, the image of sl2 → Vect

(
P1
)

is generated by ∂, x∂ and x2∂ written in the first chart, where we use the notation ∂ = d/dx.
One readily checks that these expressions are well-defined over the second chart.

We construct a deformation of these three differential operators. They come as a realization
of a Lie algebra which itself deforms sl2. Together with a q-deformed identity map, we deform
the 3-dimensional Heisenberg algebra.

2.1 Deformed sl2

On P1, consider the Möbius transformations

Tq(x) = qx+ 1 and Sq(x) = − 1

qx
,

where q ∈ C∗ is fixed or seen as a formal parameter. They deform the translation x 7→ x + 1
and the inversion x 7→ −1/x. These transformations act on the space of functions on P1 by
precomposition.

Consider the differential operator D−1 on P1 which is defined in the first chart by

D−1 := (1 + (q − 1)x)∂.

Proposition 2.1. The operators D−1 and Tq commute, where Tq acts on the space of functions
by precomposition.

Proof. For a function f(x), we have on the one side

D−1 ◦ Tq(f(x)) = D−1(f(qx+ 1)) = (1 + (q − 1)x)qf ′(qx+ 1).

On the other side,

Tq ◦D−1(f(x)) = Tq((1 + (q − 1)x)f ′(x)) = (1 + (q − 1)(qx+ 1))f ′(qx+ 1).

Both expressions coincide. ■

The unique eigenfunction Eq of D−1 with eigenvalue 1 and normalization Eq(0) = 1 is
a q-deformation of the exponential function, called the Tsallis exponential [20]. This was
first observed by Valentin Ovsienko and Emmanuel Pedon.1 To find Eq, one has to solve
f = D−1f = (1 + (q − 1)x)f ′, i.e., (ln f)′ = 1

1+(q−1)x . The solution is given by

Eq(x) = (1 + (q − 1)x)
1

q−1 .

1Unpublished, private communication.
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It satisfies Eq(qx + 1) = Eq(1)Eq(x) since Eq(qx + 1) = TqEq is also an eigenfunction of D−1

with eigenvalue 1.
The main new operator we introduce is the following:

D0 := (1 + (x− 1)q)D−1 = (1 + (x− 1)q)(1 + (q − 1)x)∂.

Proposition 2.2. The operators D0 and Sq anti-commute, where Sq acts on the space of func-
tions by precomposition.

The proof is a direct verification, similar to the proof of Proposition 2.1. An equivalent
statement is Sq ◦D0 ◦ Sq = −D0.

Proof. For a function f(x), we have on the one side

D0 ◦ Sq(f(x)) = D0f

(
− 1

qx

)
= (1 + (x− 1)q)(1 + (q − 1)x)f ′

(
− 1

qx

)
1

qx2
.

On the other hand,

Sq ◦D0(f(x)) = Sq((1 + (x− 1)q)(1 + (q − 1)x)f ′(x))

=

(
1 + q

(
− 1

qx
− 1

))(
1− 1

qx
(q − 1)

)
f ′
(
− 1

qx

)
= − 1

qx2
(1 + (x− 1)q)(1 + (q − 1)x)f ′

(
− 1

qx

)
. ■

More generally, we can find all operators D of the form p(x)∂ which anti-commute with Sq.
The relation {D,Sq} = 0 gives

p(x) = −qx2p

(
− 1

qx

)
.

Adding as constraint that p has to be polynomial, it is clear that it is of degree at most 2.
Plugging in p(x) = p0 + p1x + p2x

2 gives a solution for any p1 and p2 = −qp0. In other
words, the two fundamental solutions are p(x) = x and p(x) = 1− qx2. Note in particular that
the undeformed operator x∂ still anticommutes with Sq. The particular choice above for D0

is p1 = −1 + 3q − q2 and p0 = 1− q. We will see below why this is the simplest choice.
Let us determine the eigenfunctions of D0 with eigenvalue α. One has to solve αf = D0f ,

i.e., (ln f)′ = α
(1+(q−1)x)(1+(x−1)q) . The solutions are(

1 + (x− 1)q

1 + (q − 1)x

) α
q2−q+1

.

We define the q-rational transition map

gq(x) =
1 + (x− 1)q

1 + (q − 1)x
, (2.1)

which is the unique eigenfunction ofD0 with eigenvalue q2−q+1 and normalization gq(0) = 1−q.
We can think of gq as a deformation of the identity map. We study this function more in detail
below in Section 2.2.

Now we come back to the discussion why our D0 is the simplest choice. Consider an op-
erator D = p(x)∂ anti-commuting with Sq, i.e., of the form p(x) = p0 + p1x − qp0x

2 with
arbitrary p0, p1 ∈ Z[q]. We impose that D deforms x∂, that is p0(1) = 0 and p1(1) = 1. We
also impose the leading terms of p0, p1 to be ±1. We wish that the eigenfunctions of D are
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Möbius transformations in Z[q]. This is only the case if the discriminant of p0 + p1x − qp0x
2

is a square in Z[q]. This leads to the equation p1(q)
2 + 4qp0(q)

2 = R(q)2 for some R ∈ Z[q].
This is equivalent to 4qp20 = (R − p1)(R + p1). Excluding the case where p0 = 0 which leads to
the undeformed operator x∂, the next simplest case is p0(q) = 1 − q. By treating all possible
factorizations of 4q(1− q)2, we see that the p1 with lowest degree has to be p1(q) = −1+3q− q2

which is the case for our choice D0.
We complete the operators D−1 and D0 to a deformed sl2. For that, we wish to deform x2∂.

Note that x2∂ = S ◦ ∂ ◦ S. This motivates the following definition:

D1 := Sq ◦D−1 ◦ Sq = (1 + (x− 1)q)x∂.

By definition, D1 commutes with SqTqSq.
Our first result is that these three operators give a Lie algebra deforming sl2:

Theorem 2.3. The operators D−1, D0 and D1 form a Lie algebra with brackets

[D0, D1] =
(
q2 − q + 1

)
D1 + (1− q)D0, [D0, D−1] = −

(
q2 − q + 1

)
D−1 + (1− q)D0,

[D−1, D1] = 2D0 + (1− q)(D1 −D−1).

For q = 1, we get the Lie algebra sl2.

Proof. The proof is a straightforward computation. All Di are of the form g(x)∂ with g
a polynomial of degree at most 2. This explains why we can express any bracket as linear
combination of D−1, D0 and D1. The non-trivial part is that the coefficients are in Z[q].
Since D0 = (1 + (x− 1)q)D−1, we get

[D0, D−1] = −D−1(1 + (x− 1)q)D−1 = −q(1 + (q − 1)x)2∂.

Similarly, we have D0 = (1 + (q − 1)x)x−1D1, hence

[D0, D1] = −D1

(
x−1 + q − 1

)
D1 = (1 + (x− 1)q)2∂.

The last bracket can be computed to be [D−1, D1] =
(
1−q+2qx+q(q−1)x2

)
∂. One explicitely

checks that these three brackets coincide with results claimed in the theorem.
Finally, it is clear that these brackets satisfy the Jacobi identity since we know a representation

of the operators Di as differential operators. ■

The Lie algebra sl2 being simple, it does not allow any non-trivial deformations. Our q-
deformation is indeed abstractly isomorphic to sl2 when q and q2 − q + 1 are invertible. To
give an explicit isomorphism, denote by (f, h, e) the generators of sl2 given by the differential
operators

(
∂, x∂, x2∂

)
. They satisfy [h, e] = e, [h, f ] = −f and [e, f ] = −2h. The following is

an isomorphism of Lie algebras between (D−1, D0, D1) and (f, h, e):

f = q−1/2

(
D−1 +

q − 1

q2 − q + 1
D0

)
, h =

D0

q2 − q + 1
,

e = q−1/2

(
D1 +

1− q

q2 − q + 1
D0

)
.

Using this isomorphism to sl2, we can describe a 2-dimensional representation of the deformed
Lie algebra defined by (D−1, D0, D1). Using the standard realization f = ( 0 0

1 0 ), h =
(

1/2 0
0 −1/2

)
and e =

(
0 −1
0 0

)
, we get

D−1 =

(
1−q
2 0

q1/2 q−1
2

)
, D0 =

(
q2−q+1

2 0

0 −q2+q−1
2

)
, D1 =

( q−1
2 −q1/2

0 1−q
2

)
.
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Note that this representation is not in sl2(Q[q]). A direct computation shows that there is
no 2-dimensional representation of our q-deformed sl2 into sl2(Q[q]). In dimension 3, there is of
course the adjoint representation into sl3(Z[q]).

Remark 2.4. It is tempting to consider D−1, D1 and D̂0 := [D−1, D1]. The operator D̂0 still
anti-commutes with Sq and the bracket relations are

[D̂0, D±1] = ±
(
q2 + 1

)
D±1 ± (q − 1)2D∓1.

The main drawback of this choice is that the eigenfunctions of D̂0 are Möbius transformations
with coefficients not in Z[q].

Remark 2.5. A simpler and very similar Lie algebra deforming sl2 is given by generators
(d−1, d0, d1) with brackets

[d0, d−1] = −qd−1 + (1− q)d0, [d0, d1] = qd1 + (1− q)d0,

[d−1, d1] = 2d0 + (1− q)(d1 − d−1).

It can be obtained as our deformation for a formal parameter q with relation (q − 1)2 = 0.
Then q2 − q + 1 = q. One checks that the Jacobi identity still holds.

2.2 q-rational transition map

The map gq defined in (2.1) plays a fundamental role, both for generalizing the q-deformation
from sl2 to the Witt algebra in Section 3, and in the theory of q-deformed rationals as we shall
see now. It allows to pass between two different q-deformations of the rational numbers.

Recall that the q-rational transition map is defined by

gq(x) =
1 + (x− 1)q

1 + (q − 1)x
,

which is a deformation of the identity. It is the eigenfunction of D0 with eigenvalue q2 − q + 1
and normalization gq(0) = 1 − q. Note that gq is a Möbius transformation associated to the
matrix(

q 1− q
q − 1 1

)
,

which is of determinant q2−q+1. For q ̸= 1, gq is an elliptic transformation since its normalized
trace is given by

q + 1√
q2 − q + 1

< 2.

The unique fixed point on H2 is 1+i
√
3

2 which is independent of q.
From the definition of gq, we see the following duality between q and x:

gq(x)gx(q) = 1.

Proposition 2.6. The functions gq, Tq and Sq, seen as 2× 2 matrices satisfy:

gqTq = qTq−1gq and gqSq = qSq−1gq.

Therefore, seen as Möbius transformations, we have gq ◦ Tq = Tq−1 ◦ gq and gq ◦ Sq = Sq−1 ◦ gq.
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Proof. Both assertions can be checked by a direct computation:

gqTq =

(
q 1− q

q − 1 1

)(
q 1
0 1

)
=

(
q2 1

q2 − q q

)
= qTq−1gq,

and similarly

gqSq =

(
q 1− q

q − 1 1

)(
0 −1
q 0

)
=

(
q − q2 −q

q 1− q

)
= qSq−1gq.

The second identity can be derived also as follows: since SqD0Sq = −D0, we see that both g−1
q (x)

and gq(Sq(x)) are eigenfunctions ofD0 with eigenvalue−q2+q−1. Hence they have to be multiple
of each other. The precise relation is given by gq(Sq(x)) =

−q
gq(x)

= Sq−1(gq(x)). ■

We describe now the main link to q-deformed rational numbers. In [13, Remark 3.2], the
authors notice that the procedure for q-deformed irrational numbers gives two different answers
when applied to rationals. This was further developed in [2], from which we borrow the notations.
When one approaches a rational r/s from the right by a sequence of rationals strictly bigger

than r/s, the procedure gives the so-called right q-rational [r/s]♯q. This is the deformation
obtained from applying Tq and Sq to zero described at the beginning of the Introduction. When
approaching r/s from the left, the limit gives another q-deformation of r/s, called left q-rational
and denoted by [r/s]♭q [2, Theorem 2.11].

The precise formulas given in [2, Definition 2.6] can be written in our context as follows:
consider U = TST , which is the function U(x) = 1

1+1/x , and its q-analog Uq = TqSqTq. For
a rational r/s ∈ Q, take the unique even continued fraction expression r/s = [a1, a2, . . . , a2n].
This means that r/s = T a1Ua2T a3 · · ·Ua2n(∞). By convention, we put ∞ = [ ], the empty
expression. Then[r

s

]♯
q
= T a1

q Ua2
q T a3

q · · ·Ua2n
q (∞), (2.2)

and [r
s

]♭
q
= T a1

q Ua2
q T a3

q · · ·Ua2n
q

(
1

1− q

)
. (2.3)

To give some examples, we have [0]♯q = 0 and [0]♭q =
q−1
q , [1]♯q = 1 and [1]♭q = q, [2]♯q = 1 + q

and [2]♭q = 1 + q2, [∞]♯q = ∞ and [∞]♭q =
1

1−q .
It was noticed numerically by Valentin Ovsienko that gq is a transition between these two q-

deformations of rational numbers. This is made precise in the following:

Theorem 2.7. The passage between the two q-deformations of rationals is given by

gq

([r
s

]♯
q

)
=
[r
s

]♭
q−1

.

Note that q gets inversed to q−1. The proof is an application of Proposition 2.6.

Proof. Proposition 2.6 gives gqUq = Uq−1gq. Using equation (2.2) and again Proposition 2.6,
we get

gq

([r
s

]♯
q

)
= gqT

a1
q Ua2

q T a3
q · · ·Ua2n

q (∞) = T a1
q−1U

a2
q−1T

a3
q−1 · · ·Ua2n

q−1gq(∞).

Now gq(∞) = q
q−1 = 1

1−q−1 . Hence we conclude by equation (2.3). ■
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As an application, we can reprove the positivity property of left q-rationals, proven in [2,
Appendix A.1] via an explicit combinatorial interpretation.

Corollary 2.8. For r/s > 1, we have R♭, S♭ ∈ N[q], where [r/s]♭q = R♭(q)/S♭(q).

Proof. From [12, Proposition 1.3], we know that for r/s ∈ Q>1 the right q-rational [r/s]♯q =
R♯(q)/S♯(q) is a rational function in q with positive coefficients, i.e., R♯, S♯ ∈ N[q]. We also
know from [12, Theorem 2] that if r/s > r′/s′, then R♯S′♯ −R′♯S♯ ∈ N[q]. Since r/s > 1, we get

R♯ − S♯ ∈ N[q]. Since r/s+1 > r/s and [r/s+1]♯q = q[r/s]♯q+1, we also get (q − 1)R♯ + S♯ ∈ N[q].
Finally, we deduce that

[r
s

]♭
q−1

= gq

([r
s

]♯
q

)
=

q
(
R♯ − S♯

)
+ S♯

(q − 1)R♯ + S♯

has positive coefficients. Multiplying both numerator and denominator with an appropriate
power of q, we get the same for [r/s]♭q. ■

Finally, we can use the transition function gq(x) as reparametrization of P1. To emphasize
the dependence of our differential operators, we will write here D−1(q, x) = (1+(q−1)x)∂x and
similar for D0 and D1.

Proposition 2.9. Reparametrizing P1 by the transition map ξ = gq(x) gives

D±1(q, x) = qD±1

(
q−1, ξ

)
, D0(q, x) =

(
q2 − q + 1

)
ξ∂ξ.

The behavior of D−1 and D1 is reminiscent of Proposition 2.6.

Proof. Using dξ
dx = q2−q+1

(1+(q−1)x)2
and x = ξ+q−1

q+(1−q)ξ , we get 1 + (q − 1)x = q2−q+1
q+(1−q)ξ . Hence

D−1(x, q) = (1 + (q − 1)x)
dξ

dx
∂ξ =

q2 − q + 1

1 + (q − 1)x
∂ξ = (q + (1− q)ξ)∂ξ = qD−1

(
q−1, ξ

)
.

The computation for D1 is similar. Finally,

D0(q, x) = (1 + (q − 1)x)(1 + (x− 1)q)∂x =
(
q2 − q + 1

)
gq(x)∂ξ =

(
q2 − q + 1

)
ξ∂ξ. ■

This proposition indicates that we can use the undeformed operator x∂ together with D±1 to
get a deformation of sl2 which is equivalent to our proposal. The importance of the q-rational
transition map gq, especially in the light of Proposition 2.6, justifies to use D0 instead of x∂.

2.3 Heisenberg algebra

The operators D−1 and gq, seen as multiplication operator, give a deformation of the Heisenberg
algebra. This strengthens the idea of considering gq as a deformation of the identity.

Theorem 2.10. The two operators D−1 and gq satisfy

[D−1, gq] = q + (1− q)gq.

Hence together with the central element 1, they define a solvable 3-dimensional Lie algebra
deforming the 3-dimensional Heisenberg algebra which we recover for q = 1.
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The proof is a simple computation:

[D−1, gq] = D−1(gq) =
q2 − q + 1

1 + (q − 1)x
= q + (1− q)gq.

The Lie algebra generated by (1, gq, D−1) is solvable since D−1 is not in the image of the Lie
bracket. Hence the derived series becomes zero at the second step.

The previous theorem works since there is a nice expression for D−1(gq). This holds true
more generally:

Proposition 2.11. The function gq behaves well under the operators D−1, D0 and D1:

D0(gq) =
(
q2 − q + 1

)
gq, D−1(gq) = q + (1− q)gq, D1(gq) = (q − 1)gq + g2q .

Proof. We only have to prove the last statement since we have already seen the first two. For
that, we use the relation gq(Sq(x)) = −q/gq(x), see Proposition 2.6. We get

D1(gq) = SqD−1Sq(gq) = SqD−1(−q/gq) = Sq

(
−qg−2

q (q + (1− q)gq)
)
,

where we first used that Sq acts by precomposition, then Proposition 2.6 and finally the expres-
sion for D−1(gq). Since Sq acts by precomposition applying 2.6 again concludes:

D1(gq)Sq

(
−qg−2

q (q + (1− q)gq)
)
= g2q + (q − 1)gq. ■

We can use this proposition to express one operator in terms of another via the rela-
tion Di =

Di(gq)
Dj(gq)

Dj for all i, j ∈ {−1, 0, 1}. This holds true since these differential operators
are of order 1.

3 Deformed Witt algebra

Now that we have deformed the differential operators ∂, x∂ and x2∂, we can do the same for
all xn∂ for n ∈ Z. These are a realization of the Witt algebra, the Lie algebra of complex
polynomial vector fields on the circle (the centerless Virasoro algebra). Putting ℓn = xn+1∂, the
Lie algebra structure is given by

[ℓn, ℓm] = (m− n)ℓn+m.

To get a deformation of the Witt algebra, we define for n > 1:

Dn = gn−1
q D1, D−n =

(
qg−1

q

)n−1
D−1,

where g−1
q = 1/gq denotes the inverse for multiplication (not composition).

Proposition 3.1. The operators Dn behave nicely when multiplied by gq. By definition we
have gqDn = Dn+1 for n ≥ 1 and gqD−n = qD−n+1 for n ≥ 2. In addition,

gqD0 = (1− q)D0 +
(
q2 − q + 1

)
D1, gqD−1 = D0 + (1− q)D1.

Similarly, there is a nice behavior when multiplied by qg−1
q . By definition qg−1

q D−n = D−n−1

for n ≥ 1 and qg−1
q Dn = qDn−1 for n ≥ 2. In addition,

qg−1
q D0 = (q − 1)D0 +

(
q2 − q + 1

)
D−1, qg−1

q D1 = D0 + (q − 1)D−1.
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Proof. From the definitions, we get gqD0 = (1 + (x − 1)q)2∂. From Proposition 2.3 and its
proof, we see that this is [D0, D1]. Therefore, gqD0 =

(
q2 − q + 1

)
D1 + (1 − q)D0. A direct

computation also gives gqD−1 = (1 + (x− 1)q)∂ = D0 + (1− q)D1.

For the second half, note that

gqD0 + (q − 1)gqD−1 =
(
q2 − q + 1− (q − 1)2

)
D1 = qD1.

Dividing by gq gives qg−1
q D1 = D0 + (q − 1)D−1. Similarly,

(q − 1)gqD0 +
(
q2 − q + 1

)
D−1 = qD0,

so dividing by gq gives qg−1
q D0 = (q − 1)D0 +

(
q2 − q + 1

)
D−1. ■

Using Propositions 2.11 and 3.1, we get the bracket relations of all Dn:

Theorem 3.2. The (Dn)n∈Z form a Lie algebra with bracket given by (with n, r > 0):

[D0, Dn] = n
(
q2 − q + 1

)
Dn +

(
q2 − q + 1

) n−1∑
k=1

(1− q)kDn−k + (1− q)nD0,

[D0, D−n] = −n
(
q2 − q + 1

)
D−n −

(
q2 − q + 1

) n−1∑
k=1

(q − 1)kD−n+k − (q − 1)nD0,

[Dn, Dn+r] = rD2n+r + (q − 1)rD2n+r−1,

[D−n, D−n−r] = −rD−2n−r + (q − 1)rD−2n−r+1,

[D−n, Dn] = 2nqn−1D0 + (2n− 1)qn−1(q − 1)(D−1 −D1),

[Dn+r, D−n] = (q − 1)qn−1(2n+ r − 1)Dr+1 −
(
q2 + (2n+ r − 2)q + 1

)
qn−1Dr,

− qn−1
(
q2 − q + 1

) r−1∑
k=1

(1− q)kDr−k − (1− q)rqn−1D0,

[Dn, D−n−r] = −(q − 1)qn−1(2n+ r − 1)D−r−1 −
(
q2 + (2n+ r − 2)q + 1

)
qn−1D−r,

− qn−1
(
q2 − q + 1

) r−1∑
k=1

(q − 1)kD−r+k − (q − 1)rqn−1D0.

For q = 1, one recovers the Witt algebra.

It is clear that the bracket of the operators Dn satisfies the Jacobi identity since these
operators come from a realization as differential operators. We only have to check the bracket
relations, which uses induction and all properties between gq and D−1, D0, D1.

Proof. We prove the first relation by induction on n. The case n = 1 is true by Proposition 2.3.
Then for n > 1,

[D0, Dn] = [D0, gqDn−1] = D0(gq)Dn−1 + gq[D0, Dn−1]

=
(
q2 − q + 1

)
gqDn−1 + gq(n− 1)

(
q2 − q + 1

)
Dn−1

+ gq

((
q2 − q + 1

) n−2∑
k=1

(1− q)kDn−1−k + (1− q)n−1D0

)

= n
(
q2 − q + 1

)
Dn +

(
q2 − q + 1

) n−1∑
k=1

(1− q)kDn−k + (1− q)nD0,
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where we used that gq is an eigenfunction of D0, and Proposition 3.1. The second statement is
a similar computation. The third relation comes as follows:

[Dn, Dn+r] = [Dn, g
r
qDn] = Dn(g

r
q)Dn = rgr−1

q gn−1
q D1(gq)Dn

= rgr+n−2
q

(
g2q + (q − 1)gq

)
Dn = rD2n+r + r(q − 1)D2n+r−1,

where we used Proposition 2.11 for D1(gq). The fourth bracket is a similar computation. To
prove the fifth relation, we use induction on n again. The initial n = 1 is done by Proposition 2.3.
Then for n ≥ 1,

[D−n−1, Dn+1] =
[
qg−1

q D−n, gqDn

]
= qg−1

q D−n(gq)Dn + q[D−n, Dn]− qgqDn

(
g−1
q

)
D−n

= qng−n
q (q + (1− q)gq)Dn + q

(
2nqn−1D0

+ (2n− 1)qn−1(q − 1)(D−1 −D1)
)
+ qgn−2

q

(
g2q + (q − 1)gq

)
D−n

= 2nqnD0 + qn(2n(q − 1) + qq)D−1 − qn
(
2n(q − 1)− qg−1

q

)
D1

= (2n+ 2)qnD0 + (2n+ 1)qn(q − 1)(D−1 −D1),

where we used several times Propositions 2.11 and 3.1. Finally, for the last two brackets, we
start from (where a, b > 0)

[Da, D−b] =
[
ga−1
q D1,

(
qg−1

q

)b−1
D−1

]
= qb−1

(
ga−1
q D1

(
g1−b
q

)
D−1 − g1−b

q D−1

(
ga−1
q

)
D1 + ga−b

q [D1, D−1]
)

= qb−1ga−b
q (−(a+ b)D0 + (a+ b− 1)(q − 1)(D1 −D−1)). (3.1)

An easy induction gives for r > 0,

grqD0 =
(
q2 − q + 1

) r−1∑
k=0

(1− q)kDr−k + (1− q)rD0. (3.2)

Also we get grqD−1 = gr−1
q D0 + (1− q)Dr, where we can use equation (3.2) to express the first

term. Similar results hold for
(
qg−1

q

)r
D0 and

(
qg−1

q

)r
D1. Putting a = n + r and b = n in

equation (3.1) and using (3.2) gives the bracket [Dn+r, D−n]. Putting a = n and b = n+ r gives
in a similar way the last bracket [Dn, D−n−r]. ■

Remark 3.3. Regarding Remark 2.5, we could try to simplify the defining relations of the q-
deformed Witt algebra by considering a formal parameter q satisfying (q − 1)2 = 0 (and then
forget about this relation again). In contrast to the q-deformed sl2, the result here is not a Lie
algebra anymore. The Jacobi identity does not hold exactly, but only modulo (q − 1)2 = 0.

4 Möbius transformations

The differential operators ∂, x∂, x2∂ can be interpreted in at least three different ways: first as
differential operators on P1 written in one chart (this was our approach). Second they can be
seen as complex vector fields on the circle S1 ⊂ C (this approach was used for the Witt algebra).
Third, a Lie algebra can be realised as Killing vector fields on the associated symmetric space
of non-compact type. For sl2 this symmetric space is the hyperbolic plane H2.

In this section, we integrate the operators D−1, D0 and D1 seen as vector fields of H2.
The result gives interesting Möbius transformations with q-parameter. In the Taylor expansion
around q → 1 (the “semi-classical limit”), we recover the deformed translation Tq. Conjecturally
there should be a q-deformation of H2 on which these transformations act, such that the bound-
ary can be identified with the q-deformed real numbers of [13].
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4.1 Classical setting

Consider first the classical setup with the operators ∂, x∂ and x2∂. These are Killing vector
fields on the hyperbolic plane H2, whose integration determines isometries of H2. Here, we
consider H2 ⊂ C in the upper half-plane model and use the coordinate x ∈ C.

To start, consider the case of the vector field V = ∂ = ∂
∂x . A curve γ integrates this vector

field iff γ′(t) = V (γ(t)) = 1 for all t ∈ R (where we identified 1 with the constant vector field ∂).
With initial condition γ(0) = x we get γ(t) = x+ t. We should think of this as a function γx(t)
of the initial condition. For time 1, we get the translation γx(1) = x+ 1 = T (x).

Another important case is x∂, for which we have to solve γ′(t) = γ(t). With initial condi-
tion γ(0) = x, we obviously get γ(t) = etx. The function x 7→ etx is the hyperbolic isometry
of H2 associated to the geodesic joining 0 to ∞. Its matrix is given by(

et/2 0

0 e−t/2

)
. (4.1)

We can immediately generalize to the generators of the Witt algebra. Consider the opera-
tor xn∂ with n ∈ Z, n ̸= 1. A curve γ integrates the associated vector field if γ′(t) = γ(t)n. The
solution with initial condition γ(0) = x is given by

γx(t) =
x(

1− (n− 1)txn−1
)1/(n−1)

.

Apart from n = 0 and n = 2, the associated transformations in x are not Möbius transformations.
We get Möbius transformations though when passing to a ramified covering. Putting y = xn−1,
we get

γx(t)
n−1 =

y

1− (n− 1)ty
.

4.2 Deformed transformations

We repeat the method of the previous subsection to deduce the transformations associated
to D−1, D0 and D1. Since these operators are still of the form p(x)∂ with p a polynomial in x
of degree at most 2, the vector fields Di are still Killing vector fields, so their integration gives
Möbius transformations.

Start withD−1=(1+(q−1)x)∂. The associated differential equation is γ′(t) = 1 + (q − 1)γ(t)
with initial condition γ(0) = x. Solving this equation is standard: first one solves the homoge-
neous equation, then one uses the variation of the constant to finally get

γ(t) = − 1

q − 1
+

(
x+

1

q − 1

)
e(q−1)t.

For t = 1, we get the associated map x 7→ − 1
q−1 +

(
x + 1

q−1

)
eq−1. The Taylor expansion

around q − 1 at order 1 gives

x 7→ − 1

q − 1
+

(
x+

1

q − 1

)
q = qx+ 1,

which is nothing but Tq(x). For a general time t, the same procedure gives x 7→ (1− t+ qt)x+ t.
To sum up:

Proposition 4.1. The time 1 flow of the operator D−1 seen as vector field on H2 is the affine
map x 7→ − 1

q−1 +
(
x+ 1

q−1

)
eq−1 whose Taylor expansion at order 1 in q − 1 is Tq.
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For the operator D1, it is not necessary to do any computation since D1 = SqD−1Sq. We can
simply conjugate by Sq the previous computations. In particular, the associated transformation
in the Taylor expansion is SqTqSq.

Consider now the operator D0 = (1 + (q − 1)x)(1 + (x − 1)q)∂. The associated differential
equation reads

γ′(t) = 1− q +
(
−1 + 3q − q2

)
γ + q(q − 1)γ2,

which is a Ricatti equation.
To solve a Ricatti equation, put a = 1− q, b = −1 + 3q − q2, c = q(q − 1) and introduce the

new function u such that cγ(t) = −u′(t)/u(t). Then u satisfies u′′(t)− bu′(t) + acu(t) = 0. The

discriminant has the nice expression b2−4ac =
(
q2−q+1

)2
. The two roots of the characteristic

equation are q and −(q − 1)2. Hence we get u(t) = C1e
qt + C2e

−(q−1)2t, where C1, C2 are two
constants. Since γ = −u′/(cu), we can scale C1 and C2 by the same number without changing γ.
Putting C1 = 1− q, we get

γ(t) =
eqt + C2

q−1
q e−(q−1)2t

(1− q)eqt + C2e−(q−1)2t
.

The initial condition γ(0) = x gives

C2 =
q(1− q)x− q

q − 1− qx
.

We already see that γx(t) is a Möbius transformation in x since C2 is. For time t = 1, we get
the following.

Proposition 4.2. Integrating to time t = 1 the operator D0 seen as vector field in H2 gives the
Möbius transformation

γx(1) =

(
qeq + (q − 1)2e−(q−1)2

)
x+ (1− q)

(
eq − e−(q−1)2

)
q(1− q)

(
eq − e−(q−1)2

)
x+ (1− q)2eq + qe−(q−1)2

.

If we Taylor expand γx(1) around q − 1 to order 1, we get a quadratic polynomial in x. In
order to keep a Möbius transformation, we Taylor expand all entries of the associated 2 × 2
matrix to order 1 in q − 1. The result is

Wq :=

(
e(1− 2q) (e− 1)(q − 1)

(e− 1)(q − 1) −q

)
,

where we used q2 = 2q − 1 coming from the Taylor expansion. We see that q = 1 gives the
transformation x 7→ ex.

A similar computation with arbitrary time t gives

W t
q =

(
et(t− qt− q) (et − 1)(q − 1)
(et − 1)(q − 1) −q

)
,

which for q = 1 gives the transformation x 7→ etx from equation (4.1).

4.3 Speculations about a q-deformed hyperbolic plane

The above computations seem to indicate the existence of a q-deformed version of the hyperbolic
plane H2

q on which the transformations Tq, Sq, gq and Wq act. A similar idea is developed in [2]
where a compactification of the space of stability conditions for type A2 is constructed.
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The transformation Sq(x) = −1/(qx) has only one fixed point given by iq−1/2. This equals [i]q,
the q-deformed version of i from [17, formula (9)]. The translation Tq(x) = qx+1 has two fixed
points at the (usual) boundary at infinity, given by ∞ and 1/(1 − q). However, we expect the
boundary of H2

q to be Rq ∪ {∞}, where Rq denotes the q-reals. On Rq, the transformation Tq

has no fixed point since Tq[x]q = [x+ 1]q.

An important role should play the q-rational transition map gq(x) = 1+(x−1)q
1+(q−1)x . Since it

deforms the identity, there are strictly more transformations in the deformed setting. For q ̸= 1,
gq is an elliptic transformation with only fixed point on H2 given by 1+i

√
3

2 which is independent
of q. In [17, Part 2.3], it is shown that this complex number stays itself under q-deformation.
Note that both transformations gq and TqSq are rotations around the same center. Hence they
commute. Similarly, the matrix of g−1

q anti-commutes with the matrix of Sq.

These links between q-deformed numbers and the q-deformed sl2-algebra are intriguing and
might point towards a deeper relation.

Acknowledgements

I warmly thank Valentin Ovsienko and Sophie Morier-Genoud for inspiration, many suggestions
and fruitful exchanges, and Peter Smillie and Vladimir Fock for helpful discussions. I also
thank the anonymous referees for their remarks improving the paper. I gratefully acknowledge
support from the University of Heidelberg where this work has been carried out, in particular
under ERC-Advanced Grant 101018839 and Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - Project-ID 281071066 - TRR 191.

References

[1] Avan J., Frappat L., Ragoucy E., Deformed Virasoro algebras from elliptic quantum algebras, Comm. Math.
Phys. 354 (2017), 753–773, arXiv:1607.05050.

[2] Bapat A., Becker L., Licata A.M., q-deformed rational numbers and the 2-Calabi–Yau category of type A2,
Forum Math. Sigma 11 (2023), e47, 41 pages, arXiv:2202.07613.

[3] Bharathram V., Birman J., On the Burau representation of B4, Involve 14 (2021), 143–154,
arXiv:2208.12378.
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