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Abstract. We establish identities of Pfaffian type for the theta function associated with
twice or half the period matrix of a hyperelliptic curve. They are implied by the large size
asymptotic analysis of exact Pfaffian identities for expectation values of ratios of charac-
teristic polynomials in ensembles of orthogonal or quaternionic self-dual random matrices.
We show that they amount to identities for the theta function with the period matrix of
a hyperelliptic curve, and in this form we reprove them by direct geometric methods.
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1 Introduction

The Fay trisecant identity [23] is a property of the Riemann theta function associated to the
period matrix τ of a compact Riemann surface Ĉ of genus g > 0

0 = θ(v|τ )θ(u(z1)− u(z3) + c|τ )θ(u(z2)− u(z4) + c|τ )
× θ(v + u(z1)− u(z2) + u(z3)− u(z4)|τ )

− θ(u(z1)− u(z4) + c|τ )θ(u(z3)− u(z2) + c|τ )
× θ(v + u(z1)− u(z2)|τ )θ(v + u(z3)− u(z4)|τ )

+ θ(u(z1)− u(z2) + c|τ )θ(u(z3)− u(z4) + c|τ )
× θ(v + u(z1)− u(z4)|τ )θ(v + u(z3)− u(z2)|τ ), (1.1)

where u(zi) is the image via the Abel map of a point zi in the universal cover C̃ of Ĉ and v is
an arbitrary g-dimensional vector, all notations appearing in this formula will be reviewed later.
Its proof is an application of basic facts about the geometry of the Jacobian of Ĉ. This identity
admits a generalisation to a determinantal identity involving 2n points on C̃.

The Fay identity is a showcase of the deep relations between the geometry of Riemann surfaces
and integrability. It is responsible for the existence of the algebro-geometric solutions to the
KP hierarchy [26], which are associated to any fixed Riemann surface Ĉ; in this context (1.1)
is an equivalent form of the Hirota equation. The real-valued solutions among those give rise
to the finite-gap potentials for the associated linear differential system, which historically have
played an important role in the study of the KdV and KP hierarchies [27]. The Fay identity is
also the basis of a solution to the Schottky problem: as conjectured by Novikov and proved by
Shiota [35] building on earlier work of Mulase [31], (1.1) characterises period matrices among
complex symmetric matrices τ with positive-definite imaginary part. In the algebro-geometric
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solutions, coupling the moduli of Ĉ to the KP flows does not give anymore an exact solution,
but captures the long-time asymptotics of more general solutions of KP, see, e.g., the conjectures
in [8].

The 1-hermitian matrix model exhibits Toda integrability (closely related to KP integra-
bility), which manifests itself by the existence of determinantal formulae to compute various
observables, valid for any matrix size N . In particular, the average of any ratio of character-
istic polynomials (called 2n-point functions) can be expressed as a determinant of expectation
values of the ratio of two characteristic polynomials. The large N asymptotic of these matrix
models has been extensively studied, either by Riemann–Hilbert methods relying on integrabil-
ity [17, 18, 33], or by probabilistic techniques [1, 12, 13, 14, 24, 34]. The multi-cut regime, when
the large N spectral density of the random matrix is supported on g + 1 segments, is partic-
ularly interesting. As observed numerically in [25], explained heuristically in [6] and justified
rigorously in [13, 34], the asymptotic behavior is of oscillatory nature. In particular, fluctuations
of linear statistics in the macroscopic regime are asymptotically described as the independent
sum of a Gaussian and a discrete Gaussian living on an N -dependent lattice. This can be pre-
cisely described through the Riemann theta function of the underlying spectral curve, which is
hyperelliptic of genus g. Given the parallel with integrability, it should not be a surprise that
the exact determinantal formulae in the hermitian matrix model imply, in the large N limit up
to o(1), the Fay identities (1.1). This implication will be shown in Proposition 5.2.

The purpose of our work is to generalise this to orthogonal and quaternionic self-dual 1-matrix
models. The determinantal formulae of the hermitian case for 2n-point functions of ratios of
characteristic polynomials are then replaced with the Pfaffian formulae found by Borodin and
Strahov [7]. These models correspond to the β = 1 and β = 4 cases of the β-ensembles, whose
asymptotic analysis in the (g+1)-cut regime has been established for all β > 0 by probabilistic
techniques in [13, 14, 34]. The large N spectral density is described by a hyperelliptic curve
of genus g independent of β and having a period matrix τ . The asymptotics of the partition
function and the 2n-point functions are governed by the theta function associated with the
matrix β

2τ . The appearance of the theta function does not have a geometric origin1 but is
rather explained by eigenvalue tunnelling between the different connected components of the
support [6]. Inserting these asymptotics up to o(1) in the Pfaffian identities for the 2n-point
functions yield identities between these theta functions, which can be expressed solely in terms
of the geometry of the underlying spectral curve.

The spectral curves arising from the large N limit of the matrix models we consider must be
hyperelliptic, have real Weierstraß points, and have the Boutroux property. We show that all
such curves can be realised as the spectral curve of an off-critical β-ensemble with polynomial
potential (Proposition 3.11). By analytic continuation we can extend the validity of the resulting
identities to all hyperelliptic curves. This gives our main results: Theorem 5.1 for β = 2,
Theorem 5.4 for β = 1 and Theorem 5.7 for β = 4. It turns out that all three identities can be
reformulated in terms of theta functions for the matrix of periods τ

(
instead of β

2τ
)
and in this

form we are able to give them a second proof by direct algebraic methods. Interestingly, the
β = 1 and β = 4 identities are equivalent via the modular properties of theta functions, and the
β = 2 identity implies the Fay identity in the special case of hyperelliptic curves.

As a byproduct of our proofs, we obtain a seemingly new formula (Proposition 4.3 proved
in Section 5.4) for the equilibrium energy of the β-ensembles in the multi-cut regime in terms
of the geometry of the spectral curve. Although the ingredients are the same, at first sight
it does not have exactly the same form as the 1-matrix model specialisation of the formula
known in the context of the 2-matrix model [4]. Independently of our analysis, we also establish
(Proposition 4.4 proved in Appendix A) an explicit formula for the derivative with respect to

1The asymptotic analysis carried via the Riemann–Hilbert method does give a geometric origin to the theta
function, but it is only applied to the hermitian case, i.e., β = 2.
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filling fractions of the equilibrium entropy. For β ̸= 2, the equilibrium entropy appears as the
order N term in the free energy of the β-ensemble, and its derivatives with respect to filling
fractions appear both in the asymptotics of the partition function (Theorem 4.1) and in the
centering in the generalised central limit theorem (Theorem 4.2).

The strategy of proof via asymptotics in integrable random matrix ensembles is somehow
more interesting than the resulting identities in the particular case we studied, and constitutes
the originality of this study. In principle this strategy can be applied to any random matrix
ensemble:

(i) which is amenable to asymptotic analysis up to o(1) in the large size limit and in the
multi-cut regime;

(ii) in which exact formulae for 2n-point functions in terms of k-point functions (with k inde-
pendent of n) are available.

In principle, more general algebraic spectral curves can be obtained in two-matrix models or
in linearly coupled chain of matrices. In such models, (ii) is addressed by the Eynard–Mehta
formulae [21] but obtaining (i) already for the two-matrix model away from critical points in the
multi-cut regime is a notoriously hard open problem. More general algebraic spectral curves can
also be obtained in repulsive particle systems with d groups of particles, in which the repulsion
intensity between particles of groups i and j is βi,j . The latter appear naturally in various situa-
tions (see, e.g., [9, 10]) and (i) has been addressed by [14]. Their discrete counterpart appears in
models related to random two-dimensional tilings and is also amenable to asymptotic analysis
[11]. We expect that in some of these models, integrability properties (ii) should exist, and will
therefore imply identities between theta functions with a more complicated structure and that
depend on a larger class of algebraic curves. By this we mean the matrix τ in the theta function
will be specified from the geometry of these curves, although it may not exactly be the matrix
of periods. This would in fact be the interesting situation, as the corresponding theta function
is then associated to an abelian variety which may not be a Jacobian. Whether genuinely new
identities for theta functions of certain abelian varieties, i.e., for which a proof by direct algebraic
methods is not easily available, as consequences of the integrability of probabilistic models can
be obtained is a question left to future investigations.

2 β-ensembles and their properties

We recall a few facts about the β-ensembles and review the determinantal and Pfaffian formulae
of Borodin and Strahov [7]. We use the notation [g] for the integer set {1, . . . , g}.

2.1 The unconstrained model

Fix a finite union A of compact intervals of R, a positive integer N , a real number β > 0, and
an even-degree polynomial V (the potential) with real coefficients and positive top coefficient.
We consider the probability measure PV

N on AN defined by

dPV
N (λ) =

1

ZV
N

|∆(λ)|βe−
βN
2

∑N
i=1 V (λi)

N∏
i=1

1A(λi)dλi, (2.1)

where λ = (λ1, . . . , λN ) ∈ AN , ∆(λ) =
∏

i<j(λj − λi) is the Vandermonde determinant, and

ZV
N =

�
AN

|∆(λ)|β exp

(
−βN

2

N∑
i=1

V (λi)

)
N∏
i=1

dλi
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is the partition function. Many results that we quote are formulated with A = R but their
validity trivially extends to the case of A compact. We choose to work from the start with
a compact A as it facilitates the statement of the asymptotic results we will need and does not
lead to any loss of generality.

When β = 1, 2 or 4, PV
N is the distribution of the N eigenvalues of a random matrix whose

law is proportional to exp
(
−βN

2 V (M)
)
dM , where M is a matrix which is real symmetric

(β = 1), Hermitian (β = 2) or quaternionic self-dual (β = 4) and which is conditioned to
have spectrum in A. The measure dM is the product of Lebesgue measure on the R-linearly
independent entries of M . In particular, when V (M) = 1

2M
2, the entries Mij , i ≤ j of the

matrix are independent Gaussian random variables. These matrix ensembles are known under
the name of Gaussian orthogonal ensemble (GOE) for β = 1, Gaussian unitary ensemble (GUE)
for β = 2, and Gaussian symplectic ensemble (GSE) for β = 4, see [28]. The β-ensembles (2.1)
constitute a generalisation of these models.

2.2 The model with fixed filling fractions

Let us write A =
⊔g

h=0Ah where Ah are the connected components of A. In addition to
the measure (2.1), we define the β-ensemble with fixed filling fractions as follows. Let N =
(Nh)

g
h=1 ∈ Zg

>0 such that N1 + · · ·+Ng < N and introduce N0 ∈ Z>0 such that

N0 + · · ·+Ng = N.

We call Nh/N the filling fraction of Ah. We define the measure with fixed filling fractions by

dPV
N,N/N =

1

ZV
N,N/N

|∆(λ)|β exp

(
−βN

2

g∑
h=0

Nh∑
i=1

V (λh,i)

)
g∏

h=0

Nh∏
i=1

1Ah
(λh,i)dλh,i,

where λ = (λh,1, . . . , λh,Nh
)gh=0 is a N -tuple and

ZV
N,N/N =

�
AN

|∆(λ)|βe−
βN
2

∑g
h=0

∑Nh
i=1 V (λh,i)

g∏
h=0

Nh∏
i=1

1Ah
(λh,i)dλh,i

is the partition function for fixed filling fractions. To distinguish it from the model with fixed
filling fractions, we refer to (2.1) as the unconstrained model.

2.3 Equilibrium measures and their Stieltjes transform

We define the empirical measure as LN = 1
N

∑N
i=1 δλi

. It belongs to the space of probability mea-
sures on A, which we equip with the weak topology. We first consider LN in the original model.
The following result comes large deviation arguments [2, Theorem 2.6.1 and Corollary 2.6.3],
but see also [1, 19, 24].

Theorem 2.1. Assume that V is an even-degree real polynomial with positive top coefficient.
As N → ∞, LN converges under PV

N almost surely, and in expectation (when tested against
continuous bounded functions) to the unique probability measure µeq on A maximising

E [µ] = β

2

�
A2

(
ln |ξ − η| − V (ξ) + V (η)

2

)
dµ(ξ)dµ(η). (2.2)

Furthermore, µeq has compact support S consisting in a finite union of segments. It is charac-
terised by the existence of a constant c such that

∀x ∈ A 2

�
A
ln |x− ξ|dµeq(ξ)− V (x) ≤ c (2.3)

with equality µeq-almost everywhere.
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We will only need to consider S =
⊔g

h=0 Sh where Sh is a segment contained in the interior2 Åh

of Ah. Without loss of generality one can and one will restrict Ah to be a small enlargement
of Sh. The choice of this enlargement will be irrelevant for our purposes, as it does not change
the equilibrium measure and only affects the model by corrections which are exponentially small
in N , see, e.g., [1, Proposition 2] or the discussion in [12, Section 2] and references therein.
In the model with fixed filling fractions, Theorem 2.1 has the following adaptation.

Theorem 2.2 ([13, Theorem 1.2]). Consider a sequence indexed by N of g-tuples of nonnegative
integers N = (N1, . . . , Ng) with

∑g
h=1Nh < N and assume there exists ϵ = (ϵh)

g
1=0 such

that Nh/N → ϵh for all h ∈ [g]. Then, LN = 1
N

∑g
h=0

∑Nh
i=1 δλh,i

converges almost surely

and in expectation under PV
N,N/N towards a deterministic probability measure µeq,ϵ, which is

the maximiser of (2.2) among probability measures giving mass ϵh to the segment Ah for each
h ∈ [0, g]. It is characterised by the existence of constants (ch)

g
h=0 such that

∀h ∈ [0, g], ∀x ∈ Ah 2

�
A
ln |x− ξ|dµeq,ϵ(ξ)− V (x) ≤ ch

with equality µeq,ϵ|Ah
-almost everywhere.

The filling fractions at equilibrium ϵ∗ = (ϵ∗h)
g
h=1 are defined as ϵ∗h = µeq(Ah), and one can

show that µeq = µeq,ϵ∗ , see [13, Section 1.4].
Let us now discuss the properties of the equilibrium measure, both in the unconstrained case

(Theorem 2.1) or fixed filling fraction case (Theorem 2.2) . We introduce the Stieltjes transform
of the equilibrium measure

W1(x) =

�
A

dµeq(ξ)

x− ξ
,

defined for x ∈ C \ S. In [24], Johansson introduces the polynomial

P (x) =

�
A

V ′(x)− V ′(ξ)

x− ξ
dµeq(ξ),

and derives the equation

W1(x)
2 − V ′(x)W1(x) + P (x) = 0 (2.4)

for all x ∈ C \ S. This equation is the large N limit of the first Dyson–Schwinger equation of
the model, and its origin can be traced back to [15, 29]. In particular, it implies that

W1(x) =
V ′(x)

2
±
√

V ′(x)2 − 4P (x)

2
.

The determination of the squareroot should be chosen such thatW1(x) ∼ 1
x as x → ∞ andW1

is holomorphic in C \ S. As this determination plays an important role in our discussion, it
is worth reviewing in detail how this can be achieved. The standard determination of the
squareroot gives a holomorphic function x 7→

√
x on C \ R≤0 such that

√
R>0 = R>0 and(√

x
)2

= x. We decompose V ′(x)2 − 4P (x) = M(x)2σ(x), where σ is a monic polynomial with
simple real roots and M is a real polynomial with positive top coefficient. We write further

σ(x) =

g∏
h=0

(x− ah)(x− bh)

2This is usually called the ‘soft edge’ case, by opposition to hard edges that are endpoints of S in the boundary
of A.
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with

a0 < b0 < a1 < b1 < · · · < ag < bg.

The locus σ−1(C \ R≤0) is a union of g + 2 connected components, labelled from left to right:
C0 contains a0 in its closure, Ch contains bh and ah+1 in its closure for h ∈ [g − 1], and Cg+1

contains bg in its closure. For x ∈ Ch with h ∈ [0, g + 1], we set s(x) = (−1)g+1−h
√

σ(x). This
definition makes s(x) a continuous (thus holomorphic) function of x ∈ C \S. It is discontinuous
on (ah, bh) because by crossing this segment we stay in the same component, so we keep the
same global sign coming from the component we are in while the standard determination of the
squareroot does get a sign change since σ(x) crosses R<0. Then, M(x)s(x) is a holomorphic
function of x ∈ C \ S, and M(x)s(x) ∼ txd−1 for some d ≥ 2 and t > 0. The constraint
W1(x) ∼ 1

x as x → ∞ leads to the formula

W1(x) =
V ′(x)−M(x)s(x)

2
. (2.5)

The fact that W1 is the Stieltjes transform of the equilibrium measure puts some constraints
on the polynomial M .

Lemma 2.3. The support of µeq is S =
⊔g

h=0 Sh with Sh = [ah, bh] and we have

dµeq

dx
=

M(x) Im(s(x+ i0))

2π
1S(x).

For each h ∈ [g], the number of zeros (with multiplicity) of M in [bh−1, ah] is odd. For each
h ∈ [0, g], the zeros of M in (ah, bh) have even multiplicity (if there is any).

Proof. By construction, for any h ∈ [0, g] and x ∈ (ah, bh) we have s(x + i0) ∈ (−1)g−hiR>0

and for any h ∈ [0, g+1] and x ∈ (bh−1, ah) we have s(x) ∈ (−1)g+1−hR>0, with the conventions
b−1 = −∞ and ag+1 = +∞. By definition of the Stieltjes transform, the function W1(x) has
a discontinuity in the interior of the support of µeq. It is identified as the real locus where the
polynomial V ′(x)2 − 4P (x) takes nonpositive values, and thus coincides with S =

⊔g
h=0[ah, bh].

The density of the equilibrium measure is reconstructed from the jump:

∀x ∈ R
dµeq

dx
=

W1(x− i0)−W1(x+ i0)

2iπ
=

M(x)s(x+ i0)

2iπ
1S(x)

=
M(x) Im(s(x+ i0))

2π
1S(x).

Since µeq is a positive measure and since Im(s(x + i0)) has a constant sign in each (ah, bh),
M should have constant sign in Sh and thus have zeros of even multiplicity there (if there is
any). Likewise, since the sign of Im(s(x+ i0)) changes between two consecutive segments in the
support, M should have at least a sign change in the closure of the interval between these two
segments, hence an odd number of zeros. ■

Lemma 2.3 allows us to give an expression for the density ρ of the equilibrium measure.
Indeed,

ρ(x) =
W1(x− i0)−W1(x+ i0)

2iπ
= M(x)

s(x+ i0)− s(x− i0)

4π
1S(x)

=

√
−M(x)σ(x)

2π
1S(x).
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Definition 2.4. The effective potential is defined for x ∈ A by

U(x) := V (x)− 2

�
A
ln |x− ξ|dµeq(ξ).

It satisfies

∀x ∈ A \ S U ′(x) = V ′(x)− 2W1(x) = M(x)s(x),

∀x ∈ S̊ U ′(x) = V ′(x)−W1(x+ i0)−W1(x− i0) = 0. (2.6)

Remark 2.5. For the equilibrium measure in the unconstrained case, Theorem 2.1 says there
exists a constant c such that U(x) = c for all x ∈ S. In view of (2.6), the latter property is
equivalent to

∀h ∈ [g]

� ah

bh−1

M(x)s(x) dx = 0.

2.4 Determinantal and Pfaffian formulae

Expectation values of ratios of characteristic polynomials, also called kernels, are quantities of
interest in random matrix theory. Let us introduce the notation ⟨·⟩VN for the expectation value
with respect to PV

N (the value of β will be specified in each case), and Λ = diag(λ). Given
c1, . . . , cm ∈ Z, and x1, . . . , xm ∈ C with the condition xj /∈ A if cj < 0, the m-point kernel is
defined as〈

m∏
j=1

det(xj − Λ)cj

〉V

N

=

〈
m∏
j=1

N∏
i=1

(xj − λi)
cj

〉V

N

.

In [7], Borodin and Strahov derive formulae to compute the kernels. In what follows, we will
always consider the “balanced” case, that is, when there are as many characteristic polynomials
in the numerator as in the denominator. Given two tuples of complex numbers x = (x1, . . . , xm1)
and x̃ = (x̃1, . . . , x̃m2), we write

∆(x, x̃) =

m1∏
i=1

m2∏
j=1

(xi − x̃j).

2.4.1 The determinantal case: β = 2

In that case, we have the following formulae.

Theorem 2.6 ([7, Theorem 4.1.1]). Let N , m1, m2 be positive integers, and sets of complex
numbers

x = {x1, . . . , xm1}, x′ =
{
x′1, . . . , x

′
m1

}
,

x̃ = {x̃1, . . . , x̃m2}, x̃′ =
{
x̃′1, . . . , x̃

′
m2

}
,

such that

x ∩ x′ = ∅, x̃ ∩ x̃′ = ∅, x′ ∩A = ∅, x̃′ ∩A = ∅.

We have〈
m1∏
j=1

det(xj − Λ)

det
(
x′j − Λ

) m2∏
j=1

det(x̃j − Λ)

det
(
x̃′j − Λ

)〉V

N

= (−1)
1
2
((m1+m2)2+m2−m1) ∆(x,x′)

∆(x)∆(x′)

∆(x̃, x̃′)

∆(x̃)∆(x̃′)
det
(
M(2)(x,x′; x̃, x̃′)

)
,
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in terms of the block matrix of size (m1 +m2):

M(2)(x,x′; x̃, x̃′) =

(
M(2)

++(xi, x̃j) M(2)
+−
(
xi, x

′
j

)
M(2)

−+(x̃
′
i, x̃j) M(2)

−−
(
x̃′i, x

′
j

)) ,

where i is a row index, j a column index, and the entries are

M(2)
++(x, x̃) = N

Z
N

N−1
V

N−1

ZV
N

⟨det(x− Λ) det(x̃− Λ)⟩
N

N−1
V

N−1 ,

M(2)
+−(x, x

′) =
1

x− x′

〈
det(x− Λ)

det(x′ − Λ)

〉V

N

,

M(2)
−+(x̃

′, x̃) =
1

x̃′ − x̃

〈
det(x̃− Λ)

det(x̃′ − Λ)

〉V

N

,

M(2)
−−(x̃

′, x′) =
1

N + 1

Z
N

N+1
V

N+1

ZV
N

〈
1

det(x̃′ − Λ) det(x′ − Λ)

〉 N
N+1

V

N+1

.

2.4.2 Orthogonal ensembles: β = 1

Recall that for an antisymmetric matrix A of size 2m, the Pfaffian is defined as

Pf(A) =
1

m!2m

∑
σ∈S2m

sgn(σ)
m∏
i=1

Aσ(2i−1),σ(2i).

Theorem 2.7 ([7, Theorem 1.2.1]). Let N , m be positive integers and set of complex numbers

x = {x1, . . . , xm}, x′ = {x′1, . . . , x′m},

such that x′ ∩A = ∅. We have〈
m∏
j=1

det(xj − Λ)

det(x′j − Λ)

〉V

2N

=
∆(x,x′)

∆(x)∆(x′)
Pf
(
M(1)(x,x′)

)
,

in terms of the antisymmetric matrix of size 2m

M(1)(x,x′) =

(
M(1)

++(xi, xj) M(1)
+−
(
xi, x

′
j

)
M(1)

−+(x
′
i, xj) M(1)

−−
(
x′i, x

′
j

)) , (2.7)

with entries

M(1)
++(x, x̃) = (2N − 1)2N(x− x̃)

Z
2N

2N−2
V

2N−2

ZV
2N

⟨det(x− Λ) det(x̃− Λ)⟩
2N

2N−2
V

2N−2 ,

M(1)
+−(x, x

′) =
1

x− x′

〈
det(x− Λ)

det(x′ − Λ)

〉V

2N

= −M(1)
−+(x

′, x),

M(1)
−−(x

′, x̃′) =
x′ − x̃′

(2N + 1)(2N + 2)

Z
2N

2N+2
V

2N+2

ZV
2N

〈
1

det(x′ − Λ) det(x̃′ − Λ)

〉 2N
2N+2

V

2N+2

.
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2.4.3 Symplectic ensembles: β = 4

The case β = 4 is very similar to the case β = 1.

Theorem 2.8 ([7, Theorem 1.2.1]). Let N , m be positive integers and two sets of complex
numbers

x = {x1, . . . , xm}, x′ = {x′1, . . . , x′m},

such that x′ ∩A = ∅. We have〈
m∏
j=1

det(xj − Λ)2

det
(
x′j − Λ

)2
〉V

N

=
∆(x,x′)

∆(x)∆(x′)
Pf
(
M(4)(x,x′)

)
,

with the same block structure as (2.7) but entries

M(4)
++(x, x̃) = N

Z
N

N−1
V

N−1

ZV
N

(x− x̃)
〈
det(x− Λ)2 det(x̃− Λ)2

〉 N
N−1

V

N−1 ,

M(4)
+−(x, x

′) =
1

x− x′

〈
det(x− Λ)2

det(x′ − Λ)2

〉V

N

= −M(4)
−+(x

′, x),

M(4)
−−(x

′, x̃′) =
1

N + 1

Z
N

N+1
V

N+1

ZV
N

(x′ − x̃′)

〈
1

det(x′ − Λ)2 det(x̃′ − Λ)2

〉 N
N+1

V

N

.

3 Geometry of the spectral curves

This section collects the information on theta functions and geometry of the spectral curve that
will be needed later to present the large N asymptotics in the β-ensembles. We only give the
details necessary to understand the formulae of Sections 4 and 5 in a self-contained way. We
refer to the many textbooks address in details theta functions and the geometry of Riemann
surfaces, for instance [3, 22, 23, 32].

3.1 Theta functions

Let us recall the definition and properties of the theta function.

Definition 3.1. Let τ be a complex g× g symmetric matrix such that Im τ is positive definite.
The theta function with characteristics µ,ν ∈ Rg is the function defined by

∀z ∈ Cg ϑµ,ν(z|τ ) =
∑
n∈Zg

exp(iπ(n+ µ) · τ (n+ µ) + 2iπ(n+ µ) · (z + ν)).

We set θ := ϑ0,0.

The condition Im τ > 0 ensures that the function is well defined. Let us define the period
lattice associated to τ as L = Zg ⊕ τ (Zg). The theta function is quasi-periodic: for m,n ∈ Zg

we have m+ τ (n) ∈ L, and for any z ∈ Cg

ϑµ,ν(z +m+ τ (n)|τ ) = e2iπm·µ−iπn·(τ (n)+2z+2ν)ϑµ,ν(z|τ ).

Definition 3.2. An odd half-integer characteristic is c = 1
2e+

1
2τ (e

′), with e, e′ ∈ Zg such that
e · e′ ∈ 2Z+ 1.

By direct computation, if c is a odd half-integer characteristic, then θ(c|τ ) = 0.
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3.2 Geometry of Riemann surfaces

3.2.1 Basis of cycles and forms

Let Ĉ be a compact Riemann surface of genus g. The first homology group H1(Ĉ;Z) has a basis
(Ah,Bh)

g
h=1 which can be chosen to have the following properties under the intersection pairing

∀h, k ∈ [g] Ah ∩ Ak = 0, Bh ∩ Bk = 0, Ah ∩ Bk = δh,k.

Such a basis is called a symplectic basis of homology, and Ĉ equipped with such a basis is called
a marked Riemann surface. We can for instance choose a point p0 and simple closed curves
on Ĉ representing the 2g classes (Ah,Bh)

g
h=1 such that all the curves intersect each other at p0

only. For spectral curves of β-ensembles, we will later work with another set of representatives
(Section 3.3.1). We keep the same notation for homology classes and their representatives. The
surface Ĉ0 = Ĉ \

⋃g
h=1(Ah ∪ Bh) is then simply-connected. The A-cycles (Ah)

g
h=1 determine

a dual basis of holomorphic 1-forms (duh)
g
h=1, such that

∀h, k ∈ [g]

�
Ah

duk = δh,k.

The matrix of periods τ is then defined by

∀h, k ∈ [g] τh,k =

�
Bh

duk. (3.1)

It is symmetric and Im(τ ) is definite positive, in particular we can consider the theta function
with matrix β

2τ for any β > 0. The theta function with matrix equal to (3.1) is called the
Riemann theta function.

3.2.2 Abel map

With the 1-forms (duh)
g
h=1 defined in Section 3.2.1, we can introduce the Abel map.

Definition 3.3. Choose a base point p0 in Ĉ. The Abel map u : Ĉ0 → Cg is defined by

ui(z) =

� z

p0

dui,

where the path of integration is in Ĉ0.

The definition of the Abel map depends on a choice of base point p0. However, we will often
consider differences u(z)− u(w) of Abel maps, which are independent of p0. Depending on the
context, we may also consider the Abel map as a map u : C̃ → Cg defined on the universal cover C̃
of Ĉ based at p0. We say that c is non-singular if θ(c+u(z)−u(w)|τ ) is not identically 0 when
z, w ∈ C̃. Non-singular odd half-integer characteristics exist, and in what follows we fix one.

3.2.3 Prime form

We introduce the holomorphic 1-form

ωc =

g∑
h=1

∂zhθ(z|τ )
∣∣
z=c

duh.

The prime form is

E(z1, z2) =
θ(c+ u(z1)− u(z2)|τ )√

ωc(z1)
√
ωc(z2)

. (3.2)
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It is defined as a holomorphic bispinor on C̃ × C̃, i.e., a
(
−1

2

)
⊗
(
−1

2

)
form. It has zeros only at

z1 = z2, and in local coordinates ζ, we have

E(z1, z2) ∼
z1→z2

ζ(z1)− ζ(z2)√
dζ(z1)dζ(z2)

.

The prime form on the Riemann sphere Ĉ reads

E0(x1, x2) =
x1 − x2√
dx1dx2

.

Given a meromorphic function X : Ĉ → Ĉ, we can define the relative prime form

Ẽ(z1, z2) =
E(z1, z2)

E0(X(z1), X(z2))
.

We observe that Ẽ(z1, z2) is a function on C̃ × C̃, such that

lim
z2→z1

Ẽ(z1, z2) = 1. (3.3)

3.2.4 Fundamental bidifferential

Definition 3.4. The fundamental bidifferential B(z, w) is the unique bidifferential
(
i.e., a 1⊗ 1

form on Ĉ × Ĉ
)
such that

1. Symmetry: B(z, w) = B(w, z).

2. Normalisation: ∀h ∈ [g]
�
Ah

B(·, w) = 0.

3. Singularities: B(z, w) is meromorphic with only a double pole at z = w, and if ζ is a local
coordinate, we have

B(z, w) =
z→w

(
1

(ζ(z)− ζ(w))2
+ SB,ζ(w) +O(ζ(z)− ζ(w))

)
dζ(z)dζ(w).

for some function SB,ζ locally defined on Ĉ.

The fundamental bidifferential can be expressed as

B(z, w) = dzdw ln θ(c+ u(z)− u(w)),

and this expression is independent on the choice of a non-singular odd half-integer characteris-
tics c. Given p, q ∈ Ĉ and a choice of path γp,q from p to q, we define the meromorphic form

dSp,q(z) =

�
γp,q

B(z, ·).

It has two poles of order 1 in p and q, with respective residue −1 and +1. Equivalently, we can
consider that it is specified by the choice of two points p and q in the universal cover C̃. The
prime form appears in the following computation.

Lemma 3.5. For i = 1, 2, let zi, z̃i ∈ C̃ and γi a path from z̃i to zi. Then

�
γ1

�
γ2

B =

�
γ1

dSz̃2,z2 = ln

(
E(z1, z2)E(z̃1, z̃2)

E(z1, z̃2)E(z̃1, z2)

)
.
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3.2.5 Decomposition of meromorphic forms

One distinguishes between three kinds of meromorphic forms:

� holomorphic 1-forms (first kind);

� meromorphic 1-forms with vanishing residues (second kind);

� meromorphic 1-form with non-vanishing residues (third kind).

The space of first kind differentials has for basis (duh)
g
h=1, which is dual to the basis of the

A-cycles. Assume that a choice of local coordinate ζp near each point p ∈ Ĉ has been made.
A basis of the space of second kind differentials is then given by

dBp,k(z) = Res
z′=p

ζp(z
′)−kB(z′, z)

for p ∈ Ĉ and k ∈ Z>0. Given the properties of the fundamental bidifferential, its only pole is
at p with order (k + 1), where it behaves like

dBp,k(z) =
z→p

−d
(
ζp(z)

−k
)
+O(dζp(z)).

Besides, we have
�
Ah

dBp,k = 0 for any h ∈ [g].

Assume that for each p ∈ Ĉ0, a choice of path γp0,p from p0 to p in Ĉ0 has been made. An
example of third kind differential is

dSp0,p(z) =

�
γp0,p

B(z, ·). (3.4)

It has two poles of order 1 in p0 and p, respectively of residue −1 and +1, and has zero A-periods.
Every meromorphic 1-form ϕ can be decomposed uniquely as a sum of first kind, second kind

and third kind differentials:3

ϕ(z) =

(
g∑

h=1

�
Ah

ϕ

)
duh(z) +

∑
p simple pole

of ϕ

(
Res
p

ϕ
)
dSp0,p(z)

+
∑
k≥1

∑
p pole of

order (k+1) of ϕ

(
Res
p

ζkpϕ
)dBp,k(z)

k
.

3.3 The spectral curve

We elaborate on Section 2.3 and construct the spectral curve associated to the equilibrium
measure of β-ensembles, for the moment indifferently in the unconstrained case or the fixed
filling fraction case. This prepares us for Section 4 where the asymptotics in the β-ensembles is
described solely in terms of the geometry of this spectral curve.

3.3.1 Construction of the marked Riemann surface

The equation (2.4) satisfied by the Stieltjes transform of the equilibrium measure has two solu-
tions:

F+(x) =
V ′(x)

2
+ y(x) = W1(x),

F−(x) =
V ′(x)

2
− y(x) = V ′(x)−W1(x), (3.5)

3Given ϕ, we can always perturb the representatives of A and B-cycles so that all poles are contained in Ĉ0

and we can use (3.4).



Fay Identities of Pfaffian Type for Hyperelliptic Curves 13

where y(x) = −1
2M(x)s(x) and y(x)2 = 1

4V
′(x)2 − P (x). After the birational transformation

(x, y) 7→
(
x, s = − 2y

M(x)

)
, we have the equation of an hyperelliptic curve

s2 = σ(x) =

g∏
h=0

(x− ah)(x− bh),

where the Weierstraß points a0, b0, . . . , ag, bg are real. This curve is constructed from two sheets
homeomorphic to C \ S, which are glued together along S. The two sheets are embedded into
the curve by

ι± : C \ S −→ C ⊂ C× C, x 7−→ (x,±s(x)).

We denote the sheets by C± = ι±(C\S), and Ĉ± are the sheets including their point at infinity.
Adding these points at infinity ∞± to C, we get a compact Riemann surface Ĉ. We define the
projection map as the meromorphic function

X : Ĉ −→ Ĉ, (x, s) 7−→ x.

This function has simple poles at ∞± and it defines a degree 2 branched covering of the Riemann
sphere Ĉ, whose branch points are the zeros of σ. It allows us to define local coordinates ζp
around any point p ∈ Ĉ, which is used in Section 3.2.5 to define a basis of meromorphic
differentials:

� If p is a ramification point, we take ζp(z) =
√

X(z)−X(p) for some choice of sign for the
squareroot.

� If p = ∞±, then ζ∞± = X(z)−1.

� In all the other cases, ζp(z) = X(z)−X(p).

We shall take p0 = ∞+ as reference point for the definition of the Abel map (Section 3.2.2). For
later use, we analyse the prime form over Ĉ near ∞±.

Lemma 3.6. We have

E0(z, z̃)
√
dζ∞±(z̃)

∣∣∣
z̃=∞±

=
−1√

−dX(z)
.

Proof. Since dX(z̃) = −X(z̃)2dζ∞±(z̃), we have

lim
z̃→∞±

E0(z, z̃)
√

dζ∞±(z̃) = lim
z̃→∞±

(X(z)−X(z̃))

√
−X(z̃)−2dX(z̃)√
dX(z)dX(z̃)

=
−1√

−dX(z)
. ■

We choose representatives for a symplectic basis of homology on Ĉ like in Figure 1. Namely,
we take Ah representing a counterclockwise loop in C+ going around the cut Sh, for h ∈ [g]. For
convenience we fix a representative A0 of a counterclockwise loop surrounding S0 in C+, whose
homology class is −(A1 + · · · + Ag). We take Bh representing a loop in Ĉ travelling from S0

to Sh in C+ and in the opposite direction in C−.

3.3.2 The 1-form ϕ and the Stieltjes transform

The branched covering X : Ĉ → Ĉ alone does not determine the equilibrium measure: we
also need to specify the meromorphic function Y : (x, s) 7→ −1

2M(x)s on Ĉ. It is such that

Y (x) = ∓1
2M(x)s(x) for x ∈ Ĉ±. The advantage to work with the Riemann surface Ĉ is that
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Bh

Ah

S0 Sh

Figure 1. Two cycles Ah and Bh.

the function W1, originally defined on C\S (Section 2.3) can be analytically continued to a mero-

morphic function on the whole Ĉ. Indeed, the meromorphic function W1(z) =
V ′(X(z))

2 + Y (z)

coincides with W1(X(z)) for z ∈ Ĉ+. We can also see this by noticing that F± in (3.5) are two
solutions of the Riemann–Hilbert problem

∀x ∈ S̊ F (x+ i0) + F (x− i0) = V ′(x).

Definition 3.7. We equip Ĉ with the meromorphic 1-form ϕ(z) = W1(z)dX(z).

The previous discussion shows that ϕ has a simple pole at ∞+ with residue −1, and a higher
order pole at ∞− with

ϕ(z) =
z→∞−

dV (X(z))− dX(z)

X(z)
+O

(
dX(z)

X(z)2

)
,

where we recall that ζ∞± = 1/X is a local coordinate near ∞±. As X has two simple poles
at ∞±, the form dX thus has double poles at these points with

dX = −ζ2∞±dζ∞± .

The 1-form ϕ therefore decomposes as in Section 3.2.5:

ϕ =

g∑
h=1

2iπϵ∗hduh + dS∞+,∞− −
d∑

k=1

tk
k
dB∞−,k, (3.6)

where the potential is V (x) =
∑d

k=1
tkx

k

k . The path from ∞+ to ∞− used in the definition of
the 1-form dS∞+,∞− is chosen so that it does not intersect (Ah,Bh)

g
h=1. For instance, one can

take it to be ι+
(
a0 + iR≥0

)
∪ ι−

(
a0 − iR≤0

)
.

Remark 3.8. For the equilibrium measure in the unconstrained case, the property noticed in
Remark 2.5 can be equivalently rewritten as

∀h ∈ [g]

�
Bh

ϕ = 0.

As the filling fractions are real, this implies that for any γ ∈ H1

(
Ĉ,Z

)
, we have Re

(�
γ ϕ
)
= 0.

Pairs
(
Ĉ, ϕ

)
satisfying this property are called Boutroux curves, see [5].
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3.3.3 The fundamental bidifferential and the second correlator

Under the assumptions discussed in Section 4.1, [13] shows that the N → ∞ limit of the second
correlator in the model with fixed filling fractions N/N → ϵ exists

W2(x1, x2) = lim
N→∞

β

2

(〈
Tr

(
1

x1 − Λ

)
Tr

(
1

x2 − Λ

)〉V

N,N/N

−W1(x1)W1(x2)

)
.

It can be shown to satisfy the Riemann–Hilbert problem

∀(x1, x2) ∈ (C \ S)× S̊, W2(x1, x2 + i0) +W2(x1, x2 − i0) = − 1

(x1 − x2)2
(3.7)

for x ∈ C \ S and y ∈ S, see for instance [20, Chapter 3] or [9]. Besides, W2(x1, x2) = O
(
1/x2i

)
as xi → ∞ since the total number of particles is deterministic, and

∀h ∈ [g]

�
Ah

W2(x1, x2) dx1 = 0, (3.8)

since the filling fraction of the segment Ah is fixed.
The Riemann–Hilbert problem (3.7) implies that we can define a meromorphic function

W2(z1, z2) on Ĉ × Ĉ such that W2(z1, z2) = W2(X(z1), X(z2)) when z1, z2 ∈ Ĉ+. By exam-
ining the behavior of W2 at the poles and considering the A-period conditions (3.8), one can
identify it in terms of the fundamental bidifferential:

B(z1, z2) = W2(z1, z2)dX(z1)dX(z2) +
dX(z1)dX(z2)

(X(z1)−X(z2))2
. (3.9)

Definition 3.9. The spectral curve of a β-ensemble is the marked compact Riemann surface(
Ĉ,A,B

)
equipped with the meromorphic functions X, Y and the bidifferential B.

3.4 Characterisation of spectral curves of β-ensembles

In Section 3.3.1, we explained that the Riemann surface Ĉ underlying the spectral curve of
a β-ensemble is hyperelliptic with real Weierstraß points. We now prove the converse, namely
that all such Riemann surfaces can be realised (non uniquely) as the underlying Riemann surface
of the spectral curve of an unconstrained β-ensemble.

Definition 3.10. If G is a meromorphic function in a neighborhood of ∞ in Ĉ, we define its
polynomial part V[G](x), which is the unique polynomial such that G(x) = V[G](x) +O

(
1
x

)
as

x → ∞.

Proposition 3.11. For any a0 < b0 < · · · < ag < bg, there exists a polynomial V of degree

(2g + 2) with top coefficient
t2g+2

2g+2 > 0 and there exist for each h ∈ [0, g] a segment Ah which
is a neighborhood of [ah, bh] in R, such that the unconstrained β-ensemble with potential V on
A =

⊔g
h=0Ah admits an equilibrium measure with support S =

⊔g
h=0[ah, bh] and in (2.5) we

have M(x) = t2g+2
∏g

h=1(x − zh) having roots outside A and such that bh−1 < zh < ah for any
h ∈ [g].

Proof. Take 2g + 2 real points a0 < b0 < · · · < ag < bg and introduce polynomials σ(x) =∏g
h=0(x − ah)(x − bh). We have seen in Section 2.3 that there exists a unique holomorphic

function s(x) on C \
⊔g

h=0[ah, bh] such that s(x)2 = σ(x) and s(x) ∼ xg+1 as x → ∞ in the
complex plane. Take h ∈ [g] and introduce the continuous function

∀λ ∈ [0, 1]g Jh(λ) =

� ah

bh−1

s(x)

g∏
k=1

(x− (λkbk−1 + (1− λk)ak)) dx.
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By continuity, s(x) has constant sign for x ∈ (bh−1, ah). Besides, for λh ∈ {0, 1} we have
sgn(Jh(λ)) = (−1)g−h+1−λh . The Poincaré–Miranda theorem [30] then implies the existence
of λ∗ ∈ [0, 1]g such that Jh(λ

∗) vanishes for any h ∈ [g]. Since Jh(λ) does not vanish when
λh ∈ {0, 1}, this λ∗ must be in (0, 1)g. We let zh = λ∗

hbh−1+
(
1−λ∗

h

)
ah for h ∈ [g] and introduce

the polynomial M(x) = t2g+2
∏g

h=1(x− zh), where the constant t2g+2 is chosen such that

g∑
h=0

� bh

ah

M(x) Im(s(x+ i0))

2π
= 1. (3.10)

The sign discussion for s in Section 2.3 reveals that all terms in (3.10) are positive, thus t2g+2 > 0.

Then, V (x) =
� x
0 V[M · s](ξ)dξ is a polynomial of degree 2g + 2 with top coefficient

t2g+2

2g+2 , and

Res
x=∞

s(x)M(x)

2
] dx = − 1

2iπ

g∑
h=0

�
Ah

s(x)M(x)

2
dx =

g∑
h=0

� bh

ah

M(x) Im(s(x+ i0))

2π
= 1,

where Ah is a counterclockwise loop around [ah, bh]. Therefore,

V ′(x)

2
=

x→∞

M(x)s(x)

2
+

1

x
+O

(
1

x2

)
.

This V defines the potential in a β-ensemble which we consider over the domain A =
⊔g

h=0Ah,
where Ah =

[
a′h, b

′
h

]
and zh < a′h < ah and bh < b′h < zh+1 for any h ∈ [0, g], with the

conventions z0 = −∞ and zg+1 = +∞. It remains to check that W (x) := 1
2(V

′(x)−M(x)s(x))
is the Stieltjes transform of the equilibrium measure of this (unconstrained) β-ensemble.

We define the measure µ with support S =
⊔g

h=0[ah, bh] and density

dµ

dx
=

W (x− i0)−W (x+ i0)

2iπ
=

M(x)s(x)

2π
1S(x).

By construction, W is the Stieltjes transform of µ. Since M has a single zero between each
components of the support, µ is a positive measure, see the sign discussion in Section 2.3.
Define U(x) = V (x)− 2

�
S ln |x− ξ|dµ(ξ). We clearly have

∀x ∈ S U ′(x) = V ′(x)−W1(x+ i0)−W1(x− i0) = 0.

Integrating this from ah to x ∈ (ah, bh), we find a constant ch such that U(x) = ch for any
x ∈ (ah, bh). Besides, for any h ∈ [g] we compute

ch − ch−1 =

� ah

bh−1

U ′(x) dx =

� ah

bh−1

(
V ′(x)− 2W1(x)

)
dx =

� ah

bh−1

M(x)s(x) dx.

Since we have chosen (z1, . . . , zg) so that this integral vanishes, ch is independent of h. As a result,
µ satisfies the characterisation of the equilibrium measure from Theorem 2.1 (unconstrained
case). By uniqueness, this must be the equilibrium measure: µ = µeq. ■

3.5 Deformations of the curve

We consider real and complex deformations of the complex curves, that will be used in Section 4
to extend the validity of our formulae beyond their realisation for spectral curves of β-ensembles.
We first show that within the class of spectral curves of β-ensembles, we can always realise any
vector of filling fractions in a small neighborhood of a given one by perturbation of the support.
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Lemma 3.12. Let a0 < b0 < · · · < ag < bg and take a corresponding M(x) = t2g+2
∏g

h=1(x−zh)
with zh ∈ (bh−1, ah) as in Proposition 3.11. There exists a small neighborhood Ω ⊂ R2g of
(ah, zh)

g
h=1 such that the map Π: Ω → R2g given by

Π(ã1, z̃1, . . . , ãg, z̃g) =

(� bh

ãh

M̃(x)
√

−σ̃(x) dx,

� ãh

bh−1

M̃(x)
√
σ̃(x) dx

)g

h=1

is a diffeomorphism onto its image, where we have set

M̃(x) = t2g+2

g∏
k=1

(x− z̃k) and σ̃(x) = (x− a0)(x− b0)

g∏
k=1

(x− ãk)(x− bk).

This will be used in the following form.

Corollary 3.13. There is a dense set of a0 < b0 < · · · < ag < bg for which there exists
a β-ensemble whose associated equilibrium measure of Theorem 2.1 has filling fractions ϵ∗ whose
components ϵ∗1, . . . , ϵ

∗
g are Q-linearly independent.

Proof of Lemma 3.12. Π is a smooth function of (ãh, z̃h)
g
h=1 in the range b0 < z̃1 < ã1 <

b1 < z̃2 < ã2 < · · · < z̃g < ãg < bg. We compute its Jacobian

det


� bh

ãh

−M̃(x)
√

−σ̃(x)

2(x− ãk)
dx

� bh

ãh

−M̃(x)
√
−σ̃(x)

(x− z̃k)
dx

� ãh

bh−1

−M̃(x)
√
σ̃(x)

2(x− ãk)
dx

� ãh

bh−1

−M̃(x)
√
σ̃(x)

(x− z̃k)
dx


1≤h,k≤g

=
1

2g

� b1

ã1

· · ·
� bg

ãg

g∏
h=1

dxhM̃(xh)
√

−σ̃(xh)

×
� ã1

b0

· · ·
� ãg

bg−1

dξhM̃(ξh)
√

σ̃(ξh) · det


1

xh − ãk

1

xh − z̃k
1

ξh − ãk

1

ξh − z̃k


1≤h,k≤g

, (3.11)

where we used the fact that
√
±σ̃(x) vanishes at the endpoints of the integration intervals. The

determinant in the integrand is a Cauchy determinant and can be readily evaluated

det


1

xh − ãk

1

xh − z̃k
1

ξh − ãk

1

ξh − z̃k


1≤h,k≤g

= ∆(ã)∆(z̃)∆(x)∆(ξ)

g∏
h,k=1

(z̃h − ãk)(ξh − xk)

(xh − ãk)(ξh − ãk)(xh − z̃k)(ξh − z̃k)

=
t2g2g+2∆(ã)∆(z̃)∆(x)∆(ξ)∏g

h=1 M̃(xh)M̃(ξh)

g∏
h,k=1

(z̃h − ãk)(ξh − xk)

(xh − ãk)(ξh − ãk)
.

For (ãh, z̃h)
g
h=1 close enough to (ah, zh)

g
h=1, the zeros of M̃ are outside

⊔g
h=1

[
ãh, b̃h

]
, so that the

sign of the integrand in (3.11) remains constant in the whole integration range. The determinant
of the Jacobian of Π is thus nonzero, and Π is a local diffeomorphism. ■
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Proof of Corollary 3.13. If (ãh, z̃h)
g
h=1 ∈ Ω, call µ̃ the measure supported on S̃ = [a0, b0] ∪⊔g

h=1[ãh, bh] with density 1
2πM̃(x)

√
−σ̃(x). At (ah, zh)

g
h=1 this µ̃ is by construction the equilib-

rium measure of a β-ensemble, which we simply denote µ: it is in particular a probability measure
with vector of filling fractions

(
ϵ∗h
)g
h=1

and the h-th second component of Π(a1, z1, . . . , ag, zg) is
equal to (−1)g−h(U(ah) − U(bh−1)) = 0 for h ∈ [g]. So, Π induces a homeomorphism from Ω
to a neighborhood Ω′ ⊂ R2g of

(
(−1)g−h2πϵ∗h, 0

)g
h=1

. By continuity with respect to the param-
eters, µ̃ remains a positive measure on each component of S̃ for all parameters in a (possibly
smaller) Ω, and that the total mass of µ̃ defines a positive continuous function on Ω. In partic-
ular, µ̃′ = µ̃/µ̃

(
S̃
)
is a probability measure on S̃.

If ϵ∗1, . . . , ϵ
∗
g are Q-linearly dependent, we can approximate

(
(−1)g−h2πϵ∗h, 0

)g
h=1

to arbitrary

precision by 2g-tuples
(
(−1)g−h2πϵ̃h, 0

)g
h=1

∈ Ω′ such that ϵ̃1, . . . , ϵ̃g are Q-linearly independent.
Applying Π−1, we get an approximation (ãh, z̃h)

g
h=1 of (ah, zh)

g
h=1 at arbitrary precision whose

associated probability measure µ̃′ is by construction (follow the proof of Proposition 3.11) the
equilibrium measure of the β-ensemble with potential

Ṽ (x) =
1

µ̃
(
S̃
) � x

0
V
[
M̃ · s̃

]
(x),

with s̃ like s of Section 2.3 but with ãs instead of as, i.e., a choice of square root of
∏g

h=0(x −
ãh)(x−bh). Let us detail this claim. We introduce the effective energy Ũ(x) = Ṽ (x)−2

�
S̃ ln |x−

ξ|dµ̃(ξ) associated to µ̃. It satisfies both Ũ(ãh)−Ũ(bh) = 0 (because the second component of the
image of (ãh, z̃h)

g
h=1 by Π is zero) and Ũ ′(x) = 0 for x in the support of µ̃ (because the Stieltjes

transform of Ṽ ′ is the polynomial part of the density of µ̃, up to a factor 2π). It satisfies (2.3),
and is the equilibrium measure of the β-ensemble with potential Ṽ . This equilibrium measure has
vector of filling fractions

(
ϵ̃h/µ̃

(
S̃
))g

h=1
, whose components remain Q-linearly independent. ■

In a second step, we will leave the realm of spectral curves of β-ensembles and rather con-
sider their complex deformations. Here it becomes important to keep track of the marking. The
equation of a hyperelliptic curve s2 =

∏g
h=0(x−ah)(x−bh) is parameterised by the set ∆2g+2 of

(2g+2)-tuple (ah, bh)
g
h=0 of pairwise distinct complex numbers. Its universal cover ∆̃2g+2 based

at a tuple of strictly increasing real numbers parametrises the equation of the hyperelliptic curve
together with a choice of marking: at the base point it is the one described in Section 3.3.1,
and there is a unique way to get from there a marking for any other point in ∆̃2g+2 by per-
forming continuous deformations of the representatives of the homology cycles. The outcome
is an analytic family Ĉ → ∆̃2g+2 of marked hyperelliptic curves, which coincide with the one
described in Section 3.3.1 above the connected component of the base point in the real locus
of ∆̃2g+2. Concretely, in other real connected components, the symplectic basis of homology has
changed by an Sp2g(Z)-transformation compared to Section 3.3.1, and so must have the matrix

of periods. Let us denote likewise C̃ the family of universal covers over ∆̃2g+2. We will rely on
the following basic fact in complex geometry, see, e.g., [16, Chapter 1].

Lemma 3.14. The period matrix (3.1) is a holomorphic function on ∆̃2g+2. The Abel map

based at ∞+ is a holomorphic function C̃ → Cg.

4 Asymptotics of the partition function and the kernels

4.1 Expansion of the partition function and generalised central limit theorem

The large N asymptotic expansion of the partition function of the β-ensembles in the multi-cut
regime was established in [13], under assumptions which are satisfied for the potentials that we
consider in Theorem 2.1. In particular, the off-criticality assumption on A corresponds to M of
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Lemma 2.3 having no zeros on A. We reproduce here the formulae for these asymptotics, which
will be our starting point.

Theorem 4.1 ([13, Theorem 1.5]). Let g ≥ 1, let V as in Theorem 2.1 and assume M from
Lemma 2.3 has no zeros on A. The partition function has the following expansion as N → ∞

ZV
N ∼ N

β
2
N+κeN

2E[µeq]+NS[µeq]+G[µeq] ϑ−Nϵ∗,0

(
veq
∣∣β
2τ
)
.

Here

S[µ] =
(
1− β

2

)
(Ent[µ]− ln(β/2)) + (β/2) ln(2π/e)− ln Γ(β/2),

where Ent[µ] is the von Neumann entropy of the probability measure µ, κ is a known univer-
sal constant depending only on g and β, G[µ] is a continuous functional whose expression is
irrelevant for our purposes, and

veq =
∇ϵS[µeq,ϵ]

2iπ

∣∣∣∣
ϵ=ϵ∗

. (4.1)

In (4.1) one differentiates with respect to ϵ = (ϵ1, . . . , ϵg), keeping in mind that the filling
fraction ϵ0, associated to the component of the support [a0, b0], satisfies ϵ0 = 1−(ϵ1+· · ·+ϵg) and
thus depends on ϵ1, . . . , ϵg. The kernels appearing in the determinantal and Pfaffian formulae
of Borodin and Strahov (Theorems 2.6–2.8) can be estimated using the following generalised
central limit theorem. We use the notation

�
S for a sum of contour integrals in the positive

direction around the connected components of the support S of the equilibrium measure.

Theorem 4.2 ([13, Theorem 1.6]). Let f be a holomorphic function in a complex neighborhood
of A. Under the same assumptions as Theorem 4.1, we have as N → ∞

〈
e
∑N

i=1 f(λi)
〉V
N

∼ eNL[f ]+H[f ]+ 1
2
Q[f,f ]ϑ−Nϵ∗,0

(
veq + U [f ]

∣∣β
2τ
)

ϑ−Nϵ∗,0

(
veq
∣∣β
2τ
) .

Here

L[f ] =
�
S
W1(ξ)

f(ξ)dξ

2iπ
, Q[f, f ] =

2

β

�
S2

W2(ξ1, ξ2)
f(ξ1)dξ1

2iπ

f(ξ2)dξ2
2iπ

,

where W1 and W2 are calculated in a model with fixed filling fraction tending to ϵ∗, H[f ] is
a linear form whose expression is irrelevant, and

U [f ] =

�
S
f(X(z))

du(z)

2iπ
.

4.2 Three explicit formulae

We will establish in Section 5.4 the following expression for the equilibrium energy in terms of
the geometry of the spectral curve.

Proposition 4.3. The equilibrium energy is

−E [µeq] =
β

2
L[V ] +

β2

8
Q[V, V ] + iπβϵ∗ · (τ (ϵ∗) + u(∞−)).
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The right-hand side is proportional to β
2 , since W2 contains a factor 2

β , and so is the left-hand
side. Accordingly this is an identity between β-independent quantities. There is a classical
link between random matrix theory and the theory of Frobenius manifolds: the free energy at
leading order, namely E [µeq] coincides with the prepotential of the Hurwitz–Frobenius manifold
associated to the spectral curve of the random matrix ensemble. A formula for this free energy
was established in the more general context of the 2-matrix model in [4], involving only the
geometry of the spectral curve. It involves the same ingredient but does not have exactly the
same form as Proposition 4.3, which is the formula we need.

Before going further, we give two extra formulae. The first one evaluates the argument veq
of the theta functions in Theorems 4.1 and 4.2; it is not necessary for Section 5, but we include
it for completeness. The second one will be used in the proof of Lemma 4.8.

Proposition 4.4. Assume M in (2.5) is of the form M(x) = t2g+2
∏g

h=1(x − zh) with roots
zh /∈ A satisfying bh−1 < zh < ah for any h ∈ [g], and denote by (e1, . . . , eg) the canonical basis
of Cg.

The function Imu(z) =
� z
∞+

du is a single-valued function of z ∈ Ĉ+, and we have

veq = 2π

(
1− β

2

)[
g + 1

2i
u(∞−) +

g∑
k=1

(
Imu(zk) +

g + 1− k

2i
τ (ek)

)]
.

Proof. See Appendix A. As we explain in Section 5.4, u(∞−) and τ are purely imaginary, so
all terms in the right-hand side are real, as it should be. The domain Ĉ+ is homeomorphic to
the non simply-connected domain Ĉ \ S, so

� z
∞+

du is multi-valued. However, the ambiguities

are A-periods of du which are real, so Imu(z) is single-valued. ■

Remark 4.5. If we remove the assumption on the roots of M in Lemma 4.4, we can still
compute veq and obtain a formula of a similar form.

Lemma 4.6.

U [V ] = −Res∞+ V du = τ (ϵ∗) + u(∞−).

Proof. The first equality is obtained by moving the contour around S to ∞+. We focus on the
second equality. Since dV = 2(ϕ− Y dX), we have

Res∞+ V du = −Res∞+ udV = −2Res∞+ u(ϕ− Y dX).

Since ∞+ is the base point for the Abel map, we have u(∞+) = 0 and since ϕ has only a simple
pole at ∞+, the first term gives a vanishing residue. The hyperelliptic involution preserves X,
sends Y and du to their opposite, and ∞+ to ∞−. Hence, it sends u to u(∞−) − u, where
∞− ∈ Ĉ0. Using the involution as a change of variables, we get

Res∞+ uY dX = Res∞−(u− u(∞−))Y dX = Res∞− uY dX − u(∞−).

For the last equality, since the only poles of Y dX are ∞± we could evaluate

Res∞− Y dX = −Res∞+ Y dX = −Res∞+ ϕ = 1.

We then write

Res∞+ V du = (Res∞+ +Res∞−)Y dX − u(∞−).

The first term can be computed with the Riemann bilinear identity [22, equation (3.0.2)]

(Res∞+ +Res∞−)uY dX =
1

2iπ

g∑
h=1

(�
Ah

du ·
�
Bh

Y dX −
�
Bh

du ·
�
Ah

Y dX

)
. (4.2)

Taking into account that for any h, k ∈ [g], we have
�
Bh

Y dX = 0 (Remark 3.8), and
�
Bh

duk =

τh,k and
�
Ah

Y dX = 2iπϵ∗h, we find that (4.2) is equal to −τ (ϵ∗). ■
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4.3 Kernel asymptotics: intermediate computations

We need to compute an asymptotic equivalent as K → ∞ of kernels of the form

Z
K
M

V

M

ZV
K

〈
m∏
j=1

det(xj − Λ)cj

〉K
M

V

M

,

where x1, . . . , xm /∈ A, c1, . . . , cm ∈ Z, and (M −K) = p is a fixed integer. Notice that

Z
K
M

V

M

ZV
K

〈
m∏
j=1

det(xj − Λ)cj

〉K
M

V

M

=
ZV
M

ZV
K

〈
e
∑M

i=1 fc(λi)+
β
2
pV (λi)

〉V
M
, (4.3)

where we used the holomorphic function on a neighborhood of A

fc(λ) =

m∑
j=1

cj ln(xj − λ)

and for xj /∈ A we choose the cut of the logarithm away from A. In order to access the
asymptotics of (4.3) via Theorem 4.2, we first have to evaluate the following quantities.

Lemma 4.7. Let z, z1, z2 ∈ C+. We have

L
[
ln(X(z)− •)

]
= 2iπϵ∗ · u(z)− ln

(
η(z)E(z,∞+)

2dζ∞+(∞+)
)
−

d∑
k=1

tk
k

� z

∞+

dB∞−,k,

Q
[
ln(X(z)− •), V

]
=

2

β

d∑
k=1

tk
k

� z

∞+

dB∞+,k,

Q
[
ln(X(z1)− •), ln(X(z2)− •)

]
=

2

β
ln

(
E(z1, z2)

E(z1,∞+)E(z2,∞+)(X(z2)−X(z1))dζ∞+(∞+)

)
,

Q
[
ln(X(z)− •), ln(X(z)− •)

]
=

2

β
ln

(
1

E(z,∞+)2dζ∞+(∞+)

)
,

where η(z) is defined in (4.6). In particular, we observe the simplification

L
[
ln(X(z)− •)

]
+

β

2
Q ln

[
ln(X(z)− •), V

]
= 2iπϵ∗ · u(z)− ln

(
η(z)E(z,∞+)

2dζ∞+(∞+)
)
. (4.4)

Proof. Let x = X(z). The first two formulas are a consequence of the decomposition (3.6)
of ϕ. We have

L
[
ln(x− •)

]
=

�
S

dξ

2iπ
ln(x− ξ)W1(ξ) =

�
S

dξ

2iπ

[� x

∞

(
1

ξ′ − ξ
− 1

ξ′

)
dξ′ + lnx

]
W1(ξ)

= ln(x) +

� x

∞
dξ′
(�

S

dξ

2iπ

W1(ξ)

ξ′ − ξ
− 1

ξ′

)
= ln(x) +

� x

∞
dξ′
(
W1(ξ

′)− 1

ξ′

)
= ln(x) +

� z

∞+

(
ϕ− dX

X

)
.
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We can expand this as

L
[
ln(x− •)

]
= lnx+ 2iπϵ∗ · u(z) +

� z

∞+

(
dS∞+,∞− +

dζ∞+

ζ∞+

)
−

d∑
k=1

tk
k

� z

∞+

dB∞−,k

= lnx+ 2iπϵ∗ · u(z) +
� z

∞+

dz′ ln

(
E(z′,∞−)ζ∞+(z

′)

E(z′,∞+)

)
−

d∑
k=1

tk
k

� z

∞+

B∞−,k (4.5)

= lnx+ 2iπϵ∗ · u(z) + ln

(
E(z,∞−)ζ∞+(z)

E(z,∞+)E(∞+,∞−)dζ∞+(∞+)

)
−

d∑
k=1

tk
k

� z

∞+

B∞−,k

and lnx cancels with ln ζ∞+(z). We introduce the 1-form on C̃

η(z) =
E(∞+,∞−)

E(z,∞+)E(z,∞−)
(4.6)

and use it to get rid of ∞− in (4.5). This leads to the claimed formula.

For the second formula

Q
[
ln(x− •), V

]
=

2

β

�
S2

dξ1
2iπ

dξ2
2iπ

V (ξ1)

[
lnx+

� x

∞+

(
1

ξ′ − ξ2
− 1

ξ′

)
dξ′
]
W2(ξ1, ξ2).

We move the ξ2-contour to ∞. Since W2 has no residue at ∞ the first and third term disappear
and we get

Q
[
ln(x− •), V ] =

2

β

�
S

dξ1
2iπ

V (ξ1)

� x

∞+

W2(ξ1, ξ
′) dξ′

=
2

β

�
S

dξ1
2iπ

V (ξ1)

� x

∞+

(
W2(ξ1, ξ

′) +
1

(ξ1 − ξ′)2

)
dξ′,

where in the second line the shift does not affect the integral around S as it is holomorphic
near S. Then, we write X(w) = ξ1 and X(w′) = ξ′, consider these integrals as integrals on C̃,
and recognise via (3.9) the fundamental bidifferential B. Since the path on which we integrate w′

remains in the first sheet away from the cut, we can move the integral over w to surround the
pole ∞− of V (X(w)). We get

Q
[
ln(x− •), V ] =

2

β

� z

w′=∞+

Res
w=∞−

dX(w)V (X(w))B(w,w′)

=
2

β

d∑
k=1

tk
k

� z

w′=∞+

Res
w=∞−

ζ∞−(w)
−kB(w,w′)

=
2

β

d∑
k=1

tk
k

� z

∞+

dB∞−,k,

as desired.

For the third formula, let xi = X(zi). Using Section 3.3.3, we find

Q
[
ln(x1 − •), ln(x2 − •)

]
=

2

β

�
S2

dξ1dξ2
(2iπ)2

W2(ξ1, ξ2) ln(x1 − ξ1) ln(x2 − ξ2)

=
2

β

� z1

∞+

� z2

∞+

W2(w1, w2) dX(w1)dX(w2)
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after we handle the logarithms like in the previous proofs. Then

Q
[
ln(x1 − •), ln(x2 − •)

]
=

2

β

� z1

∞+

� z2

∞+

(
B(w1, w2)−

dX(w1)dX(w2)

(X(w1)−X(w2))2

)
=

2

β
ln

(
E(z1, z2)E0(z1,∞+)E0(∞+, z2)

E(z1,∞+)E(∞+, z2)E0(z1, z2)

)
,

where we used Lemma 3.5 both for C̃ and Ĉ, and (3.3) to get rid of the ratio of the relative prime
form with two arguments ∞+. Since the prime forms are antisymmetric in their two variables,
we can arrange the formula to have ∞+ always in the second argument. The presence of ∞+

in E0 factors can be understood by first replacing it by a point z̃, and then letting z̃ → ∞+.
Due to Lemma 3.6, the product of the two E0-factors involving ∞+ only gives a sign when we
use the local coordinate ζ∞+ , and using E0(z1, z2) = (X(z1)−X(z2))/

√
dX(z1)dX(z2) leads to

the claim. ■

We are now in position to evaluate the asymptotics of the kernels. We will mainly be inter-
ested in a situation with only two variables

K
K
M

V

M

(
c c̃
x x̃

)
:=
〈
det(x− Λ)c det(x̃− Λ)c̃e

β
2
pTrV (Λ)

〉V
M

=
〈
e
∑M

i=1 c ln(x−λi)+c̃ ln(x̃−λi)+
β
2
pV (λi)

〉V
M
, (4.7)

where p = M −K. It will be used in the form

Z
K
M

V

M

ZV
K

〈
det(x− Λ)c det(x̃− Λ)c̃

〉K
M

V

M
=

ZV
M

ZV
K

K
K
M

V

M

(
c c̃
x x̃

)
. (4.8)

Lemma 4.8. Let z, z̃ ∈ C+ and c, c̃ ∈ Z. We have as K → ∞ and p is a fixed integer:

K
K

K+p
V

K+p

(
c c̃

X(z) X(z̃)

)
∼ exp

{
KcL[ln(X(z)− •)] +Kc̃L[ln(X(z̃)− •)] + cH[ln(X(z)− •)]

+ c̃H[ln(X(z̃)− •)] +K
β

2
pL[V ] +

β

2
p2L[V ] +

β

2
pH[V ] +

β2

8
p2Q[V, V ]

}
× exp{2iπpϵ∗ · (cu(z) + c̃u(z̃))}

(
η(z)E(z,∞+)

2dζ∞+(∞+)
)−pc

×
(
η(z̃)E(z̃,∞+)

2dζ∞+(∞+)
)−pc̃

× exp

{
1

2
c2Q[ln(X(z)− •), ln(X(z)− •)] + 1

2
c̃2Q[ln(X(z̃)− •), ln(X(z̃)− •)]

}
×
(

E(z, z̃)

E(z,∞+)E(z̃,∞+)(X(z̃)−X(z))dζ∞+(∞+)

) 2
β
cc̃

×
ϑ−(K+p)ϵ∗,0

(
veq + cu(z) + c̃u(z̃) + β

2 p(τ (ϵ
∗) + u(∞−))

∣∣β
2τ
)

ϑ−Mϵ∗,0

(
veq
∣∣β
2τ
) .

In particular, if p = 0, we have as M → ∞

KV
M

(
c c̃

X(z) X(z̃)

)
∼ eMcL[ln(X(z)−•)]+Mc̃L[ln(X(z̃)−•)]+cH[ln(X(z)−•)]+c̃H[ln(X(z̃)−•)]

× e
1
2
c2Q[ln(X(z)−•),ln(X(z)−•)]+ 1

2
c̃2Q[ln(X(z̃)−•),ln(X(z̃)−•)]
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×
(

E(z, z̃)

(X(z̃)−X(z))E(z,∞+)E(z̃,∞+)dζ∞+(∞+)

) 2
β
cc̃

×
ϑ−Mϵ∗,0

(
veq + cu(z) + c̃u(z̃)

∣∣β
2τ
)

ϑ−(K+p)ϵ∗,0

(
veq
∣∣β
2τ
) .

Proof. Let x = X(z) and x̃ = X(z̃). Applying Theorem 4.2 to the definition (4.7), we get as
M,K → ∞ while M −K = p is fixed

K
K
M

V

M

(
c c̃
x x̃

)
∼

ZV
M

Z
K
M

V

M

eMcL[ln(x−•)]+Mc̃L[ln(x̃−•)]+cH[ln(x−•)]+c̃H[ln(x̃−•)]+M β
2
pL[V ]+β

2
H[V ]+β2

8
p2Q[V,V ]

× e
1
2
c2Q[ln(x−•),ln(x−•)]+cc̃Q[ln(x−•),ln(x̃−•)]+ 1

2
c̃2Q[ln(x̃−•),ln(x̃−•)]+β

2
pcQ[ln(x−•),V ]+β

2
pc̃Q[ln(x̃−•),V ]

×
ϑ−Mϵ∗,0

(
veq +

1
2iπ

�
S

[
c ln(x− •) + c̃ ln(x̃− •) + β

2 pV
]
du
∣∣β
2τ
)

ϑ−Mϵ∗,0

(
veq
∣∣β
2τ
) .

We split M = K + p in the exponential and combine the newly created p-terms with the
β
2Q[ln, V ] terms which is evaluated thanks to (4.4). We also replace the term cc̃Q[ln, ln] by
its evaluation from Lemma 4.7, but refrain from doing so for the c2 and the c̃2 terms. Finally,
writing the logarithm in the arguments of the theta function as a primitive, we get an expression
in terms of the Abel map (a similar manipulation was carried out in the proof of Lemma 4.4),
and Lemma 4.6 tells us 1

2iπ

�
S V du = τ (ϵ∗)+u(∞−) which we need to multiply by βp

2 in the last
argument of the theta function. Together with Lemma 4.6, this implies the claimed formula. ■

The ratio of partition functions appearing in (4.8) will only be needed through the following
combination.

Lemma 4.9. For fixed p ∈ Z, we have as K → ∞

ZV
K+pZ

V
K−p

(ZV
K)2

∼ e2p
2E[µeq]+iπβp2ϵ∗·τ (ϵ∗)

×
ϑ−Kϵ∗,0

(
veq − β

2 pτ (ϵ
∗)
∣∣β
2τ
)
ϑ−Kϵ∗,0

(
veq +

β
2 pτ (ϵ

∗)
∣∣β
2τ
)

ϑ−Kϵ∗,0

(
veq
∣∣β
2τ
)2 .

Proof. Using Theorem 4.1, we find

ZV
K+p

ZV
K

∼ e(2Kp+p2)E[µeq]+pS[µeq]+
β
2
p(lnK+1) ϑ−(K+p)ϵ∗,0

(
veq
∣∣β
2τ
)

ϑ−Kϵ∗,0

(
veq
∣∣β
2τ
) .

Multiplying this expression and the same with p → −p yields

ZV
K+pZ

V
K−p

(ZV
K)2

∼ e2p
2E[µeq]

ϑ−(K+p)ϵ∗,0

(
veq
∣∣β
2τ
)
ϑ−(K−p)ϵ∗,0

(
veq
∣∣β
2τ
)

ϑ2
−Kϵ∗,0

(
veq
∣∣β
2τ
) . (4.9)

We would like to rewrite all theta functions with a characteristic −Kϵ∗ instead of −(K ± p)ϵ∗.
For this, we come back to the definitions in Section 3.1 and find

ϑ−(K+p)ϵ∗,0

(
v
∣∣β
2τ
)
= eiπ

β
2
p2ϵ∗·τ (ϵ∗)−2iπpϵ∗·v ϑ−Kϵ∗,0

(
v − pβ

2τ (ϵ
∗)
∣∣β
2τ
)
, (4.10)
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which holds for any v ∈ Cg. We multiply the outcome with the same factor for p → −p and
obtain

ϑ−(K+p)ϵ∗,0

(
v
∣∣β
2τ
)
ϑ−(K−p)ϵ∗,0

(
v
∣∣β
2τ
)

= eiπβp
2ϵ∗·τ (ϵ∗)ϑ−Kϵ∗,0

(
v − β

2 pτ (ϵ
∗)
∣∣β
2τ
)
ϑ−Kϵ∗,0

(
v + β

2 pτ (ϵ
∗)
∣∣β
2τ
)
.

Inserting in (4.9) yields the claim. ■

5 Derivation of the theta identities

We shall now state and prove the main theorems. For each case β ∈ {1, 2, 4}, we give both
a proof based on the analysis in the previous sections, and a second, direct proof based on
geometric arguments. We recall the definition of the meromorphic 1-form η on C̃ that appeared
in (4.6)

η(z) =
E(∞+,∞−)

E(z,∞+)E(z,∞−)
.

Throughout this section, the Abel map will always be based at ∞+, and u(∞−) is computed us-
ing a path from ∞+ to ∞− which does not cross any of the representatives (Ah,Bh)

g
h=1 obtained

by analytic continuation from the ones in Section 3.3.1, see the discussion above Lemma 3.14.

5.1 The β = 2 formula

Theorem 5.1. Consider a hyperelliptic curve Ĉ, and let z, z′, w, w′ ∈ C̃, and µ,ν ∈ Rg. Then,
we have

(X(w)−X(z′))(X(z)−X(w′))
E(z, w)E(z′, w′)

E(w, z′)E(z, w′)

×
ϑµ,ν

(
u(z)− u(z′) + u(w)− u(w′)

∣∣τ)
E(z, z′)E(w,w′)

ϑµ,ν(0
∣∣τ )

− (X(z)−X(w))(X(z′)−X(w′))
ϑµ,ν(u(z)− u(z′)

∣∣τ)
E(z, z′)

ϑµ,ν

(
u(w)− u(w′)

∣∣τ)
E(w,w′)

= E(z, w)E(z′, w′)

( ∏
p∈{z,z′,w,w′}

η(p)

)
ϑµ,ν

(
u(z) + u(w)− u(∞−)

∣∣τ)
× ϑµ,ν

(
−u(z′)− u(w′) + u(∞−)

∣∣τ). (5.1)

Notice that each of the three terms is actually a 1
2 -form on the universal cover C̃ in each of

the variable z, z′, w, w′. Even if µ = 0, it does not descend to the curve itself. As the proof
will show, the formula holds equally well for arbitrary µ, ν complex, in particular, if we shift
all arguments of the theta functions by the same arbitrary but common ν ∈ Cg.

Proof. Consider first the case where the Weierstraß points of Ĉ are real. By Proposition 3.11,
we can find a β-ensemble whose spectral curve has Ĉ as underlying Riemann surface and for
which the results of Section 4 apply (by construction the potential is off-critical). We then
express the identity of Theorem 2.6 for m1 = m2 = 1, for x = X(z), x′ = X(z′), x̃ = X(w) and
x̃′ = X(w′) pairwise distinct points in C \ A, that determine unique points z, z′, w, w′ ∈ C+.
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Taking into account the definition of K in (4.8), we get〈
det(x− Λ) det(x̃− Λ)

det(x′ − Λ) det(x̃′ − Λ)

〉V

N

= (x− x′)(x̃− x̃′)
N

N + 1

ZV
N−1Z

V
N+1

(ZV
N )2

K
N

N−1
V

N−1

(
1 1
x x̃

)
K

N
N+1

V

N+1

(
−1 −1
x̃′ x′

)
+KV

N

(
1 −1
x x′

)
KV

N

(
1 −1
x̃ x̃′

)
. (5.2)

Let us first consider the asymptotics of left-hand side as N → ∞. We have veq = 0 since β = 2.
Coming back to Theorem 4.2 and using Lemma 4.7 for the Q-terms involving two different
variables, we obtain〈

det(x− Λ) det(x̃− Λ)

det(x′ − Λ) det(x̃′ − Λ)

〉V

N

∼ e
NL
[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+H
[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+ 1

2

∑
ξ∈{x,x̃,x′,x̃′} Q[ln(ξ−•),ln(ξ−•)]

×
E(z, w)E(z′, w′)E(z,∞+)E(z′,∞+)E(w,∞+)E(w′,∞+)

(
dζ∞+(∞+)

)2
E(z, z′)E(z, w′)E(w, z′)E(w,w′)

× (x− x′)(x− x̃′)(x̃− x′)(x̃− x̃′)

(x− x̃)(x′ − x̃′)

×
ϑ−Nϵ∗,0

(
u(z)− u(z′) + u(w)− u(w′)

∣∣τ)
ϑ−Nϵ∗,0

(
0
∣∣τ) . (5.3)

For the asymptotics of the first term of the right-hand side of (5.2), we use the β = 2
specialisation of Lemma 4.9 with p = 1 for the ratio of partition functions, and Lemma 4.8 for
the K-factors with K = N , M = N ∓ 1 and (c, c̃) = (±1,±1), that is p = ∓1. The outcome is

(x− x′)(x̃− x̃′)
N

N + 1

ZV
N−1Z

V
N+1

(ZV
N )2

K
N

N−1
V

N−1

(
1 1
x x̃

)
K

N
N+1

V

N+1

(
−1 −1
x̃′ x′

)
∼ e2E[µeq]+2L[V ]+Q[V,V ]−2iπϵ∗·(u(z)+u(z′)+u(w)+u(w′))

× e
NL
[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+H
[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+ 1

2

∑
ξ∈{x,x′,x̃,x̃′} Q[ln(ξ−•),ln(ξ−•)]

× E(z, w)E(z′, w′)(x− x′)(x̃− x̃′)

(x− x̃)(x′ − x̃′)

∏
p∈{z,z′,w,w′}

η(p)E(p,∞+)
√
dζ∞+(∞+)

× 1

ϑ2
−Nϵ∗,0(0|τ )

(
ϑ−(N−1)ϵ∗,0(u(z) + u(w)− u(∞−)− τ (ϵ∗)|τ )

× ϑ−(N+1)ϵ∗,0(−u(z′)− u(w′) + u(∞−) + τ (ϵ∗)|τ )
)
. (5.4)

In the last line, we can restore a characteristic −Nϵ∗ in the theta functions thanks to (4.10),
which we have to use respectively with v = u(z) + u(w) − u(∞−) − τ (ϵ∗) and v = −u(z′) −
u(w′) + u(∞−) + τ (ϵ∗). The outcome is

ϑ−(N−1)ϵ∗,0(u(z) + u(w)− u(∞−)− τ (ϵ∗)|τ )
× ϑ−(N+1)ϵ∗,0(−u(z′)− u(w′) + u(∞−) + τ (ϵ∗)|τ )

= e2iπϵ
∗·τ (ϵ∗)+2iπϵ∗·(u(z)+u(z′)+u(w)+u(w′)−2u(∞−)−2τ (ϵ∗))

× ϑ−Nϵ∗,0(u(z) + u(w)− u(∞−)|τ )ϑ−Nϵ∗,0(−u(z′)− u(w′) + u(∞−)|τ ).
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Inserting this in (5.4) gives an exponential prefactor

e2E[µeq]+2L[V ]+Q[V,V ]+4iπϵ∗·(τ (ϵ∗)+u(∞−)),

which would be equal to 1 if we had Proposition 4.3. We will establish Proposition 4.3 as
a byproduct in Section 5.4; for the moment, we proceed assuming it holds. We get

(x− x′)(x̃− x̃′)
N

N + 1

ZV
N−1Z

V
N+1

(ZV
N )2

K
N

N−1
V

N−1

(
1 1
x x̃

)
K

N
N+1

V

N+1

(
−1 −1
x̃′ x′

)
∼ e

NL
[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+H
[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+ 1

2

∑
ξ∈{x,x′,x̃,x̃′} Q[ln(ξ−•),ln(ξ−•)]

× E(z, w)E(z′, w′)(x− x′)(x̃− x̃′)

(x− x̃)(x′ − x̃′)

∏
p∈{z,z′,w,w′}

η(p)E(p,∞+)
√
dζ∞+(∞+)

×
ϑ−Nϵ∗,0(u(z) + u(w)− u(∞−)|τ )ϑ−Nϵ∗,0(−u(z′)− u(w′) + u(∞+)|τ )

ϑ2
−Nϵ∗(0|τ )

. (5.5)

The asymptotics of the second term is simpler as we just need to use the p = 0 case of
Lemma 4.8. The outcome is

KV
N

(
1 −1
x x′

)
KV

N

(
1 −1
x̃ x̃′

)
∼ e

NL
[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+H
[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+ 1

2

∑
ξ∈{x,x′,x̃,x̃′} Q[ln(ξ−•),ln(ξ−•)]

× (x− x′)(x̃− x̃′)

E(z, z′)E(w,w′)

∏
p∈{z,z′,w,w′}

E(p,∞+)
√

dζ∞+(∞+)

×
ϑ−Nϵ∗,0(u(z)− u(z′)|τ )ϑ−Nϵ∗,0(u(w)− u(w′)|τ )

ϑ2
−Nϵ∗,0(0|τ )

. (5.6)

We also observe that (5.3), (5.5) and (5.6) all have the same exponential factor involving L, H
and Q, the same factor∏

p∈{z,z′,w,w′}

E(p,∞+)
√

dζ∞+(∞+),

and the same squared ϑ in the denominator, except for (5.3) where the latter is not squared.
After we cancel those and multiply further by

(x− x̃)(x′ − x̃′)

(x− x′)(x̃− x̃′)
,

the identity (5.2) as N → ∞ then becomes

E(z, w)E(z′, w′) (x− x̃′)(x̃− x′)

E(z, z′)E(z, w′)E(w, z′)E(w,w′)
ϑ−Nϵ∗,0(u(z)− u(z′) + u(w)− u(w′)|τ )ϑ−Nϵ∗,0(0|τ )

= E(z, w)E(z′, w′)η(z)η(z′)η(w)η(w′)ϑ−Nϵ∗,0(u(z) + u(w)− u(∞−)|τ )
× ϑ−Nϵ∗,0(−u(z′)− u(w′) + u(∞−)|τ )

+
(x− x̃)(x′ − x̃′)

E(z, z′)E(w,w′)
ϑ−Nϵ∗,0(u(z)− u(z′)|τ )ϑ−Nϵ∗,0(u(w)− u(w′)|τ ) + o(1). (5.7)

Let µ ∈ Rg. Let us assume temporarily that ϵ∗1, . . . , ϵ
∗
g are Q-linearly independent. Then, by

Kronecker’s theorem, one can find an increasing sequence (N (n))n≥1 such that

lim
n→∞

(
N (n)ϵ∗ + ⌊−N (n)ϵ∗⌋

)
= −µ,
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where the integer part is applied to each component of the vector. Using N = N (n) in (5.7) and
letting n → ∞ we get the same identity without the o(1) and with characteristic µ, 0 for all
theta functions, which is (5.1) with ν = 0 and pairwise distinct points z, z′, w, w′ ∈ C+.

If ϵ∗1, . . . , ϵ
∗
g are not Q-linearly independent, thanks to Corollary 3.13 we can take a se-

quence of β-ensembles whose spectral curve admits as underlying Riemann surface a hyper-
elliptic curve Ĉ(n) with real Weierstraß points converging to those of Ĉ, and whose filling frac-
tions are Q-linearly independent. By the previous argument, we know (5.1) with arbitrary

µ ∈ Rg and ν = 0 and z, z′, w, w′ ∈ C
(n)
+ pairwise distinct. Since all the members of this

identity are continuous in the real Weierstraß points a0 < b0 < · · · < ag < bg while the values
X(z), X(z′), X(w), X(w′) ∈ C are fixed away from them, taking n → ∞ shows that the formula
also holds for Ĉ, ν = 0 and pairwise distinct points z, z′, w, w′ ∈ C+. Let us call (⋆) this formula.
From there, we can derive the desired identity in full generality by using repeatedly analytic
continuation, as follows.

Firstly, all terms in (⋆) are holomorphic functions of µ ∈ Cg, and the identity holds for real µ.
Therefore, it must hold as well for complex µ. In particular, we can replace µ with µ+ τ−1(ν)
for arbitrary µ,ν ∈ Rg, and rewrite all theta functions as

ϑµ+τ (ν),0(z|τ ) = eiπτ
−1(ν)·ν+2iπτ−1(ν)·zϑµ,ν(z|τ ).

The resulting phase is common to the three terms of the identity, therefore (⋆) is valid for
arbitrary µ,ν ∈ Cg, and a fortiori for arbitrary real µ, ν.

Secondly, fix R > 0 large enough, and let ∆̃2g+2(R) be the subset of points in our para-

meter space of marked hyperelliptic curves ∆̃2g+2 such that the X-image of the Weierstraß
points have moduli ≤ R. Having fixed and pairwise distinct values x, x′, x̃, x̃′ ∈ C such
that max(|x|, |x′|, |x̃|, |x̃′|) ≥ 2R determines a unique quadruple of analytic sections z, z′, w, w′:
∆̃2g+2(R) → Ĉ such that x = X(z), x′ = X(z′), x̃ = X(w) and x̃′ = X(w′). These sections
represent points in the (moving with parameters) hyperelliptic curve. Due to Lemma 3.14 and
the discussion preceding it, all terms in (⋆) are holomorphic functions on ∆̃2g+2(R), but since we

know that (⋆) holds in the connected component of the base point in the real locus of ∆̃2g+2(R),

it must also hold over the whole ∆̃2g+2(R) with max(|x|, |x′|, |x̃|, |x̃′|) ≥ 2R. Now rather fixing

a marked hyperelliptic curve corresponding to a point in ∆̃2g+2(R), the identity (⋆) is valid for
points z, z′, w, w′ in a neighborhood of ∞+, but since it can be seen as an identity involving only
meromorphic functions of z, z′, w, w′ ∈ C̃, it must hold for arbitrary quadruple of points in C̃.
Eventually as R is arbitrary in the argument, we get (5.1) over the whole parameter space ∆̃2g+2

and quadruples of points in the universal cover of the associated hyperelliptic curve. ■

This formula implies the Fay identity, as we now show.

Proposition 5.2. Formula (5.1) implies the Fay identity (1.1) for hyperelliptic curves.

Proof. The key remark is that z and w play almost symmetric roles in (5.1). We write the
two equations obtained when exchanging z and w, specialised to µ = 0 and ν ∈ Cg arbitrary
but rather transferred to the argument of the theta functions, so that everything is expressed in
terms of θ = ϑ0,0:

(X(w)−X(z′))(X(z)−X(w′))
E(z, w)E(z′, w′)

E(w, z′)E(z, w′)

× θ(ν + u(z)− u(z′) + u(w)− u(w′)|τ )
E(z, z′)E(w,w′)

θ(ν|τ )

− (X(z)−X(w))(X(z′)−X(w′))
θ(ν + u(z)− u(z′)|τ )

E(z, z′)

θ(ν + u(w)− u(w′)|τ )
E(w,w′)
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= E(z, w)E(z′, w′)η(z)η(z′)η(w)η(w′)θ(ν + u(z) + u(w)− u(∞−)|τ )
× θ(ν − u(z′)− u(w′) + u(∞−)|τ )

= (X(z)−X(z′))(X(w)−X(w′))
E(z, w)E(z′, w′)

E(z, z′)E(w,w′)

× θ(ν + u(z)− u(z′) + u(w)− u(w′)|τ )
E(w, z′)E(z, w′)

θ(ν|τ )

− (X(z)−X(w))(X(z′)−X(w′))
θ(ν + u(w)− u(z′)|τ )

E(w, z′)

θ(ν + u(z)− u(w′)|τ )
E(z, w′)

.

Subtracting the first member from the third member of the equalities, grouping the terms
together and dividing by (X(z)−X(w))(X(z′)−X(w′)) yields the identity

0 =
E(z, w)E(z′, w′)

E(w, z′)E(z, w′)E(z, z′)E(w,w′)
θ(ν + u(z)− u(z′) + u(w)− u(w′)|τ )θ(ν|τ )

− θ(ν + u(w)− u(z′)|τ )θ(ν + u(z)− u(w′)|τ )
E(w, z′)E(z, w′)

+
θ(ν + u(z)− u(z′)|τ )θ(ν + u(w)− u(w′)|τ )

E(z, z′)E(w,w′)
,

which is exactly the Fay identity (1.1) after we replace the prime form with its expression (3.2)
and take (z1, z2, z3, z4) = (z, w, z′, w′). ■

Finally, we provide a direct proof of (5.1) based on complex analysis. This proof is based on
a classical theorem of Riemann which we recall for the convenience of the reader.

Theorem 5.3 ([32, Theorem 3.1]). There is a vector k ∈ Cg such that for all ν ′ ∈ Cg, the
function z 7→ θ(ν ′ + u(z)|τ ) of z ∈ C̃ either vanishes identically or has g zeroes w1, . . . , wg in
a fundamental domain, satisfying

g∑
h=1

u(wh) = −ν + k mod L.

The vector k is called vector of Riemann constants.

Direct geometric proof of Theorem 5.1. It suffices to prove the identity for µ = 0, since
we still have ν ∈ Cg arbitrary which allow reconstructing arbitrary characteristics. Let ν ′ ∈ Cg.
Riemann’s theorem 5.3 implies that seen as a function of z ∈ C̃, the theta function z 7→
θ(ν ′ +u(z)|τ ) is either identically zero of has g zeroes in a fundamental domain. Let Dν′ be its
zero divisor. We apply this to ν ′ = ν+u(w)−u(z′)−u(w′) with ν, z′, w, w′ generic such that it
is not in the theta divisor. A classical consequence of Riemann’s theorem [22, Theorem VI.3.3] is
that meromorphic functions on C with pole divisor at most Dν′ are constant. For convenience,
write

c1 =
(X(w)−X(z′))(X(z)−X(w′))E(z, w)E(z′, w′)

E(w, z′)E(z, w′)E(z, z′)E(w,w′)
,

c2 = −(X(z)−X(w))(X(z′)−X(w′))

E(z, z′)E(w,w′)
, c3 = E(z, w)E(z′, w′)η(z)η(z′)η(w)η(w′)

and consider

Ψ(z) =
c2
c1

θ(ν + u(z)− u(z′)|τ )θ(ν + u(w)− u(w′)|τ )
θ(ν + u(z)− u(z′) + u(w)− u(w′)|τ )θ(ν|τ )

+
c3
c1

θ(ν + u(z) + u(w)− u(∞−)|τ )θ(ν − u(z′)− u(w′) + u(∞−)|τ )
θ(ν + u(z)− u(z′) + u(w)− u(w′)|τ )θ(ν|τ )

.
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This is a meromorphic function of z ∈ Ĉ. We have seen that the theta function in the denomi-
nator has g zeroes, which are thus poles of Ψ. We now consider the poles of the other factors:
the zeroes of c1 and the poles of c2 and c3. The coefficient c1 has a simple zero at z = ȷ(w′),
where ȷ is the hyperelliptic involution, and at z = w. The coefficients c2 and c3 have simple poles
at z = z′. Accordingly, both ratios c2

c1
and c3

c1
have a simple pole only at z = ȷ(w′). A careful

computation of the residues taking into account u(ȷ(w′)) = u(∞−)− u(w′) shows that Ψ does
not have a pole when z = ȷ(w′). Notice that there are no pole at ∞± as poles coming from
linear terms are cancelled by other linear terms or the form η. We conclude that the divisor
of poles of Ψ is at most Dν′ . Thus, it is a constant function of z. A similar argument with
the other variables would show that it is a constant function of z, z′, w, w′. By sending the
points z′, w, w′ to z one after the other, and we arrive to Ψ = 1. ■

5.2 The β = 1 formula

Theorem 5.4. Consider a marked hyperelliptic curve Ĉ and let z1, z
′
1, z2, z

′
2 ∈ C̃ and µ,ν ∈ Rg.

Writing xi = X(zi) and x′i = X
(
z′i
)
, we have(

E(z1, z2)E
(
z′1, z

′
2

)
E
(
z1, z′1

)
E
(
z1, z′2

)
E
(
z2, z′1

)
E
(
z2, z′2

))2

× ϑµ,ν

(
u(z1)− u

(
z′1
)
+ u(z2)− u

(
z′2
)∣∣τ

2

)
ϑµ,ν

(
0
∣∣τ
2

)
=

(x1 − x2)
(
x′1 − x′2

)(
x1 − x′1

)(
x2 − x′2

) ϑµ,ν

(
u(z1)− u

(
z′2
)∣∣τ

2

)
E
(
z1, z′2

)2 ϑµ,ν

(
u(z2)− u

(
z′1
)∣∣τ

2

)
E
(
z′1, z2

)2
−

(x1 − x2)
(
x′1 − x′2

)(
x1 − x′2

)(
x2 − x′1

) ϑµ,ν

(
u(z1)− u

(
z′1
)∣∣τ

2

)
E
(
z1, z′1

)2 ϑµ,ν(u(z2)− u
(
z′2
)∣∣τ

2

)
E
(
z′2, z2

)2
+

(
E(z1, z2)E

(
z′1, z

′
2

)
η(z1)η

(
z′1
)
η(z2)η

(
z′2
))2(

x1 − x′1
)(
x1 − x′2

)(
x2 − x′1

)(
x2 − x′2

)
× ϑµ,ν

(
u(z1) + u(z2)− u(∞−)

∣∣τ
2

)
ϑµ,ν

(
−u
(
z′1
)
− u

(
z′2
)
+ u(∞−)

∣∣τ
2

)
. (5.8)

Proof. The strategy is similar to the proof for β = 2 in Theorem 5.1. In particular, we first prove
an asymptotic identity for hyperelliptic curves arising from β = 1 ensembles, use approximations
to get arbitrary characteristic µ, 0, and then analytic continuation to get the identity for marked
hyperelliptic curves with arbitrary complex Weierstraß points and characteristics µ,ν ∈ Rg.

The starting point is the exact identity of Theorem 2.7 in the simplest non-trivial case, i.e.,
m = 2 (Pfaffian of size 4). Taking x1, x

′
1, x2, x

′
2 ∈ C \A pairwise distinct, this gives〈

det(x1 − Λ) det(x2 − Λ)

det(x′1 − Λ) det(x′2 − Λ)

〉V

2N

=
2N(2N − 1)

(2N + 2)(2N + 1)
(x1 − x′1)(x2 − x′2)(x1 − x′2)(x2 − x′1)

×
ZV
2N−2Z

V
2N+2

(ZV
2N )2

K
2N

2N−2
V

2N−2

(
1 1
x1 x2

)
K

2N
2N+2

V

2N+2

(
−1 −1
x′1 x′2

)
− (x1 − x′2)(x2 − x′1)

(x1 − x2)(x′1 − x′2)
KV

2N

(
1 −1
x1 x′1

)
KV

2N

(
1 −1
x2 x′2

)
+

(x1 − x′1)(x2 − x′2)

(x1 − x2)(x′1 − x′2)
KV

2N

(
1 −1
x1 x′2

)
KV

2N

(
1 −1
x2 x′1

)
. (5.9)

As the computation is similar to β = 2 we only streamline it. Let z1, z
′
1, z2, z

′
2 ∈ C+ be such that

xi = X(zi) and x′i = X(z′i). The asymptotic equivalent of the left-hand side of (5.9) as N → ∞
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is obtained from Theorem 4.2:

e
(2NL+H)

[
ln
(

(x1−•)(x2−•)
(x′1−•)(x′2−•)

)]
+ 1

2

∑
ξ∈{x1,x′1,x2,x

′
2}

Q[ln(ξ−•),ln(ξ−•)]

×
( ∏

p∈{z1,z′1,z2,z′2}

E(p,∞+)
√

dζ∞+(∞+)

)2

×

(
E(z1, z2)E

(
z′1, z

′
2

)
E
(
z1, z′1

)
E
(
z1, z′2

)
E
(
z2, z′1

)
E
(
z2, z′2

) (x1 − x′1
)(
x1 − x′2

)(
x2 − x′1

)(
x2 − x′2

)
(x1 − x2)

(
x′1 − x′2

) )2

×
ϑ−2Nϵ∗,0

(
veq + u(z1)− u

(
z′1
)
+ u(z2)− u

(
z′2
)∣∣τ

2

)
ϑ−2Nϵ∗,0

(
veq
∣∣τ
2

) . (5.10)

We have used Lemma 4.7 to evaluate the Q[ln(ξ − •), ln(ξ′ − •)] terms that appear with ξ ̸= ξ′.
In the right-hand side of (5.9), we use the asymptotics of the 2-point kernel from Lemma 4.8
with K = 2N and p = ∓2.

Consider the asymptotics of the first term in the right-hand side of (5.9). It contains a product
of theta functions with characteristic −(2N ± 2)ϵ∗, which we can replace by two theta functions
with same characteristic −2Nϵ∗ using (5.10) up to an extra exponential factor. The latter
combines with the asymptotics of the ratio of partition functions of shifted size from Lemma 4.9
to reproduce a factor

e8E[µeq]+4L[V ]+Q[V,V ]+8iπϵ∗·(τ (ϵ∗)+u(∞−))

which is equal to 1 due to Proposition 4.3, and to kill the factor of e−4iπϵ∗·(u(z1)+u(z2)+u(z′1)+u(z′2))

coming from the use of (4.4). The other factors are the first line of (5.10) multiplied by(
E(z1, z2)E

(
z′1, z

′
2

)
(x1 − x2)

(
x′1 − x′2

) ∏
p∈{z1,z′1,z2,z′2}

η(p)E(p,∞+)
√
dζ∞+(∞+)

)2

×ϑ−2Nϵ∗,0

(
veq − τ (ϵ∗)

∣∣τ
2

)
ϑ−2Nϵ∗,0

(
veq + τ (ϵ∗)

∣∣τ
2

)
×ϑ−2Nϵ∗,0

(
veq + u(z1) + u(z2)− u(∞−)

∣∣τ
2

)
ϑ−2Nϵ∗,0

(
veq − u

(
z′1
)
− u

(
z′2
)
+ u(∞−)

∣∣τ
2

)
,

where the last line was already explained.
The asymptotics of the second and third terms in the right-hand side of (5.9) are more

straightforward to get. They both contain the first line and the third line of (5.10), and the
other asymptotic factors are

−
(
x1 − x′2

)(
x2 − x′1

)
(x1 − x2)

(
x′1 − x′2

)((x1 − x′1
)(
x2 − x′2

)
E
(
z1, z′1

)
E
(
z2, z′2

) ∏
p∈{z1,z′1,z2,z′2}

E(p,∞+)
√

dζ∞+(∞+)

)2

× ϑ−2Nϵ∗,0

(
veq + u(z1)− u

(
z′1
)∣∣τ

2

)
ϑ−2Nϵ∗,0

(
veq + u(z2)− u

(
z′2
)∣∣τ

2

)
for the second term (including its sign), and(

x1 − x′1
)(
x2 − x′2

)
(x1 − x2)

(
x′1 − x′2

)((x1 − x′2
)(
x2 − x′1

)
E
(
z1, z′2

)
E
(
z2, z′1

) ∏
p∈{z1,z′1,z2,z′2}

E(p,∞+)
√

dζ∞+(∞+)

)2

× ϑ−2Nϵ∗,0

(
veq + u(z1)− u

(
z′2
)∣∣τ

2

)
ϑ−2Nϵ∗,0

(
veq + u(z2)− u

(
z′1
)∣∣τ

2

)
.

We then divide all terms by the first and second line of (5.10) (common factor to all terms)
and by((

x1 − x′1
)(
x1 − x′2

)(
x2 − x′1

)(
x2 − x′2

)
(x1 − x2)

(
x′1 − x′2

) )2
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to arrive to (5.8) with µ = −2Nϵ∗, ν = 0 and an extra veq added to the arguments of all
theta functions. Then, we repeat the end of the proof of Theorem 5.1 to get exactly and in full
generality the claimed (5.1). ■

Theorem 5.4 can be reformulated as an identity for theta functions with matrix of periods τ
instead of τ

2 .

Lemma 5.5. There is an equivalence between (5.8) for any µ,ν ∈ Rg, and the formula

0 = c1ϑα
2
,0

(
u(z1)− u

(
z′1
)
+ u(z2)− u

(
z′2
)∣∣τ)

+ c2ϑα
2
,0

(
u(z1) + u

(
z′1
)
− u(z2)− u

(
z′2
)∣∣τ)

+ c3ϑα
2
,0

(
u(z1)− u

(
z′1
)
− u(z2) + u

(
z′2
)∣∣τ)

+ c4ϑα
2
,0

(
u(z1) + u

(
z′1
)
+ u(z2) + u

(
z′2
)
− 2u(∞−)

∣∣τ) (5.11)

for any α ∈ Zg/2Zg, where

c1 = −

(
E(z1, z2)E

(
z′1, z

′
2

)
E
(
z1, z′1

)
E
(
z1, z′2

)
E
(
z2, z′1

)
E
(
z2, z′2

))2

,

c2 =
(x1 − x2)

(
x′1 − x′2

)(
x1 − x′1

)(
x2 − x′2

) 1(
E
(
z1, z′2

)
E
(
z′1, z2

))2 ,
c3 = −

(x1 − x2)
(
x′1 − x′2

)(
x1 − x′2

)(
x2 − x′1

) 1(
E
(
z1, z′1

)
E
(
z′2, z2

))2 ,
c4 =

(
E(z1, z2)E

(
z′1, z

′
2

)
η(z1)η

(
z′1
)
η(z2)η

(
z′2
))2(

x1 − x′1
)(
x1 − x′2

)(
x2 − x′1

)(
x2 − x′2

) .

Proof. The trick is to use Riemann’s binary addition theorem, see, e.g., [32, equation (6.6)]. It
states that for any µ,ν,µ′,ν ′ ∈ Rg and z1, z2 ∈ Cg

ϑµ,ν

(
z1 + z2

∣∣τ
2

)
ϑµ′,ν′

(
z1 − z2

∣∣τ
2

)
=

∑
α∈Zg/2Zg

ϑµ+µ′+α
2

,ν+ν′(2z1|τ )ϑµ−µ′+α
2

,ν−ν′(2z2|τ ). (5.12)

We apply the transformation (5.12) with µ′ = µ and ν = ν ′ to each term in (5.8), writing it in
the equivalent form

∑
α∈Zg/2Zg

ϑµ+α
2
,ν

(
u(z1)− u

(
z′1
)
+ u(z2)− u

(
z′2
)∣∣τ)( 4∑

i=1

ciϑα
2
,0

(
wi

(
z1, z

′
1, z2, z

′
2

)∣∣τ)),
where the wi are exactly the four arguments of the theta functions appearing in (5.11). In
this form, the converse implication is clear. The direct implication follows from the observation
that ν is arbitrary, and the family of functions Tα(ν) = ϑα

2
,0

(
u(z1)−u

(
z′1
)
+u(z2)−u

(
z′2
)∣∣τ)

indexed by α ∈ Zg/2Zg are linearly independent, forcing the sum inside the bracket to vanish
for each individual α. ■

This is an identity involving only Riemann theta functions, for which we can offer a direct
geometric proof, in a slightly more general form.

Theorem 5.6. Equation (5.11) holds for any marked hyperelliptic curve for any characteristic
µ,ν ∈ Rg (instead of just half-integer characteristics).
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Direct geometric proof of Theorem 5.4. The strategy is similar of the direct proof of The-
orem 5.1. We start without lack of generality to set µ = 0 and for ν ∈ Cg arbitrary, consider

Ψ(z1) =
c2
c1

θ
(
ν + u(z1) + u

(
z′1
)
− u(z2)− u

(
z′2
)∣∣τ)

θ
(
ν + u(z1)− u

(
z′1
)
+ u(z2)− u

(
z′2
)∣∣τ)

+
c3
c1

θ
(
ν + u(z1)− u

(
z′1
)
− u(z2) + u

(
z′2
)∣∣τ)

θ
(
ν + u(z1)− u

(
z′1
)
+ u(z2)− u

(
z′2
)∣∣τ)

+
c4
c1

θ
(
ν + u(z1) + u

(
z′1
)
+ u(z2) + u

(
z′2
)
− 2u(∞−)

∣∣τ)
θ
(
ν + u(z1)− u

(
z′1
)
+ u(z2)− u

(
z′2
)∣∣τ) .

This is a meromorphic function of z1 ∈ Ĉ. We first analyse the poles that may come from the
ratios of coefficients. The ratio c2

c1
has simple poles at z1 = z2 and z1 = ȷ

(
z′1
)
, where ȷ is the

hyperelliptic involution. The ratio c3
c1

has simple poles only at z1 = ȷ
(
z′2
)
and z1 = z2. The

ratio c4
c1

has simple poles only at z1 = ȷ
(
z′2
)
and z1 = ȷ

(
z′2
)
. However, careful computation of

the residues show that Ψ has none of these poles. Thus, the only poles of Ψ are the zeros of
z1 7→ θ

(
ν+u(z1)−u

(
z′1
)
+u(z2)−u

(
z′2
)∣∣τ). As in the direct proof of Theorem 5.1, Riemann’s

theorem implies that if we choose the points z′1, z2, z
′
2 and the vector ν generically, there are

no nonconstant meromorphic function whose poles are the zeroes of this theta function. We
deduce that Ψ(z1) does not depend on z1. A similar argument shows that Ψ(z1) is independent
of all points points z1, z

′
1, z2, z

′
2. Sending z′1, z2, z

′
2 successively to z1, we find that the constant

is 1. ■

5.3 The β = 4 formula

The case β = 4 has the same structure as the β = 1 case of Theorem 5.4, except that the
argument of the theta functions are doubled while we use the matrix 2τ . This similarity is
already manifest in the exact formulae of Theorems 2.7 and 2.8.

Theorem 5.7. Consider a marked hyperelliptic curve Ĉ, and let z1, z
′
1, z2, z

′
2 ∈ C̃ and µ,ν ∈ Cg.

Writing xi = X(zi) and x′i = X(z′i), we have(
E(z1, z2)E

(
z′1, z

′
2

)
E
(
z1, z′1

)
E
(
z1, z′2

)
E
(
z2, z′1

)
E
(
z2, z′2

))2

× ϑµ,ν

(
2
(
u(z1)− u

(
z′1
)
+ u(z2)− u

(
z′2
))∣∣2τ)ϑµ,ν

(
0
∣∣2τ)

−
(x1 − x2)

(
x′1 − x′2

)(
x1 − x′1

)(
x2 − x′2

) ϑµ,ν

(
2
(
u(z1)− u

(
z′2
))∣∣2τ)

E
(
z1, z′2

)2 ϑµ,ν

(
2
(
u(z2)− u

(
z′1
))∣∣2τ)

E
(
z′1, z2

)2
+

(x1 − x2)
(
x′1 − x′2

)(
x1 − x′2

)(
x2 − x′1

) ϑµ,ν

(
2
(
u(z1)− u

(
z′1
))∣∣2τ)

E
(
z1, z′1

)2 ϑµ,ν(2
(
u(z2)− u

(
z′2
))∣∣2τ)

E
(
z′2, z2

)2
=

(
E(z1, z2)E

(
z′1, z

′
2

)
η(z1)η(z2)η

(
z′1
)
η
(
z′2
))2(

x1 − x′1
)(
x1 − x′2

)(
x2 − x′1

)(
x2 − x′2

)
× ϑµ,ν

(
2(u(z1) + u(z2)− u(∞−))

∣∣2τ)ϑµ,ν

(
2(−u

(
z′1
)
− u

(
z′2
)
+ u(∞−))

∣∣2τ),
Proof. The starting point is the simplest non-trivial identity of Theorem 2.8, namely m = 2
(Pfaffian of size 4), which gives〈

det(x1 − Λ)2 det(x2 − Λ)

det
(
x′1 − Λ

)2
det
(
x′2 − Λ

)2
〉V

N
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=
N

N + 1

(
x1 − x′1

)(
x2 − x′2

)(
x1 − x′2

)(
x2 − x′1

)
×

ZV
N+1Z

V
N−1

(ZV
N )2

K
N

N−1
V

N−1

(
2 2
x1 x2

)
K

N
N+1

V

N+1

(
−2 −2
x′1 x′2

)
−
(
x1 − x′2

)(
x2 − x′1

)
(x1 − x2)

(
x′1 − x′2

)KV
N

(
2 −2
x1 x′1

)
KV

N

(
2 −2
x2 x′2

)
+

(
x1 − x′1

)(
x2 − x′2

)
(x1 − x2)

(
x′1 − x′2

)KV
N

(
2 −2
x1 x′2

)
KV

N

(
2 −2
x2 x′1

)
.

We omit the details of the asymptotic analysis based on Lemmas 4.8 and 4.9: it is very similar
to the β = 1 case. Instead of using them for K = 2N , p = ±2 and c, c̃ ∈ {−1, 1}, now we rather
use them with K = N and p = ±1 and c, c̃ ∈ {−2, 2}. ■

Lemma 5.8. Theorem 5.7 is equivalent to Theorem 5.4.

Proof. We apply Theorem 5.4 to the hyperelliptic curve with matrix of periods τ ′ = −τ−1.
Then, (5.8) is an identity involving theta functions with matrix τ ′

2 = −τ−1

2 . On the other
hand, the modular transformation of the theta function is (see [32, equation (5.1)]), for any
z,µ,ν ∈ Rg

ϑν,−µ

(
z
∣∣− τ−1

2

)
= Dτ · e2iπz·τ−1(z)ϑµ,ν(2z|2τ )

for some constant Dτ ∈ C∗. Applying this to each term in Theorem 5.7, all terms get the same
prefactor and we are left with Theorem 5.7. The operation is reversible. ■

5.4 Formula for the multi-cut equilibrium energy (Proof of Proposition 4.3)

In the proof of Theorem 5.1, if we did not use Proposition 4.3 to simplify the exponential in (5.4),
the rest of the arguments would prove the identity (5.1) with a prefactor

e2E[µeq]+2L[V ]+Q[V,V ]+4iπϵ∗·(τ (ϵ∗)+u(∞−)) (5.13)

in the right-hand side, valid for any hyperelliptic curve with real Weierstraß points and the
equilibrium measure µeq of the associated (unconstrained) β = 2 ensemble. Taking all points
z, z′, w, w′ to ∞+ in this modified identity implies that this extra factor (5.13) must be equal
to 1. The argument of the exponential is manifestly real, except perhaps or the last term. As
the curve is hyperelliptic, a basis of the space of holomorphic forms is given by dπk = xkdx

s for
k ∈ [g]. Recall that s takes imaginary values on the segments [ah, bh] for each h ∈ [0, g], and real
values between the segments. This implies that the matrix Qk,h =

�
Ah

dπk has purely imaginary

entries. Since (duh)
g
h=1 is the basis dual to A-cycle integration, we have

duh =

g∑
k=1

Q−1
h,kdπk, with Q−1 purely imaginary.

Integrating this on the B-cycles which only run between segments (Section 3.3.1) yields a purely
imaginary matrix of periods τ . A path from ∞+ to ∞− that does not cross any of the A- and
B-cycles described in Section 3.3.1 is for instance the path travelling along the real axis in Ĉ+

from −∞ to a0, then along the real axis in Ĉ− from a0 to −∞−. In this range s is real-valued,
so u(∞−) is also purely imaginary. All in all, (5.13) only involves the real exponential, and we
conclude that

2E [µeq] + 2L[V ] +Q[V, V ] + 4iπϵ∗ · (τ (ϵ∗) + u(∞−)) = 0.
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This argument was for β = 2, but we retrieve Proposition 4.3 in full generality since it is simply
the β = 2 identity multiplied by β

2 and taking into account the prefactor 2
β in the definition

of Q, while µeq and L are independent of β. So, it was justified (without loop in the logic)
to proceed with Proposition 4.3 in the proofs of Section 5. In fact, the same argument would
establish Proposition 4.3 as a byproduct of the proof of the β = 1 Theorem 5.4 or of the β = 4
Theorem 5.7 instead of Theorem 5.1.

A Variation of the entropy with respect to filling fractions
(Proof of Proposition 4.4)

Consider the equilibrium measure µeq,ϵ of a β-ensemble with fixed filling fractions ϵ such that
M(x) = t2g+2

∏g
h=1(x − zh) with zh ∈ (bh−1, ah) in the notations of Section 2.3. The density

of µeq,ϵ is

ρ(x) =
t2g+2

2π

g∏
h=1

|x− zh|
g∏

h=0

√
|x− ah||x− bh| · 1S(x).

We need to compute for each h ∈ [g]

veq,h =

(
β

2
− 1

) �
S
∂ϵh(ρ(x) ln ρ(x)) =

(
β

2
− 1

)�
S
(∂ϵhρ(x)) ln ρ(x) dx.

For the last equality, we used that
�
S ρ(x)dx = 1 has vanishing ϵh-derivative. The density ρ can

be expressed as a jump of W1 to rewrite

veq,h =

(
β

2
− 1

) �
S
∂ϵh

W1(x− i0)−W1(x+ i0)

2iπ
ln ρ(x) dx

=

(
β

2
− 1

)( g∑
k=1

Υh(zk) +
1

2

g∑
h=0

(Υh(ah) + Υh(bh))

)
(A.1)

in terms of the integrals

∀ξ ∈ R Υh(ξ) :=

�
S
∂ϵh

(
W1(x− i0)−W1(x+ i0)

2iπ

)
ln |x− ξ| dx. (A.2)

It is well-known (see, e.g., [13, Appendix A]) that

∀z ∈ Ĉ+ ∂ϵhW1(X(z))dX(z) = 2iπduh(z).

For x ∈ C \ S or in S ± i0, we define z(x) to be the unique point in Ĉ+ such that X(z(x)) = x.
Then

Υh(ξ) =

�
S
(duh(z(x− i0))− duh(z(x+ i0))) ln |x− ξ| = 2

�
S
duh(z(x− i0)) ln |x− ξ|.

This is a differentiable function of ξ. For ξ /∈ S, we can compute

∂ξΥh(ξ) =

�
S
(duh(z(x− i0)− duh(z(x+ i0)))

1

ξ − x
=

�
S

duh(z)

ξ −X(z)
= 2iπ

duh
dX

(z(ξ)).

For ξ ∈ S̊, we rather have

∂ξΥh(ξ) = 2

 
S

duh(z(x− i0))

ξ − x
= −duh

dX
(z(ξ + i0))− duh

dX
(z(ξ − i0)) = 0.
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We will integrate this starting along the real line starting from ξ = −∞ + i0 and using the
continuity of Υh on the real axis shifted by +i0. From the definition (A.2), we can see that
limξ→∞Υh(ξ) = 0. Therefore,

Υh(ξ)

2iπ
=


uh(z(ξ)) +

k−1∑
l=0

(uh(al)− uh(bl)) if ξ ∈ (bk−1, ak),

uh(ak) +
k−1∑
l=0

(uh(ak)− uh(bk)) if ξ ∈ [ak, bk],

(A.3)

with the conventions b−1 = −∞ and ag+1 = +∞. Note that we could start integrating along
the real line coming from +∞, but we would get an equivalent expression because

g∑
k=0

u(ak) =

g∑
k=0

u(bk).

The primitive u of du in (C \ S) is multivalued, because this domain is not simply-connected.
Yet, for the previous computation, it suffices to define it by integration based at ∞+ in the
simply-connected domain H \ S, and it is extended to S and hence H by continuity. Inserting
the formula (A.3) in (A.1), we arrive to

veq,h = 2iπ

(
β

2
− 1

)
(A.4)

×

[
g∑

k=1

(
u(zk) + u(a0)− u(b0) + · · ·+ u(ak−1)− u(bk−1)

)
+

g∑
k=0

u(ak) + u(bk)

2

]
.

We now compute u(ak) and u(bk) as defined above. Denote (e1, . . . , eg) the canonical basis
of Cg. Due to the description of the representatives of the A- and B-cycles in Section 3.3.1 and
the fact that the hyperelliptic involution changes the sign of du, we have

u(b0)− u(a0) = −1

2

�
A0

du =
1

2

g∑
l=1

el, (A.5)

and for any k ∈ [g]

u(bk)− u(ak) = −1

2

�
Ak

du = −1

2
ek,

u(ak)− u(bk−1) =
1

2

�
Bk−Bk−1

du =
1

2
(τ (ek)− τ (ek−1)), (A.6)

with the conventions B0 = 0 and e0 = 0. Since a0 is the only Weierstraß point that does not
belong to theA- and B-cycles specified in Section 3.3.1, u(∞−) can be obtained by integrating du
in the first sheet −∞ on the real line to a0, and then to a0 from −∞ on the real line in the
second sheet. Therefore,

u(a0) =
1

2
u(∞−).

From (A.5) and (A.6), we deduce

u(b0) =
1

2

(
u(∞−) +

g∑
l=1

el

)
,
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and for k ∈ [g]

u(ak) =
1

2

(
u(∞−) +

g∑
l=k

el +
k∑

l=1

τ (el)

)
,

u(bk) =
1

2

(
u(∞−) +

g∑
l=k+1

el +
k∑

l=1

τ (el)

)
.

Therefore,

g∑
k=0

u(ak) =

g∑
k=0

u(bk) =
1

2

[
(g + 1)u(∞−) +

g∑
k=1

(
g∑

l=k

el +

k∑
l=1

τ (el)

)]

=
1

2

(
(g + 1)u(∞−) +

g∑
l=1

(lel + (g + 1− l)τ (el))

)
.

We can return to the computation of veq. By definition in (4.1) it is real, so we can replace u
by Imu in (A.4). Since u(bl)− u(al) is real for any l ∈ [0, g], we get

veq = 2π

(
1− β

2

)[ g∑
k=1

(
Imu(zk) +

g + 1− k

2
Im τ (ek)

)
+

g + 1

2
Imu(∞−)

]
.

Since we already know that τ and u(∞−) are purely imaginary, we can drop imaginary part
and divide by i instead, and this is the final formula.
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