Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 084, 12 pages      arXiv:2309.11184      https://doi.org/10.3842/SIGMA.2024.084
Contribution to the Special Issue on Global Analysis on Manifolds in honor of Christian Bär for his 60th birthday

Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations

Vicente Cortés a and Thomas Leistner b
a) Department Mathematik, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
b) School of Computer & Mathematical Sciences, University of Adelaide, SA 5005, Australia

Received September 21, 2023, in final form September 09, 2024; Published online September 21, 2024

Abstract
A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat.

Key words: pseudo-Riemannian manifolds; essential conformal transformations; Kähler metrics; symmetric spaces.

pdf (354 kb)   tex (21 kb)  

References

  1. Alekseevski D., Self-similar Lorentzian manifolds, Ann. Global Anal. Geom. 3 (1985), 59-84.
  2. Alekseevskiǐ D.V., Groups of conformal transformations of Riemannian spaces, Math. USSR-Sb. 18 (1972), 285-301.
  3. Cahen M., Kerbrat Y., Transformations conformes des espaces symétriques pseudo-riemanniens, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A383-A385.
  4. Ferrand J., The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996), 277-291.
  5. Frances C., Sur les variétés lorentziennes dont le groupe conforme est essentiel, Math. Ann. 332 (2005), 103-119.
  6. Frances C., Essential conformal structures in Riemannian and Lorentzian geometry, in Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Mathematical Society (EMS), Zürich, 2008, 231-260.
  7. Frances C., About pseudo-Riemannian Lichnerowicz conjecture, Transform. Groups 20 (2015), 1015-1022, arXiv:1211.0635.
  8. Frances C., Melnick K., The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds, J. Reine Angew. Math. 803 (2023), 183-218, arXiv:2108.07215.
  9. Kobayashi S., Nomizu K., Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, Vol. 15, Interscience Publishers John Wiley & Sons, Inc., New York, 1969.
  10. Leistner T., Teisseire S., Conformal transformations of Cahen-Wallach spaces, Ann. Inst. Fourier (Grenoble), to appear, arXiv:2201.12958.
  11. Lelong-Ferrand J., Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8o (2) 39 (1971), no. 5, 44 pages.
  12. Melnick K., Pecastaing V., The conformal group of a compact simply connected Lorentzian manifold, J. Amer. Math. Soc. 35 (2022), 81-122, arXiv:1911.06251.
  13. Moroianu A., Lectures on Kähler geometry, London Math. Soc. Stud. Texts, Vol. 69, Cambridge University Press, Cambridge, 2007.
  14. Obata M., The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971), 247-258.
  15. Pecastaing V., Conformal actions of solvable Lie groups on closed Lorentzian manifolds, arXiv:2307.05436.
  16. Pecastaing V., Lorentzian manifolds with a conformal action of ${\rm SL}(2,\mathbb{R})$, Comment. Math. Helv. 93 (2018), 401-439, arXiv:1609.00358.
  17. Podoksënov M.N., A Lorentzian manifold with a one-parameter group of homotheties that has a closed isotropic orbit, Sib. Math. J. 30 (1989), 771-773.
  18. Podoksënov M.N., Conformally homogeneous Lorentzian manifolds. II, Sib. Math. J. 33 (1992), 1087-1093.

Previous article  Next article  Contents of Volume 20 (2024)