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Abstract. A conformal transformation of a semi-Riemannian manifold is essential if there
is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds
the existence of an essential conformal transformation forces the manifold to be conformally
flat. This is false for pseudo-Riemannian manifolds, however compact examples of confor-
mally curved manifolds with essential conformal transformation are scarce. Here we give
examples of compact conformal manifolds in signature (4n+2k, 4n+2ℓ) with essential con-
formal transformations that are locally conformally pseudo-Kähler and not conformally flat,
where n ≥ 1, k, ℓ ≥ 0. The corresponding local pseudo-Kähler metrics obtained by a local
conformal rescaling are Ricci-flat.
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1 Introduction

A conformal diffeomorphism between semi-Riemannian manifolds (M, g) and (N,h) is a diffeo-
morphism ϕ : M → N such that

ϕ∗h = e2φg,

for a smooth function φ ∈ C∞(M). A conformal transformation is a conformal diffeomorphism
from (M, g) to itself. The conformal transformations form a group and we call a group G of
conformal transformations essential if there if there is no metric ĝ in the conformal class of g
such that G is a group of isometries for ĝ. Otherwise G is called inessential. A single conformal
transformation ϕ is called essential if the group generated by ϕ is essential, and inessential
otherwise. A homothetic transformation or just a homothety is a conformal transformation for
which the function φ is constant φ ≡ λ ∈ R. If λ ̸= 0, we say that ϕ is a proper homothety.

The Lichnerowicz conjecture states that if (M, g) is a Riemannian manifold with an essential
conformal transformation, then (M, g) is either conformally diffeomorphic to Rn with the flat
metric or to the sphere Sn with the round metric. It was proved in a series of papers by Lelong-
Ferrand and Obata (see [11] and [14] for compact manifolds, [4] for non-compact ones) with con-
tributions by [2]. It is clear that Euclidean space and the round sphere have essential conformal
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transformations: the conformal transformations of Rn are homotheties, whereas the conformal
transformations of Sn are induced by the linear isometries of Minkowski space R1,n+1. In fact,
identifying the sphere Sn with the projectivisation

{
[x] ∈ RPn+1 | x is null in R1,n+1

}
of the null

cone, the conformal group of Sn is precisely PO(1, n+1) = O(1, n+1)/{±1}. In both cases there
are conformal transformations with a fixed point, which are essential (see [10, Proposition 2.5]
for a proof that non-trivial homotheties with a fixed point are essential – we will use this fact
below). It is remarkable that in the non-compact case, geodesic completeness does not have to
be assumed for the statement to hold. This can be illustrated with Euclidean space Rn. Here
the homotheties x 7→ esx, for s ̸= 0, have a fixed point and are therefore essential. Removing
the origin allows to define the metric 1

∥x∥2 gEuclid on Rn \ {0} for which these homotheties are
isometries. By the geodesic incompleteness of Rn \ {0} one gains metrics that cause the loss of
essential transformations.

It is a natural question to which extent the result of Ferrand and Obata generalises to semi-
Riemannian manifolds with indefinite metrics. It was clear from early on that it does not
generalise to the non-compact context as there are plenty of non-compact Lorentzian manifolds
with essential conformal transformations that are not conformally flat [1, 17, 18], and this holds
beyond Lorentzian signature. It is much more difficult to find compact examples, but Frances
in [5] constructed compact Lorentzian manifolds with essential conformal transformations that
are not conformally diffeomorphic to the homogeneous model of Lorentzian conformal geometry,
the Einstein universe (see [6] for a survey). Recall that the Einstein universe of dimension n
is the coset space PO(2, n)/PO(2, n)L endowed with its canonical conformal structure, where
PO(2, n)L denotes the stabilizer of a null line L ⊂ R1,n+1 considered as a point L ∈ RPn+1. The
group of conformal transformations of this manifold is PO(2, n) and its Weyl tensor vanishes.

These Lorentzian examples generalise to other signatures. Even though the examples found
by Frances are not conformally diffeomorphic to the homogeneous model, they are conformally
flat, i.e., have vanishing Weyl tensor. This led to a new generalised Lichnerowicz conjecture:
a compact semi-Riemannian manifold with essential conformal transformations is conformally
flat. In [7], again Frances constructed counterexamples to this conjecture in all signatures
except Lorentzian. In Lorentzian signature the generalised Lichnerowicz conjecture is known
as Lorentzian Lichnerowicz conjecture and is still open, although substantial progress has been
made recently in a series of papers by Frances, Melnick and Pecastaing [8, 12, 15, 16].

In the present article, we focus on signatures beyond Lorentzian and in particular on neutral
signature. Our main result is the construction of Ricci-flat pseudo-Kähler symmetric spaces in
signature (4n, 4n) that admit essential holomorphic homotheties and, based on this, we con-
struct examples of compact locally conformally pseudo-Kähler manifolds Ma,b with an essential
conformal group that are locally conformally Ricci-flat, but not conformally flat. The latter
result is stated in detail in Theorem 2.5. In addition, we consider real versions of these con-
structions in signature (2n, 2n) (see, e.g., Theorem 3.4), and more generally (2n + k, 2n + ℓ)
that yield compact conformal manifolds with essential conformal transformations. The latter
are generalisations of the examples constructed by Frances in [7] in signatures (2 + k, 2 + ℓ).

2 A Hermitian symmetric space in signature (4n, 4n)
with compact conformal quotients

In the following, we use the index conventions

A,B,C, . . . ∈ {1, . . . , 4n}, a, b, c, . . . ∈ {1 . . . , 2n}, i, j, k, ℓ, . . . ∈ {1, . . . , n}.

We use the Einstein summation convention for these ranges of indices.
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Let (σij) be a symmetric complex n× n matrix and define the quadratic polynomial

σ
(
z1, . . . , z2n

)
:= σijz

izj+n,

on C2n. Using σ, we define f : C4n → R as

f
(
z1, . . . , z4n

)
= δabz

azb+2n + σ
(
z1, . . . , z2n

)
σ
(
z1, . . . , z2n

)
= δabz

azb+2n + σij σ̄kℓ
(
zizj+nzkzℓ+n

)
. (2.1)

As Kähler potential, this function defines an indefinite Kähler metric of signature (4n, 4n) on
C4n = R8n by

g = hAB dzA · dzB, where hAB =
∂2f

∂zA∂zB
, (2.2)

with Kähler form

ω =
i

2
hAB dzA ∧ dzB.

The only non-vanishing terms in hAB are the following:

ha b+2n = ha+2n b = δab,

hjℓ = σij σ̄kℓ z
i+nzk+n,

hj ℓ+n = σij σ̄kℓ z
i+nzk,

hj+n ℓ = σij σ̄kℓ z
izk+n,

hj+n ℓ+n = σij σ̄kℓ z
izk, (2.3)

so that (hAB) and its inverse are of the form

(
hAB

)
=

(
hab 12n
12n 0

)
,

(
hAB

)
=

(
0 12n
12n −hab

)
.

Without loss of generality, we can assume that the symmetric matrix (σij) is diagonalised,
as the following lemma shows.

Lemma 2.1. For any complex symmetric n×n matrix σ = (σij), the pseudo-Riemannian man-
ifold

(
R8n, g

)
is isometric to a pseudo-Riemannian manifold

(
R8n, ĝ

)
of the same type defined

by a diagonal matrix (σ̂ij).

Proof. Assume that Q ∈ GL(n,C) such that σ̂ = Q⊤σQ is diagonal. Let P =
(
Q

−1)⊤
. The

real coordinate transformation ϕQ induced by complex linear transformation

ẑi := Qi
kz

k, ẑi+n := Qi
kz

k+n,

and

ẑi+2n := P i
kz

k+2n, ẑi+3n := P i
kz

k+3n,

maps R8n to R8n and pulls back the Kähler potential f to the Kähler potential f̂ = f ◦ ϕQ,

f̂
(
z1, . . . , z4n

)
= δabz

azb+2n + σ̂ij ¯̂σkℓ
(
zizj+nzkzℓ+n

)
.

As a consequence, the corresponding pseudo-Kähler metrics are isometric, ĝ = ϕ∗Qg. Note also

that the quadratic term δabz
azb+2n is invariant under ϕQ, i.e., ϕQ ∈ O(4n, 4n). ■
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We will now compute the Christoffel symbols for the metric (2.2) defined by the Kähler
potential (2.1). From (2.3), the metric is given as

g = δab
(
dzadzb+2n + dza+2ndzb

)
+ σij σ̄kℓ

(
zi+nzk+ndzjdzℓ + zi+nzkdzjdzℓ+n + zizk+ndzj+ndzℓ + zizkdzj+ndzℓ+n

)
= δab

(
dzadzb+2n + dza+2ndzb

)
+ σijd

(
zizj+n

)
σkℓd

(
zkzℓ+n

)
. (2.4)

In the following, we will write ∂A for ∂
∂zA

and ∂A for ∂
∂zA

. The (essential) Christoffel symbols of
a Kähler metric are given by [9, Section IX.5]

ΓC
AB = hDC∂AhBD.(

In fact, ΓC̄
ĀB̄

=
(
ΓC
AB

)
and the mixed Christoffel symbols are zero.

)
In our situation, this

shows that

ΓA
a+2n B = 0,

so that the holomorphic vector fields ∂a+2n, a = 1, . . . , 2n, are parallel on
(
R8n, g

)
. As a conse-

quence, the real vector fields ∂a+2n + ∂a+2n and i
(
∂a+2n − ∂a+2n

)
are parallel as well.

Similarly, one checks that

Γc
AB = 0.

Furthermore, it is easy to see that

Γc+2n
ij = ∂ihj c = 0,

as well as

Γc+2n
i+n j+n = 0.

A similar computation shows that the only non-vanishing Christoffel symbols are

Γℓ+2n
i+n j = ∂i+nhj ℓ = ∂i+n

(
σmj σ̄kℓ z

m+nzk+n
)
= σij σ̄kℓ z

k+n

and

Γℓ+3n
i+n j = ∂i+nhj ℓ+n = ∂i+n

(
σmj σ̄kℓ z

m+nzk
)
= σij σ̄kℓ z

k.

To summarise, for all b ∈ {1, . . . , 2n} and A,B ∈ {1, . . . , 4n}, we have

∇∂A∂b+2n = 0, ∇∂A∂b ∈ Γ(span(∂a+2n)a=1,...,2n). (2.5)

The curvature tensor is determined by ∂a+2n R = 0 and the following equations:

R
(
∂i, ∂j

)
∂k = 0, R

(
∂i, ∂j

)
∂k+n = σjk

∑
ℓ

σ̄iℓ∂ℓ+3n,

R
(
∂i+n, ∂j+n

)
∂k = σjk

∑
ℓ

σ̄iℓ∂ℓ+2n, R
(
∂i+n, ∂j+n

)
∂k+n = 0,

R
(
∂i, ∂j+n

)
∂k = σjk

∑
ℓ

σ̄iℓ∂ℓ+3n, R
(
∂i, ∂j+n

)
∂k+n = 0,

R
(
∂i+n, ∂j

)
∂k = 0, R

(
∂i+n, ∂j

)
∂k+n = σjk

∑
ℓ

σ̄iℓ∂ℓ+2n.
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Using conjugation and the skew symmetry of R, we get

R
(
∂i, ∂j

)
∂k = 0, R

(
∂i, ∂j

)
∂k+n = −σ̄ik

∑
ℓ

σjℓ∂ℓ+3n,

R
(
∂i+n, ∂j+n

)
∂k = −σ̄ik

∑
ℓ

σjℓ∂ℓ+2n, R
(
∂i+n, ∂j+n

)
∂k+n = 0,

R
(
∂i, ∂j+n

)
∂k = 0, R

(
∂i, ∂j+n

)
∂k+n = −σ̄ik

∑
ℓ

σjℓ∂ℓ+2n,

R
(
∂i+n, ∂j

)
∂k = −σ̄ik

∑
ℓ

σjℓ∂ℓ+3n, R
(
∂i+n, ∂j

)
∂k+n = 0.

With this information at hand, we obtain the following proposition, for which we recall that
a semi-Riemannian manifold is indecomposable if it does not split as a product, not even locally.

Proposition 2.2. The metric g in (2.2) defined by the Kähler potential (2.1) is locally symmet-
ric, Kähler of neutral signature, Ricci-flat, but not flat and hence not conformally flat. Moreover,
the semi-Riemannian manifold

(
R8n, g

)
is a symmetric space.

(
More precisely,

(
C4 = R8n, g

)
is a Hermitian symmetric space.

)
If (σij) is non-degenerate, then

(
R8n, g

)
is indecomposable.

Proof. Using the fact [13, p. 90] that

Ric(∂A, ∂B̄) = −∂A∂B̄ log det(g(∂C , ∂D̄))),

we see that since the determinant of hAB is equal to 1, g is Ricci-flat. With the above formu-
las (2.5) for the Levi-Civita connection, we have that

∇∂A∂B ∈ Γ(span(∂a+2n)a=1,...,2n), ∇∂Ā
∂B̄ ∈ Γ

(
span

(
∂a+2n

)
a=1,...,2n

)
.

Together with the fact that the components of the curvature tensor in the coordinates are
constant, this implies that the curvature tensor is parallel, so that g is locally symmetric,∇R = 0.

In order to show that R8n with the metric g is a globally symmetric space, we have to show
that it is geodesically complete. The geodesic equations are (we only work with the unbarred
components, as the barred ones follow by complex conjugation)

0 = γ̈a, i.e., γa(t) = pat+ qa,

0 = γ̈ℓ+2n+2σij σ̄kℓ γ
k+nγ̇i+nγ̇j = γ̈ℓ+2n+2σij σ̄kℓ

(
pk+nt+ qk+n

)
pi+npj ,

0 = γ̈ℓ+3n+2σij σ̄kℓ γ
kγ̇i+nγ̇j = γ̈ℓ+3n+2σij σ̄kℓ

(
pkt+ qk

)
pi+npj .

Hence the γa+2n(t) are cubic polynomials in t and hence defined for all t ∈ R. As a consequence,(
R8n, g

)
is geodesically complete and a symmetric space of signature (4n, 4n).

Now we prove that the holonomy algebra of
(
R8n, g

)
is indecomposable if (σij) is non-

degenerate. Indecomposability means here that there is no decomposition of the (real) tan-
gent space as a proper sum of two complementary non-degenerate invariant subspaces. This is
equivalent to the geometric indecomposabilty formulated in the statement of the proposition.

In virtue of Lemma 2.1, we can assume that (σij) is diagonal with diagonal elements λi ̸= 0.
The holonomy algebra is spanned by the following endomorphisms:

R
(
∂i + ∂ī, ∂j + ∂j̄

)
= R

(
∂ī, ∂j

)
−R

(
∂j̄ , ∂i

)
,

R
(
∂i + ∂ī, i

(
∂j − ∂j̄

))
= i

(
R
(
∂ī, ∂j

)
+R

(
∂j̄ , ∂i

))
,

R
(
∂i+n + ∂i+n, ∂j+n + ∂j+n

)
= R

(
∂i+n, ∂j+n

)
−R

(
∂j+n, ∂i+n

)
,

R
(
∂i+n + ∂i+n, i

(
∂j+n − ∂j+n

))
= i

(
R
(
∂i+n, ∂j+n

)
+R

(
∂j+n, ∂i+n

))
,

R
(
∂i + ∂i, ∂j+n + ∂j+n

)
= R

(
∂i, ∂j+n

)
−R

(
∂j+n, ∂i

)
,

R
(
∂i + ∂i, i

(
∂j+n − ∂j+n

))
= i

(
R
(
∂i, ∂j+n

)
+R

(
∂j+n, ∂i

))
.
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Inspection of the above formulas for these endomorphisms shows that the holonomy algebra hol
at the origin is represented in the basis (∂A) of the holomorphic tangent space U :=T 1,0

0 C4n ∼= C4n

by the algebra of 4n× 4n matrices of the form(
0 0
∗ 0

)
,

where ∗ stands for an arbitrary skew-Hermitian 2n× 2n matrix. We claim that the real vector
space U does not admit any non-trivial decomposition into complementary subspaces invariant
under hol. Let U1 ⊂ U be a proper invariant subspace. It is either contained in

U ′ := span{∂a+2n | a = 1, . . . , 2n},

which is precisely the kernel of hol, or has a nontrivial projection to U/U ′. Considering a line
L := Rv, where v ∈ U1 \ U ′, we see that in the latter case

U ′ = hol · L.

The reason is that the unitary group acts transitively on the unit sphere. By the holonomy
invariance of U1, this implies that U ′ ⊂ U1, so that any invariant subspace of U is either
contained in U ′ or contains U ′. This implies that the intersection of any two invariant subspaces
of complementary dimensions is non-trivial. ■

Proposition 2.3. The group of transvections of the indecomposable Hermitian symmetric space(
C4, g

)
of Proposition 2.2 is 3-step nilpotent with unipotent abelian isotropy. The isotropy algebra

is of dimension 4n2.

Proof. As a general fact, the Lie algebra g of the transvection group of any symmetric space
can be written as a direct sum of vector spaces,

g = hol⊕m,

where m denotes the tangent space and hol ⊂ so(m) the holonomy algebra of the symmetric space
at the considered base point o

(
in our case we take the origin in C4

)
. The Lie bracket is given

by the conditions that hol ⊂ g is a subalgebra (the Lie algebra of the isotropy group), m ⊂ g
is a hol-submodule with the adjoint action of hol coinciding with the holonomy representation
and, finally,

[X,Y ] = −R(X,Y ) ∈ hol,

for all X,Y ∈ m. In the proof of Proposition 2.2 we showed that hol is represented by commuting
lower triangular matrices. Hence the isotropy algebra is abelian and unipotent.

(
Its dimension

is clearly dim hol = 4n2, since we saw that the vector space hol is isomorphic to the space of
skew-Hermitian 2n×2n matrices.

)
We also see that [g, g] = hol+U ′, where U ′ = C2n ⊂ m = C4n

was defined in the proof of Proposition 2.2. Since hol is abelian and annihilates U ′, we have that
[g, [g, g]] = [m, hol+ U ′]. Using that R(m, U ′) = 0, we arrive at

[g, [g, g]] = [m, hol] = U ′,

which proves that g is 3-step nilpotent, since [g, U ′] = 0. ■

As a consequence of g being locally symmetric, the conformal group of the metric g on R8n

is contained in the group of homotheties,

H =
{
ϕ ∈ Diff

(
R8n

)
| ∃ λ ∈ R : ψ∗g = e2λg

}
.
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This is due to a result in [3, Proposition 2.1] that states that a conformal transformation between
open sets in a semi-Riemannian manifold that is not conformally flat but has parallel Weyl tensor
is a homothety. Since g is locally symmetric it must also have parallel Weyl tensor, so that the
result follows. Hence, we have the following.

Proposition 2.4. The conformal group of
(
R8n, g

)
, where g is the metric in (2.2) defined by

the Kähler potential (2.1) is equal to

R⋉ Isom
(
R8n, g

)
,

where the R-factor is spanned by a one-parameter group of homotheties {ϕs | s ∈ R}. More-
over, g admits an abelian 2-real-parameter family of homothetic transformations induced by the
following diagonal linear maps of C4n,

ϕa,b :=


ea1n 0 0 0
0 eb1n 0 0
0 0 ea+2b1n 0
0 0 0 e2a+b1n

 , a, b ∈ R, (2.6)

that fix the origin (as any linear map) and satisfy ϕ∗a,bg = e2(a+b)g.

Proof. We begin by showing that the metric g admits a homothety that is not an isometry.
Indeed, for each s ∈ R, the linear diagonal transformation

ϕs :=

(
es12n 0
0 e3s12n

)
of C4n induces a homothety of g with ϕ∗sg = e4sg. Composing the homothety ϕs with the
isometry induced by

ψt :=


et1n 0 0 0
0 e−t1n 0 0
0 0 e−t1n 0
0 0 0 et1n

 ,

we obtain the two-parameter family of homotheties in the proposition as

ϕa,b = ϕa+b
2

◦ ψa−b
2
.

This completes the proof. ■

We will now construct a compact conformal manifold with essential conformal transforma-
tions.

Theorem 2.5. Let M̃ = R8n \ {0} and g the Kähler metric on M̃ defined by the potential f
in (2.1) for a given non-zero symmetric matrix (σij). Let a, b > 0 be fixed positive real numbers

and Γa,b be the cyclic group of holomorphic homotheties of (M̃, g) generated by ϕa,b in (2.6).

Then Ma,b = M̃/Γa,b is a compact manifold diffeomorphic to S1×S8n−1 and carries a (non-flat)
conformal structure of signature (4n, 4n) that is locally conformal to a Ricci-flat Kähler metric
and has essential conformal transformations. (The induced integrable complex structure on the
quotient manifold preserves the induced conformal structure.)
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Proof. Since a and b are positive, Ma,b = M̃/Γa,b is a compact manifold that is diffeomorphic
to S1 × S8n−1. In fact, a fundamental domain diffeomorphic to (0, 1)× S8n−1 is given by

D =

{
(x1, x2, x3, x4) ∈ R8n =

(
R2n

)4 | 1 < 4∑
i=1

∥xi∥2 and
4∑

i=1

1

λ2i
∥xi∥2 < 1

}
,

where λ1 = ea, λ2 = eb, λ3 = ea+2b, λ4 = e2a+b, and ∥ · ∥ is the Euclidean norm on R2n. Note
that this is the region enclosed by the standard sphere and an ellipsoid. Identifying the two
boundary components of D (i.e., the sphere and the ellipsoid) via the diffeomorphism induced
by ϕa,b yields a diffeomorphism Ma,b

∼= S1 × S8n−1.
As Γa,b is a group of homotheties, the metric g defines a conformal structure c on Ma,b. This

conformal structure is locally conformally Ricci-flat Kähler and not conformally flat.
For t ∈ R, consider the homotheties

ϕ0,t =


1n 0 0 0
0 et1n 0 0
0 0 e2t1n 0
0 0 0 et1n

 ,

of
(
M̃, g

)
with fixed point set

{(
z1, . . . , zn, 0, . . . , 0

)
| zi ∈ Cn \ {0}

}
. Since the ϕ0,t have

fixed points, they are essential on M̃ = R8n \ {0}, see [10, Proposition 2.5]. In addition, for
each t ∈ R, these homotheties commute with ϕa,b and hence descend to a conformal map ψt

on the quotient Ma,b and are essential on the quotient. Indeed, if there was a metric in the

conformal class on Ma,b for which ψt was an isometry, then this metric would lift to M̃ and

have ϕ0,t as an isometry. This is a contradiction as the ϕ0,t are essential on M̃ . ■

Remark 2.6. The examples constructed in Theorem 2.5 can be generalised to other dimensions
and signatures (4n+ k, 4n+ ℓ) by taking a metric on Rk+ℓ+8n as a product metric of g and the
Euclidean metric of signature (k, ℓ), gEuclid = −

∑k
i=1

(
dxi

)2
+
∑k+ℓ

j=k+1

(
dxj

)2
, to obtain a Ricci-

flat metric. Moreover, when k and ℓ are even, these examples are pseudo-Kähler. The two-
parameter family of homotheties on R8n × Rk,ℓ is then given by

ϕa,b × ea+b1k+ℓ,

where ϕa,b is the homothety in (2.6).

3 Metrics in signature (2n, 2n)
with essential conformal transformations

In this section, we obtain compact conformal manifolds of signature (2n, 2n) with essential
conformal transformations that are locally Ricci-flat and not conformally flat. For this, we
replace in formula (2.4) for the Kähler metric the complex coordinates by real coordinates
xi = zi = zi, for i = 1, . . . , 4n, on R4n, and we assume that the symmetric n × n matrix (σij)
is real. We use the same index conventions as in the previous section. On R4n, we obtain the
metric

g = 2δabdx
adxb+2n +

(
σijd

(
xixj+n

))2
. (3.1)

Writing out the metric as

g = 2δabdx
adxb+2n + σijσkℓ

(
xixkdxj+ndxℓ+n + 2xixk+ndxj+ndxℓ + xi+nxk+ndxjdxℓ

)
,
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one sees that the 4n× 4n matrix (gAB) and its inverse are of the form

(gAB) =

(
gab 12n
12n 0

)
,

(
gAB

)
=

(
0 12n
12n −gab

)
,

with the coefficients gab = g(∂a, ∂b) determined by the above expansion of g.

Remark 3.1. It is important to note that the metric (3.1) is not the Hessian metric that is
obtained from restricting the Kähler potential (2.1) to the real subspace xi = zi = zi and by
assuming σij to be real. Indeed, the Kähler potential, when restricted to zi = zi, becomes

f
(
x1, . . . , x4n

)
= δabx

axb+2n +
(
σ
(
x1, . . . , x2n

))2
= δabx

axb+2n + σijσkℓ
(
xixkxj+nxℓ+n

)
.

The non-vanishing coefficients of the Hessian metric hAB = ∂A∂Bf defined by these coordinates
and f are

ha b+2n = ha+2n b = δab= ga b+2n = ga+2n b,

hjℓ = 2σijσkℓ x
i+nxk+n= 2gjℓ,

hj ℓ+n = 2 (σjℓσik + σijσkℓ)x
i+nxk = hℓ+nj ,

hj+n ℓ+n = 2σijσkℓ x
ixk= 2gj+n ℓ+n.

Note that the coefficients of the type hj ℓ+n are (in general) not proportional to gj ℓ+n =
σijσkℓx

i+nxk. A computation then shows that the Hessian metric defined by (hAB) is in fact
flat, whereas the metric g in (3.1) is (in general) not, as we will see in the following.

Returning to the metric g in (3.1), we note that the vector fields ∂2n+a, a = 1, . . . , 2n, are
parallel and null, so for the Christoffel symbols we have

ΓA
2n+aB = 0, and Γc

AB = 0.

Similar computations as before show that

ΓA
i+n j+n = ΓA

ij = 0,

and that the only non-vanishing Christoffel symbols are

Γk+2n
i j+n =

1

2
(∂igj+n k + ∂j+ngik − ∂kgi j+n) = σijσkℓx

ℓ+n,

and

Γk+3n
i j+n = σijσkℓx

ℓ.

To summarise, for all b ∈ {1, . . . , 2n} and A,B ∈ {1, . . . , 4n}, we have

∇∂A∂b+2n = 0, ∇∂A∂b ∈ Γ(span(∂a+2n)a=1,...,2n). (3.2)

The curvature tensor is determined by the following equations:

∂2n+a R = 0,

R(∂i+n, ∂j+n)∂k = 2
∑
ℓ

σℓ[iσj]k∂ℓ+2n, R(∂i+n, ∂j+n)∂k+n = 0,

R(∂i, ∂j)∂k = 0, R(∂i, ∂j)∂k+n = 2
∑
ℓ

σℓ[iσj]k∂ℓ+3n,

R(∂i, ∂j+n)∂k =
∑
ℓ

σℓiσjk∂ℓ+3n, R(∂i, ∂j+n)∂k+n = −
∑
ℓ

σℓjσik∂ℓ+2n.

Here the square brackets denote skew-symmetrisation, σℓ[iσj]k = 1
2 (σℓiσjk − σℓjσik). With this

information at hand, we obtain the following proposition.
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Proposition 3.2. Let (σij) be any non-degenerate real symmetric n × n matrix. The met-
ric g in (3.1) on R4n is locally symmetric, indecomposable, Ricci-flat, but not flat and hence
not conformally flat. Moreover, the semi-Riemannian manifold

(
R4n, g

)
is an indecomposable

symmetric space.

Proof. With RABCD constant and relations (3.2), the curvature tensor is parallel, so that g is
locally symmetric. The formulas for the curvature tensor also show that g is Ricci-flat, but not
flat. Hence, the metric is not conformally flat. In order to analyse the holonomy algebra we can
assume that (σij) is diagonal. In fact, using a linear transformation in GL(2n,R) ⊂ O(2n, 2n),
we can diagonalise (σij), as we did in Lemma 2.1 for the Hermitian symmetric examples. Using
the diagonal form, it is easy to check that the elements of hol(g) = span(R(∂A, ∂B))A,B=1,...,4n

are of the form(
0 0
A 0

)
,

where A is an arbitrary skew-symmetric 2n × 2n matrix. This easily implies the indecompos-
ability (by a simplified version of the argument used in the proof of Proposition 2.2).

The proof that
(
R4n, g

)
is geodesically complete and hence a globally symmetric space is

analogous to the proof for Proposition 2.2. ■

Results analogous to the ones stated in Proposition 2.3 hold for the indecomposable symmetric
spaces of Proposition 3.2. In fact, the symmetric space is again determined by the general theory
in terms of the algebra of (infinitesimal) transvections

g = hol+m,

where hol = span{R(∂a, ∂b)}a,b=1,...,2n is an abelian unipotent subalgebra of so(2n, 2n) of di-
mension n(2n − 1) and m = span(∂A)A=1,...4n= T0R4n = R4n with the coordinate vector fields
evaluated at the origin). As discussed above, the restriction of the Lie bracket to m×m → hol
is given by (minus) the curvature tensor. We see that a = span(∂a+2n)a=1,...2n ⊂ m is the center
of g and the derived algebra g′ = [g, g] = h+ a is abelian, so that g is 2-step solvable. Moreover,
[g, g′] = a and g is 3-step nilpotent. So we have proven the following proposition.

Proposition 3.3. The group of transvections of the indecomposable symmetric space
(
R4n, g

)
of Proposition 3.2 is 3-step nilpotent with unipotent abelian isotropy. The isotropy algebra is of
dimension n(2n− 1).

As before, the linear maps in (2.6), this time acting on R4n, are homotheties of the met-

ric g and define an essential conformal structure on the compact quotient of M̃ = R4n \ {0}.
Summarising, we obtain the following theorem.

Theorem 3.4. Let Ñ = R4n \ {0} and g the semi-Riemannian metric on Ñ defined by (3.1)
for a given non-zero real symmetric matrix (σij). Let a, b > 0 be fixed positive real num-

bers and Γa,b be the cyclic group of homotheties of (Ñ , g) generated by ϕa,b in (2.6). Then

Na,b = Ñ/Γa,b is a compact manifold diffeomorphic to S1 × S4n−1 and carries a (non-flat) con-
formal structure of signature (2n, 2n) that is locally conformal to a Ricci-flat metric and has
essential conformal transformations.

Again, these examples can be generalised to signatures (2n + k, 2n + ℓ) by taking the semi-
Riemannian product with semi-Euclidean space Rk,ℓ.

For n = 1, the symmetric spaces in Proposition 3.2 are isometric to the examples in [7] of
metrics in signature (2, 2) that yield compact quotients with essential conformal transformations.
These examples are given by the metric

ĝ = 2dy1dy3 + 2dy2dy4 +
(
y2
)2(

dy1
)2
, (3.3)
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defining the structure of a symmetric space on R4. In fact, the geodesic completeness can be
proven as in the proof of Proposition 2.2 by computing the Christoffel symbols and writing out
the geodesic equation while ∇R = 0 is then obtained by computing also the curvature tensor.
The non-vanishing terms of the curvature tensor are

R

(
∂

∂y1
,
∂

∂y2

)
∂

∂y1
= ∂

∂y4
, R

(
∂

∂y1
,
∂

∂y2

)
∂

∂y2
= − ∂

∂y3
.

This is exactly the curvature tensor of the metric g in (3.1) as computed above when n = 1
and σij = 1. Hence with both spaces being symmetric and an isometry of the tangent spaces
mapping the curvature tensors (at the origin) to each other, we conclude that the spaces are
isometric.

4 Conclusion and an open problem

The main result of this article was the construction of counterexamples to the semi-Riemannian
Lichnerowicz conjecture that are locally conformally Kähler in all dimensions ≥ 8. The index of
an indefinite Kähler manifold is even and therefore at least 2. Our locally conformally Kählerian
counterexamples cover the cases of index 4 and higher. It would be interesting to decide if the
Lichnerowicz conjecture holds for locally conformally Kähler manifolds of index 2. That would
be a natural analogue of the Lorentzian Lichnerowicz conjecture in the presence of a complex
structure.

Remark 4.1. The examples of symmetric spaces of signature (2, 2) obtained by specializing
Proposition 3.2 to the case n = 1 happen to be Hermitian symmetric but the 2-parametric
group of homotheties (2.6) acting on R4, which was used to construct the compact quotients Na,b

of R4 \{0} and the essential conformal transformation, does not preserve the complex structure.
At the origin, the complex structure J of the Hermitian symmetric space is given by

J
∂

∂y1
=

∂

∂y2
, J

∂

∂y2
= − ∂

∂y1
, J

∂

∂y3
=

∂

∂y4
, J

∂

∂y4
= − ∂

∂y3
,

in the parametrization (3.3). It is manifestly Hermitian with respect to ĝ0 = 2dy1dy3+2dy2dy4

and invariant under hol. This proves that the symmetric space is Hermitian symmetric.
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