Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 078, 20 pages      arXiv:2401.00780      https://doi.org/10.3842/SIGMA.2024.078
Contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of Peter J. Olver

Symmetries in Riemann-Cartan Geometries

David D. McNutt a, Alan A. Coley b and Robert J. van den Hoogen c
a) Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
b) Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
c) Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, Nova Scotia, Canada

Received January 02, 2024, in final form August 21, 2024; Published online September 01, 2024

Abstract
Riemann-Cartan geometries are geometries that admit non-zero curvature and torsion tensors. These geometries have been investigated as geometric frameworks for potential theories in physics including quantum gravity theories and have many important differences when compared to Riemannian geometries. One notable difference, is the number of symmetries for a Riemann-Cartan geometry is potentially smaller than the number of Killing vector fields for the metric. In this paper, we will review the investigation of symmetries in Riemann-Cartan geometries and the mathematical tools used to determine geometries that admit a given group of symmetries. As an illustration, we present new results by determining all static spherically symmetric and all stationary spherically symmetric Riemann-Cartan geometries. Furthermore, we have determined the subclasses of spherically symmetric Riemann-Cartan geometries that admit a seven-dimensional group of symmetries.

Key words: symmetry; Riemann-Cartan; frame formalism; local homogeneity.

pdf (405 kb)   tex (26 kb)  

References

  1. Åman J.E., Fonseca-Neto J.B., MacCallum M.A.H., Rebouças M.J., Riemann-Cartan spacetimes of Gödel type, Classical Quantum Gravity 15 (1998), 1089-1101, arXiv:gr-qc/9711064.
  2. Bolejko K., Celerier M., Szekeres Swiss-cheese model and supernova observations, Phys. Rev. D 82 (2010), 103510, 8 pages, arXiv:1005.2584.
  3. Coley A.A., van den Hoogen R.J., McNutt D.D., Symmetry and equivalence in teleparallel gravity, J. Math. Phys. 61 (2020), 072503, 26 pages, arXiv:1911.03893.
  4. Fonseca-Neto J.B., Reboucas M.J., MacCallum M.A.H., Algebraic computing in torsion theories of gravitation, Math. Comput. Simulation 42 (1996), 739-748.
  5. Fonseca-Neto J.B., Rebouças M.J., Teixeira A.F.F., The equivalence problem in torsion theories of gravitation, J. Math. Phys. 33 (1992), 2574-2577.
  6. Greub W., Linear algebra, 4th ed., Grad. Texts Math., Vol. 23, Springer, New York, 1975.
  7. Hehl F.W., McCrea J.D., Mielke E.W., Ne'eman Y., Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rep. 258 (1995), 1-171, arXiv:gr-qc/9402012.
  8. Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M., General relativity with spin and torsion: foundations and prospect, Rev. Modern Phys. 48 (1976), 393-416
  9. Hohmann M., General covariant symmetric teleparallel cosmology, Phys. Rev. D 104 (2021), 124077, 16 pages, arXiv:2109.01525.
  10. Hohmann M., Järv L., Krššák M., Pfeifer C., Modified teleparallel theories of gravity in symmetric spacetimes, Phys. Rev. D 100 (2019), 084002, 23 pages, arXiv:1901.05472.
  11. Kršvsák M., Pereira J.G., Spin connection and renormalization of teleparallel action, Eur. Phys. J. C 75 (2015), 519, 8 pages, arXiv:1504.07683.
  12. McNutt D.D., Coley A.A., van den Hoogen R.J., A frame based approach to computing symmetries with non-trivial isotropy groups, J. Math. Phys. 64 (2023), 032503, 19 pages, arXiv:2302.11493.
  13. Obukhov Yu.N., Poincaré gauge gravity primer, in Modified and Quantum Gravity – From Theory to Experimental Searches on All Scales, Lecture Notes in Phys., Vol. 1017, Springer, Cham, 2023, 105-143, arXiv:2206.05205.
  14. Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.
  15. Pfeifer C., A quick guide to spacetime symmetry and symmetric solutions in teleparallel gravity, arXiv:2201.04691.
  16. Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, 2nd ed., Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2003.
  17. Trautman A., Einstein-Cartan theory, arXiv:gr-qc/0606062.
  18. Tsamparlis M., Methods for deriving solutions in generalized theories of gravitation: the Einstein-Cartan theory, Phys. Rev. D 24 (1981), 1451-1457.
  19. Yano K., The theory of Lie derivatives and its applications, Courier Dover Publications, New York, 2020.

Previous article  Next article  Contents of Volume 20 (2024)