Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 079, 14 pages      arXiv:2403.16945      https://doi.org/10.3842/SIGMA.2024.079
Contribution to the Special Issue on Asymptotics and Applications of Special Functions in Memory of Richard Paris

New Evaluations of Inverse Binomial Series via Cyclotomic Multiple Zeta Values

John M. Campbell a, M. Lawrence Glasser b and Yajun Zhou cd
a) Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
b) Department of Physics, Clarkson University, Potsdam NY 13699, USA
c) Program in Applied and Computational Mathematics (PACM), Princeton University, Princeton, NJ 08544, USA
d) Academy of Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, P.R. China

Received March 26, 2024, in final form August 28, 2024; Published online September 03, 2024

Abstract
Through the application of an evaluation technique based on cyclotomic multiple zeta values recently due to Au, we solve open problems on inverse binomial series that were included in a 2010 analysis textbook by Chen.

Key words: binomial coefficients; cyclotomic multiple zeta values; multiple polylogarithms.

pdf (475 kb)   tex (24 kb)  

References

  1. Ablinger J., Discovering and proving infinite binomial sums identities, Exp. Math. 26 (2017), 62-71, arXiv:1507.01703.
  2. Ablinger J., Blümlein J., Raab C.G., Schneider C., Iterated binomial sums and their associated iterated integrals, J. Math. Phys. 55 (2014), 112301, 57 pages, arXiv:1407.1822.
  3. Au K.C., Iterated integrals and multiple polylogarithm at algebraic arguments, arXiv:2201.01676, software available at https://www.researchgate.net/publication/357601353_Mathematica_package_MultipleZetaValues and https://www.wolframcloud.com/obj/pisco125/MultipleZetaValues-1.2.0.paclet.
  4. Blümlein J., Algebraic relations between harmonic sums and associated quantities, Comput. Phys. Comm. 159 (2004), 19-54, arXiv:hep-ph/0311046.
  5. Borwein J., Bailey D., Girgensohn R., Experimentation in mathematics. Computational paths to discovery, A K Peters, Ltd., Natick, MA, 2004.
  6. Borwein J.M., Bradley D.M., Broadhurst D.J., Lisonĕk P., Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353 (2001), 907-941, arXiv:math.CA/9910045.
  7. Borwein J.M., Broadhurst D.J., Kamnitzer J., Central binomial sums, multiple Clausen values, and zeta values, Experiment. Math. 10 (2001), 25-34, arXiv:hep-th/0004153.
  8. Brown F., On the periods of some Feynman integrals, arXiv:0910.0114.
  9. Brown F., The massless higher-loop two-point function, Comm. Math. Phys. 287 (2009), 925-958, arXiv:0804.1660.
  10. Brown F., Multiple zeta values and periods of moduli spaces $\overline{\mathfrak M}_{0,n}$, Ann. Sci. Éc. Norm. Supér. 42 (2009), 371-489, arXiv:math.AG/0606419.
  11. Campbell J.M., Chen K.-W., Explicit identities for infinite families of series involving squared binomial coefficients, J. Math. Anal. Appl. 513 (2022), 126219, 23 pages.
  12. Campbell J.M., Levrie P., Proof of a conjecture due to Chu on Gosper-type sums, Aequationes Math. 98 (2024), 1071-1079.
  13. Campbell J.M., Levrie P., Xu C., Zhao J., On a problem involving the squares of odd harmonic numbers, Ramanujan J. 63 (2024), 387-408, arXiv:2206.05026.
  14. Chen H., Excursions in classical analysis. Pathways to advanced problem solving and undergraduate research, Classr. Res. Mater. Ser., Mathematical Association of America, Washington, DC, 2010.
  15. Chu W., Further Apéry-like series for Riemann zeta function, Math. Notes 109 (2021), 136-146.
  16. Chudnovsky D.V., Chudnovsky G.V., Classification of hypergeometric identities for $\pi$ and other logarithms of algebraic numbers, Proc. Natl. Acad. Sci. USA 95 (1998), 2744-2749.
  17. Davydychev A.I., Kalmykov M.Yu., New results for the $\epsilon$-expansion of certain one-, two- and three-loop Feynman diagrams, Nuclear Phys. B 605 (2001), 266-318, arXiv:hep-th/0012189.
  18. Davydychev A.I., Kalmykov M.Yu., Massive Feynman diagrams and inverse binomial sums, Nuclear Phys. B 699 (2004), 3-64, arXiv:hep-th/0303162.
  19. Duhr C., Dulat F., PolyLogTools – polylogs for the masses, J. High Energy Phys. 2019 (2019), no. 8, 135, 56 pages, arXiv:1904.07279.
  20. Dyson F.J., Frankel N.E., Glasser M.L., Lehmer's interesting series, Amer. Math. Monthly 120 (2013), 116-130, arXiv:1009.4274.
  21. Glasser M.L., A generalized Apéry series, J. Integer Seq. 15 (2012), 12.4.3, 7 pages, arXiv:1204.1078.
  22. Goncharov A.B., Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998), 497-516, arXiv:1105.2076.
  23. Hoffman M.E., Quasi-shuffle products, J. Algebraic Combin. 11 (2000), 49-68, arXiv:math.QA/9907173.
  24. Kalmykov M.Yu., Veretin O., Single-scale diagrams and multiple binomial sums, Phys. Lett. B 483 (2000), 315-323, arXiv:hep-th/0004010.
  25. Kalmykov M.Yu., Ward B.F.L., Yost S.A., On the all-order $\epsilon$-expansion of generalized hypergeometric functions with integer values of parameters, J. High Energy Phys. 2007 (2007), no. 11, 009, 13 pages, arXiv:0708.0803.
  26. Kummer E.E., Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen, J. Reine Angew. Math. 21 (1840), 74-90.
  27. Kummer E.E., Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. (Fortsetzung), J. Reine Angew. Math. 21 (1840), 193-225.
  28. Kummer E.E., Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. (Fortsetzung), J. Reine Angew. Math. 21 (1840), 328-371.
  29. Laporta S., High-precision calculation of the 4-loop contribution to the electron $g-2$ in QED, Phys. Lett. B 772 (2017), 232-238, arXiv:1704.06996.
  30. Laporta S., Remiddi E., The analytical value of the electron $(g-2)$ at order $\alpha^3$ in QED, Phys. Lett. B 379 (1996), 283-291, arXiv:hep-ph/9602417.
  31. Lehmer D.H., Interesting series involving the central binomial coefficient, Amer. Math. Monthly 92 (1985), 449-457.
  32. Ma^itre D., HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Comm. 174 (2006), 222-240,arXiv:hep-ph/0507152, software available at https://www.physik.uzh.ch/data/HPL/.
  33. Ma^itre D., Extension of HPL to complex arguments, Comput. Phys. Comm. 183 (2012), 846, arXiv:hep-ph/0703052.
  34. Panzer E., Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Comm. 188 (2015), 148-166, arXiv:1403.3385.
  35. Schnetz O., The Galois coaction on the electron anomalous magnetic moment, Commun. Number Theory Phys. 12 (2018), 335-354, arXiv:1711.05118.
  36. Sun Z.-W., Zhou Y., Evaluations of $\sum_{k=1}^\infty \frac{x^k}{k^2\binom{3k}{k}}$ and related series, arXiv:2401.12083.
  37. van der Poorten A.J., Some wonderful formulae $\ldots \ $footnotes to Apéry's proof of the irrationality of $\zeta (3)$, in Séminaire Delange-Pisot-Poitou, 20e Année: 1978/1979. Théorie des Nombres, Fasc. 2, Secrétariat Math., Paris, 1980, Exp. No. 29, 7 pages.
  38. Wang W., Xu C., Alternating multiple zeta values, and explicit formulas of some Euler-Apéry-type series, European J. Combin. 93 (2021), 103283, 25 pages, arXiv:1909.02943.
  39. Weinzierl S., Expansion around half-integer values, binomial sums, and inverse binomial sums, J. Math. Phys. 45 (2004), 2656-2673, arXiv:hep-ph/0402131.
  40. Young P.T., From Madhava-Leibniz to Lehmer's limit, Amer. Math. Monthly 129 (2022), 524-538.
  41. Zhou Y., Hyper-Mahler measures via Goncharov-Deligne cyclotomy, arXiv:2210.17243.
  42. Zhou Y., Sun's series via cyclotomic multiple zeta values, SIGMA 19 (2023), 074, 20 pages, arXiv:2306.04638.
  43. Zucker I.J., On the series $\sum^\infty_{k=1}(^{2k}_{\;k})^{-1}k^{-n}$ and related sums, J. Number Theory 20 (1985), 92-102.

Previous article  Next article  Contents of Volume 20 (2024)