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1 Introduction and preliminaries

In this paper, we will prove a transformation formula for triple q-hypergeometric series, which
includes several interesting special cases. One special case of this transformation allows us to
derive several new identities for Rogers–Hecke type series. Rogers–Hecke type series play an
important role in the study of Ramanujan’s mock-theta functions.

As usual, we use C to denote the set of all complex numbers. Throughout the paper, we shall
use the standard q-notations. Unless stated otherwise, it is assumed that 0 < |q| < 1. Let n be
an arbitrary nonnegative integer and a ∈ C. We define the q-shifted factorial by

(a; q)n =
(a; q)∞
(aqn; q)∞

, where (a; q)∞ =
∞∏
k=0

(
1− aqk

)
.

It is obvious that (a; q)0 = 1, and by a simple calculation we find that for any positive integer n,

(a; q)n = (1− a)(1− aq) · · ·
(
1− aqn−1

)
,

(a; q)−n =
1(

aq−1; q−1
)
n

= (−a)−nqn(n+1)/2(q/a; q)−1
n .

This paper is a contribution to the Special Issue on Basic Hypergeometric Series Associated with Root
Systems and Applications in honor of Stephen C. Milne’s 75th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Milne.html
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For n being an integer or infinity, the multiple q-shifted factorial for a1, a2, . . . , am is defined by

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n.

The basic hypergeometric series or the q-hypergeometric series rϕs(·) are defined as

rϕs

(
a1, . . . , ar
b1, . . . , bs

; q, z

)
=

∞∑
n=0

(a1, . . . , ar; q)n
(q, b1, . . . , bs; q)n

(
(−1)nqn(n−1)/2

)1+s−r
zn.

One of the most important results in the theory of q-hypergeometric series is the q-binomial
theorem, which is stated in the following theorem [5, p. 488].

Theorem 1.1 (q-binomial theorem). For |q| < 1 and |bx| < 1, we have

(ax; q)∞
(bx; q)∞

=
∞∑
n=0

bn(a/b; q)n
(q; q)n

xn.

Setting a = 0 and b = 0 in the above equation respectively, we arrive at the following two
formulas due to Euler:

1

(bx; q)∞
=

∞∑
n=0

(bx)n

(q; q)n
, |bx| < 1,

and

(ax; q)∞ =
∞∑
n=0

(−ax)nqn(n−1)/2

(q; q)n
, |ax| < ∞.

By a simple calculation, it is found that the q-Pfaff–Saalschütz formula [10, equation (1.7.2)]
can be rewritten as

3ϕ2

(
q−n, αqn, αab/q

αa, αb
; q, q

)
=

(q/a, q/b; q)n
(αa, αb; q)n

(
αab

q

)n

. (1.1)

Setting b = 0 in the equation above, we arrive at the q-Chu–Vandermonde summation [10,
equation (1.5.3)]

2ϕ1

(
q−n, αqn

αa
; q, q

)
=

(q/a; q)n(−αa)n

(αa; q)n
qn(n−1)/2. (1.2)

The Rogers 6ϕ5 summation or equivalently, the non-terminating 6ϕ5 summation [10, p. 44] is
also one of the central theorems in q-series, which is stated in the following proposition.

Proposition 1.2. For
∣∣αabc/q2∣∣ < 1, we have

6ϕ5

(
α, q

√
α,−q

√
α, q/a, q/b, q/c√

α,−
√
α, αa, αb, αc

; q,
αabc

q2

)
=

(αq, αab/q, αac/q, αbc/q; q)∞(
αa, αb, αc, αabc/q2; q

)
∞

.

Using the method of the q-exponential differential operator, the following extension of the
Rogers 6ϕ5 summation formula is given by us in [17, Theorem 3], see also [20, Theorem 6.2].

Theorem 1.3. For max
{∣∣αβabc/q2∣∣, ∣∣αγabc/q2∣∣} < 1, we have

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c; q)n

(1− α)(q, αa, αb, αc; q)n

(
αabc

q2

)n

4ϕ3

(
q−n, αqn, β, γ

q/a, q/b, αβγab/q
; q, q

)

=

(
qα, αac/q, αbc/q, αβab/q, αγab/q, αβγabc/q2; q

)
∞(

αa, αb, αc, αβabc/q2, αγabc/q2, αβγab/q; q
)
∞

.
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This summation formula allows us to give a beautiful generating function for the Askey–
Wilson polynomials, which leads us to derive a twelve-parameter q-beta integral in [23] and give
a new proof of the orthogonality of the Askey–Wilson polynomials in [25].

It is generally known that it is a difficult task to obtain triple q-series transformation formulas,
and interesting transformation formulas of triple q-series are rare in the mathematical literature.

In this paper, we will further extend the double q-summation formula in Theorem 1.3 to the
following transformation formula for triple q-hypergeometric series with the help of an extension
of the Sears 4ϕ3 transformation.

Theorem 1.4. We have

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c; q)n

(1− α)(q, αa, αb, αc; q)n

(
αabc

q2

)n

×
n∑

k=0

(q−n, αqn, β, γ; q)kq
k

(q, q/a, q/b, βγuv; q)k
3ϕ2

(
q−k, 1/u, 1/v

β, γ
; q, βγuvqk

)
=

(qα, αac/q, αbc/q, αβab/q, αγab/q, βγcuv/q; q)∞(
αa, αb, αc, αβabc/q2, αγabc/q2, βγuv; q

)
∞

× 3ϕ2

(
q/c, αab/qu, αab/qv

αβab/q, αγab/q
; q, βγcuv/q

)
,

provided the series on both sides of the above equation converge absolutely.

The Kronecker delta function δmn is defined as δmn = 1 when m = n and δmn = 0
when m ̸= n.

Setting qv = αab in Theorem 1.4, upon noting that (1; q)k = δ0k, the 3ϕ2 series on the
right-hand side in the theorem reduces to 1, and thus we obtain the following corollary.

Corollary 1.5. We have

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c; q)n

(1− α)(q, αa, αb, αc; q)n

(
αabc

q2

)n

×
n∑

k=0

(q−n, αqn, β, γ; q)kq
k

(q, q/a, q/b, αβγabu/q; q)k
3ϕ2

(
q−k, 1/u, q/αab

β, γ
; q, αβγabuqk−1

)

=

(
qα, αac/q, αbc/q, αβab/q, αγab/q, αβγabcu/q2; q

)
∞(

αa, αb, αc, αβabc/q2, αγabc/q2, αβγabu/q; q
)
∞

.

When u = 1, the 3ϕ2 series in the above equation reduces to 1 and Corollary 1.5 becomes
Theorem 1.3. Hence, Theorem 1.4 is really an extension of Theorem 1.3.

Setting v = 1 in Theorem 1.4, upon noting that (1; q)k = δ0k, the 3ϕ2 series on the left-hand
side in the theorem becomes 1, we find the following corollary.

Corollary 1.6. We have

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c; q)n

(1− α)(q, αa, αb, αc; q)n

(
αabc

q2

)n

4ϕ3

(
q−n, αqn, β, γ

q/a, q/b, βγu
; q, q

)
=

(qα, αac/q, αbc/q, αβab/q, αγab/q, βγcu/q; q)∞(
αa, αb, αc, αβabc/q2, αγabc/q2, βγu; q

)
∞

× 3ϕ2

(
q/c, αab/qu, αab/q

αβab/q, αγab/q
; q, βγcu/q

)
.
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Setting u = αab/q in the above corollary, upon noting that (1; q)k = δ0k, the 3ϕ2 series on
the right-hand side in the theorem becomes 1, we arrive at Theorem 1.3.

The main tool to prove Theorem 1.4 is the following q-expansion formula, which is equivalent
to [13, Theorem 2] and [18, Theorem 1.1].

Theorem 1.7. If f(x) is an analytic function near x = 0, then we have

f(αa) =

∞∑
n=0

(
1− αq2n

)
(α, q/a; q)n(a/q)

n

(1− α)(q, αa; q)n

n∑
k=0

(q−n, αqn; q)kq
k

(q, qα; q)k
f
(
αqk+1

)
. (1.3)

The rest of the paper is organized as follows. In Section 2, we will provide a proof of
Theorem 1.7. In Section 3, we will give an extension of the Sears 4ϕ3 transformation formula and
provide a proof of Theorem 1.4. In Section 4, we will investigate the application of Theorem 1.3
in number theory, and many results including Andrews’ identities for the sums of three squares
and the sums of three triangular numbers are proved.

The following new transformation formula for q-series is proved in Section 5, it is very useful
in deriving identities for Rogers–Hecke type series.

Theorem 1.8. The following double q-transformation formula holds:

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)
q2n

2−j(j+1)/2

(
q2/a, q2/c; q2

)
n(

q2a, q2c; q2
)
n

(ac)n

=

(
ac, q2; q2

)
∞(

q2a, q2c; q2
)
∞

∞∑
n=0

(
q2/a, q2/c; q2

)
n

(q; q)2n

(
ac

q

)n

. (1.4)

When a = c = 0, Theorem 1.8 immediately reduces to the following identity of Rogers–Hecke
type, which seems to be new,

∞∑
n=0

q2n
2+n

(q; q)2n
=

1(
q2; q2

)
∞

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)
q4n

2+2n−j(j+1)/2. (1.5)

Choosing (a, c) = (1, 0) in Theorem 1.8, we deduce that

∞∑
n=0

(−1)n
qn

2(
q; q2

)
n

=
∞∑
n=0

2n∑
j=0

(−1)n
(
1− q4n+2

)
q3n

2+n−j(j+1)/2. (1.6)

Replacing q by −q in the equation above and simplifying, we conclude that

∞∑
n=0

qn
2(

−q; q2
)
n

=
∞∑
n=0

2n∑
j=0

(−1)n+j(j+1)/2
(
1− q4n+2

)
q3n

2+n−j(j+1)/2.

By making the change (a, c) → (−1, 0) in Theorem 1.8, we obtain that

∞∑
n=0

(
−q2; q2

)
n
qn

2

(q; q)2n
=

(
−q2; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)
q3n

2+n−j(j+1)/2.

Letting (a, c) = (q, 0) in Theorem 1.8 and performing a simple calculation, we deduce that

∞∑
n=0

(−1)n
qn

2+n(
q2; q2

)
n

=

(
q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

2n∑
j=0

(−1)n
(
1 + q2n+1

)
q3n

2+2n−j(j+1)/2.
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If we specialize Theorem 1.8 to the case when a = c = q, we conclude that

∞∑
n=0

(
q; q2

)
n
qn(

q2; q2
)
n

=

(
q; q2

)2
∞(

q2; q2
)2
∞

∞∑
n=0

2n∑
j=0

(
1 + q2n+1

1− q2n+1

)
q2n

2+2n−j(j+1)/2.

It is obvious that when c = q, the right-hand side of (1.4) can be summed by the q-binomial
theorem, namely,

∞∑
n=0

(
q2/a; q2

)
n
an(

q2; q2
)
n

=

(
q2; q2

)
∞(

a; q2
)
∞

.

Hence, setting c = q in (1.4) and then using the equation above, we arrive at the following
remarkable q-formula:(

q2, q2, qa; q2
)
∞(

q, a, q2a; q2
)
∞

=

∞∑
n=0

2n∑
j=0

(
1 + q2n+1

)
q2n

2+n−j(j+1)/2

(
q2/a; q2

)
n
an(

q2a; q2
)
n

. (1.7)

Setting a = q in the equation above and then using the Gauss identity (see, for exam-
ple [15, p. 347])(

q2; q2
)
∞(

q; q2
)
∞

=
∞∑
n=0

qn(n+1)/2

in the resulting equation, we arrive at Andrews’ identity for the sums of three triangular num-
bers [3, equation (1.5)]:( ∞∑

n=0

qn(n+1)/2

)3

=
∞∑
n=0

2n∑
j=0

(
1 + q2n+1

1− q2n+1

)
q2n

2+2n−j(j+1)/2, (1.8)

which implies Gauss’ famous result that every integer is the sum of three triangular numbers.

Putting a = −q and a = 0 respectively in (1.7), we deduce the following two identities:(
q2, q2,−q2; q2

)
∞(

q,−q,−q; q2
)
∞

=
∞∑
n=0

2n∑
j=0

(−1)nq2n
2+2n−j(j+1)/2

and (
q2; q2

)2
∞(

q; q2
)
∞

=
∞∑
n=0

2n∑
j=0

(−1)n
(
1 + q2n+1

)
q3n

2+2n−j(j+1)/2.

Some applications of Corollary 1.6 to Hecke-type series are discussed in Section 6. In partic-
ular, for any nonnegative integer m, we prove that

∞∑
n=0

qn(n+1)/2

(−q; q)n
(
1 + qm+n+1

) =

m∑
n=0

n∑
j=−n

(−1)n+j

(
1− q2n+1

)
(q; q)2m

(q; q)m−n(q; q)m+n+1
q(3n

2+n)/2−j2 . (1.9)

In Section 7, we will prove the following theorem among others.
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Theorem 1.9. For a ̸= q−m, m = 0, 1, 2, . . ., we have

(−a, q; q)∞
(a,−q; q)∞

∞∑
n=0

qn(n−1)/2

(−a; q)n
(1.10)

=
∞∑
n=0

n∑
j=−n

(−1)n+jq(3n
2−n)/2−j2 (q/a; q)na

n

(a; q)n

(
1 + qn +

(
1 + qn+1

)q2n(a− qn+1
)

1− aqn

)
or

(−a, q; q)∞
(a,−q; q)∞

∞∑
n=0

qn(n−1)/2

(−a; q)n
= 2 + 2

∞∑
n=1

(1 + qn)
(q/a; q)na

n

(a; q)n
qn(n−1)/2

−
∞∑
n=1

(
1− q2n

)(q/a; q)n(−a)n

(a; q)n

∑
|j|<n

(−1)jq3n(n−1)/2−j2 . (1.11)

Setting a = q in (1.11), we immediately get the following remarkable identity of Andrews
[1, equation (4.4)] (see also [9, equation (3.62)]):

∞∑
n=0

qn(n−1)/2

(−q; q)n
= 2.

Replacing q by q2 in (1.10) and then taking a = q and a = −q, respectively, in the resulting
equation, we deduce that

∞∑
n=0

qn(n−1)(
−q; q2

)
n

=

(
q,−q2; q2

)
∞(

−q, q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1 + q2n + q4n+1 + q6n+3

)
q3n

2−2j2

and

∞∑
n=0

qn(n−1)(
q; q2

)
n

=
(−q; q)∞
(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1 + q2n − q4n+1 − q6n+3

)
q3n

2−2j2 .

In Section 8, we will derive more identities of Rogers–Hecke type.

2 A q-series expansion formula and evaluation
of some terminating q-series

2.1 A q-series expansion formula

In order to prove Theorem 1.7, we need to review some basic knowledge of q-calculus.
The q-derivative was introduced by L. Schendel [28] in 1878 and F.H. Jackson [11] in 1908,

which is a q-analog of the ordinary derivative.

Definition 2.1. If q is a complex number that is neither 0 nor 1, then for any function f(x) of
one variable, the q-derivative of f(x) with respect to x is defined as

Dqf(x) =
f(x)− f(qx)

x
,

and we further define D0
qf = f, and for n ≥ 1, Dn

q f = Dq

{
Dn−1

q f
}
.

Using mathematical induction, one can easily derive the following formula of Jackson [11],
which writes Dn

q f(x) in terms of f
(
qkx
)
for k = 0, 1, . . . , n.
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Lemma 2.2. For any nonnegative integer n, we have

Dn
q f(x) = x−n

n∑
k=0

(q−n; q)k
(q; q)k

qkf
(
qkx
)
.

Proof of Theorem 1.7. If f(x) is a formal power series in x over the field of complex num-
bers C, then we have the following expansion formula [13, Theorem 2]:

f(αa) =

∞∑
n=0

(
1− αq2n

)
(q/a; q)n(αa)

n

(q, αa; q)n

[
Dn

q {f(x)(x; q)n−1}
]
x=αq

. (2.1)

Using the Jackson formula in Lemma 2.2 and the definition of q-shifted factorial, we have the
following evaluation:

Dn
q {f(x)(x; q)n−1} = x−n

n∑
k=0

(q−n; q)k
(q; q)k

qkf
(
qkx
)(
xqk; q

)
n−1

= x−n(x; q)n−1

n∑
k=0

(
q−n, xqn−1; q

)
k

(q, x; q)k
qkf
(
qkx
)
,

which gives[
Dn

q {f(x)(x; q)n−1}
]
x=αq

=
(α; q)n

(1− α)(qα)n

n∑
k=0

(q−n, αqn; q)kq
k

(q, qα; q)k
f
(
αqk+1

)
.

Combining this equation with (2.1) completes the proof of Theorem 1.7. ■

Theorem 1.7 is a convenient tool for deriving q-identities, and by appropriately choosing f(x)
in Theorem 1.7 we can derive many expansion formulas for q-series. Now we will provide a proof
of Proposition 1.2 using Theorem 1.7.

Proof of Proposition 1.2. In Theorem 1.7, we choose f(x) as follows:

f(x) =
(bx/q, cx/q; q)∞(
x, bcx/q2; q

)
∞

.

A straightforward computation shows that

f(αa) =
(αab/q, αac/q; q)∞(
αa, αabc/q2; q

)
∞

and

f
(
αqk+1

)
=

(αb, αc; q)∞(qα, αbc/q; )k
(qα, αbc/q)∞(αb, αc; q)k

.

Substituting these two equations into the q-expansion formula (1.3), we conclude that

(qα, αab/q, αac/q, αbc/q; q)∞(
αa, αb, αc, αabc/q2; q

)
∞

=

∞∑
n=0

(
1− αq2n

)
(α, q/a; q)n(a/q)

n

(1− α)(αa; q)n

n∑
k=0

(q−n, αqn, αbc/q; q)nq
k

(q, αb, αc; q)n
.

Using the q-Pfaff–Saalschütz summation formula (1.1), it is found that

n∑
k=0

(q−n, αqn, αbc/q; q)nq
k

(q, αb, αc; q)n
=

(q/b, q/c; q)n
(αb, αc; q)n

(
αbc

q

)n

.

Combining the above two equations, we immediately arrive at the Rogers 6ϕ5 summation in
Proposition 1.2. ■
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In order to indicate the power of Theorem 1.7 again, we will use it to derive Watson’s q-
analogue of Whipple’s theorem.

2.2 Watson’s q-analogue of Whipple’s theorem

Watson’s q-analog of Whipple’s theorem (see, for example, [10, equation (2.5.1)]) is stated in
the following theorem.

Theorem 2.3. For any nonnegative integer n, we have

(αq, αab/q; q)n
(αa, αb; q)n

4ϕ3

(
q−n, q/a, q/b, αcd/q

αc, αd, q2/αabqn
; q, q

)
= 8ϕ7

(
q−n, q

√
α,−q

√
α, α, q/a, q/b, q/c, q/d√

α,−
√
α, αa, αb, αc, αd, αqn+1

; q,
α2abcdqn

q2

)
.

Proof. For any nonnegative integer m, if we specialize Theorem 1.7 to the case when f(x) =
(bx/q; q)m/(x; q)m, we immediately have

f(αa) =
(αab/q; q)m
(αa; q)m

and

f
(
αqk+1

)
=

(
αbqk; q

)
m(

αqk+1; q
)
m

=
(αq; q)k(αb; q)k+m

(αb; q)k(qα; q)k+m
.

Now begin to evaluate the inner sum on the right-hand side of the equation in Theorem 1.7. It
is easily seen that

n∑
k=0

(q−n, αqn; q)kq
k

(q, qα; q)k
f
(
αqk+1

)
=

(αb; q)m
(qα; q)m

n∑
k=0

(q−n, αqn, αbqm; q)kq
k(

q, αb, qm+1α; q
)
k

.

Applying the q-Pfaff–Saalschütz summation formula (1.1) to the summation on the right-hand
side of the above equation, we find that

n∑
k=0

(q−n, αqn; q)kq
k

(q, qα; q)k
f
(
αqk+1

)
=

(αb; q)m(q/b, q−m; q)n
(qα; q)m(αb, qm+1α; q)n

(αbqm)n

= (−1)n
(αb; q)m(q/b; q)n(q; q)m(αb)n

(αb; q)n(qα; q)m+n(q; q)m−n
qn(n−1)/2.

Substituting the equation above into Theorem 1.7, we conclude that

(αab/q; q)m
(q, αa, αb; q)m

=
m∑

n=0

(
1− αq2n

)
(α, q/a, q/b; q)n

(1− α)(q, αa, αb; q)n(q; q)m−n(qα; q)m+n

(
−αab

q

)n

qn(n−1)/2.

Let N be a nonnegative integer. Multiplying both sides of the above equation by(
q−N , q/c, q/d; q

)
m
qm(

q2/αcdqN ; q
)
m

and then summing the resulting equation from m = 0 to m = N , and interchanging the order
of summation, we find that

4ϕ3

(
q−N , q/c, q/d, αab/q

αa, αb, q2/αcdqN
; q, q

)
=

N∑
n=0

(
1− αq2n

)
(α, q/a, q/b; q)n

(1− α)(q, αa, αb; q)n

(
−αab

q

)n

qn(n−1)/2

×
N∑

m=n

(
q−N , q/c, q/d; q

)
m
qm

(q; q)m−n

(
q2/αcdqN ; q

)
m
(qα; q)m+n

. (2.2)
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Making the variable change m = n + j and using the q-Pfaff–Saalschütz summation again, we
deduce that

N∑
m=n

(
q−N , q/c, q/d; q

)
m
qm

(q; q)m−n

(
q2/αcdqN ; q

)
m
(qα; q)m+n

=

(
q−N , q/c, q/d; q

)
n
qn

(qα; q)2n
(
q2/αcdqN ; q

)
n

N−n∑
j=0

(
q−N+n, qn+1/c, qn+1/d; q

)
j
qj(

q, q2/αcdqN−n, αq2n+1; q
)
j

=

(
q−N , q/c, q/d; q

)
n
(αcqn, αdqn; q)N−nq

n

(qα; q)2n
(
q2/αcdqN ; q

)
n

(
αq2n+1, αcd/q; q

)
N−n

=

(
q−N , q/c, q/d; q

)
n
(αc, αd; q)N

(qα; q)n+N (αc, αd; q)n(αcd/q; q)N

(
−αcdqN

)n
q−n(n+1)/2.

Substituting the above equation into (2.2) and then interchanging (a, b) and (c, d), and then
change n to k, and finally change N to n, we complete the proof of Watson’s q-analogue of
Whipple’s theorem. ■

2.3 Evaluation of some terminating q-series

This subsection is devoted to the evaluation of some terminating q-series.
Taking q/a = αqn+1 in Theorem 2.3 and simplifying, we find that [19, equation (2.1)]

4ϕ3

(
q−n, αqn+1, q/b, αcd/q

αc, αd, q2/b
; q, q

)
=

(q, αb; q)n(
αq, q2/b; q

)
n

(q
b

)n n∑
j=0

(
1− αq2j

)
(α, q/b, q/c, q/d; q)j

(1− α)(q, αb, αc, αd; q)j

(
αbcd

q2

)j

. (2.3)

Letting α → 1 in the above equation and making a direct computation, we deduce that

4ϕ3

(
q−n, qn+1, q/b, cd/q

c, d, q2/b
; q, q

)
(2.4)

=
(b; q)n(
q2/b; q

)
n

(q
b

)n(
1 +

n∑
j=1

(
1 + qj

)(q/b, q/c, q/d; q)j
(b, c, d; q)j

(
bcd

q2

)j
)
.

Letting b = −q in the equation above and then putting c = d = 0 in the resulting equation
yields

3ϕ2

(
q−n, qn+1,−1

0,−q
; q, q

)
= (−1)n

n∑
j=−n

(−1)jqj
2
. (2.5)

Taking b = d = 0 and c = −q in (2.4), it is found that [19, p. 2088]

2ϕ1

(
q−n, qn+1

−q
; q, 1

)
= (−1)nq−n(n+1)/2

n∑
j=−n

(−1)jqj
2
. (2.6)

(The factor (−1)n is missing in [19, Propositions 2.4–2.6 and Theorem 4.10].)
Replacing q by q2 in (2.4) and then putting b = −q2, c = −q and d = 0 in the above equation,

we immediately deduce that

3ϕ2

(
q−2n, q2n+2,−1

−q,−q2
; q2, q2

)
= (−1)n

n∑
j=−n

(−1)jqj
2
. (2.7)
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Replacing q by q2 in (2.4) and then setting b = −q, c = −q2 and d = 0 in the resulting equation,
we arrive at

3ϕ2

(
q−2n, q2n+2,−q

−q2,−q3
; q2, q2

)
= (−q)n

(
1 + q

1 + q2n+1

) n∑
j=−n

(−1)jqj
2
.

Writing q by q2 in (2.4) and then taking b = 0, c = −q2 and d = −q, we conclude that
[32, equation (2.7)]

3ϕ2

(
q−2n, q2n+2, q

−q,−q2
; q2, 1

)
= (−1)nq−n(n+1)

n∑
j=−n

(−1)jqj
2
.

Letting b → ∞ in (2.3), we arrive at the following theorem [19, Proposition 2.3].

Theorem 2.4. The following transformation formula for terminating q-series holds:

3ϕ2

(
q−n, αqn+1, αcd/q

αc, αd
; q, q

)
= (−α)nqn(n+1)/2 (q; q)n

(qα; q)n

n∑
j=0

(−1)j
(
1− αq2j

)
(α, q/c, q/d; q)j

(1− α)(q, αc, αd; q)j

(
cd

q

)j

q−j(j+1)/2. (2.8)

Letting b → ∞ and d → ∞ in Theorem 2.3 and then setting αc = q−n, we arrive at the
following theorem of Andrews’s theorem [3, equation (4.6)], which includes Shank’s finite version
of Euler’s pentagonal number theorem [29] and Shank’s finite version of Gauss’s theorem [30] as
special cases.

Theorem 2.5. We have

(qα; q)n
(αa; q)n

(
a

q

)n n∑
j=0

(q/a; q)j(αq
n)−j

(q; q)j
=

n∑
j=0

(
1− αq2j

)
(α, q/a; q)j(a/α)

jq−j2−j

(1− α)(q, αa; q)j
. (2.9)

Theorem 2.6. We have

3ϕ2

(
q−n, αqn+1, q

q2/a, 0
; q, q

)
= qn

2+2n (q, αa; q)n(
qα, q2/a; q

)
n

(α
a

)n n∑
j=0

(
1− αq2j

)
(α, q/a; q)j(a/α)

jq−j2−j

(1− α)(q, αa; q)j
.

Proof. With the help of the finite q-binomial theorem and the q-Chu–Vandermonde summation,
we [18, Lemma 4.1] proved that

3ϕ2

(
q−n, αqn, q

qc, 0
; q, q

)
= αnqn

2 (q; q)n
(qc; q)n

n∑
j=0

(c; q)jα
−jqj(1−n)

(q; q)j
.

Replacing α by qα and c by q/a in the equation above and then comparing the resulting equation
with (2.9), we complete the proof of Theorem 2.6. ■

Setting a = −q in Theorem 2.6 and then letting α → 1, we arrive at the following identity,
which is equivalent to [18, equation (6.1)]:

3ϕ2

(
q−n, qn+1, q

−q, 0
; q, q

)
= (−1)nqn

2+n
n∑

j=−n

(−1)jq−j2 . (2.10)
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Letting α → 1 and a → ∞ in Theorem 2.6, we get the following identity, which is equivalent
to [18, equation (6.2)]:

3ϕ2

(
q−n, qn+1, q

0, 0
; q, q

)
= (−1)nq3n(n+1)/2

n∑
j=−n

(−1)jq−(3j2+j)/2.

Taking a = −q in Theorem 2.6 and then letting α → q−1 and making some calculation, we
deduce the following identity, which is equivalent to the first identity of [18, Lemma 6.1]:

3ϕ2

(
q−n, qn, q

−q, 0
; q, q

)
= (−1)n

qn
2

1 + qn

(
qn

n∑
j=−n

(−1)jq−j2 −
n−1∑

j=−n+1

(−1)jq−j2

)
. (2.11)

Letting α → q−1 and a → ∞ in Theorem 2.6 and making some calculation, we deduce the
following identity, which is equivalent to the second identity of [18, Lemma 6.1]:

3ϕ2

(
q−n, qn, q

0, 0
; q, q

)
= (−1)n

q(3n
2−n)/2

1 + qn

(
q2n

n∑
j=−n

(−1)jq−(3j2+j)/2 −
n−1∑

j=−n+1

(−1)jq−(3j2+j)/2

)
. (2.12)

Replacing q by q2 in Theorem 2.6 and then letting α → 1 and setting a = q, we find that

3ϕ2

(
q−2n, q2n+2, q2

q3, 0
; q2, q2

)
=

(1− q)(
1− q2n+1

)q2n2+3n
n∑

j=−n

q−2j2−j

=
(1− q)(

1− q2n+1
)q2n2+3n

2n∑
j=0

q−j(j+1)/2. (2.13)

Theorem 2.7. The following q-transformation formula holds:

n∑
k=0

(q−n, qn; q)kq
k

(q/a, q/b; q)k
= (−1)nqn(n+1)/2(1− qn)

(a, b; q)n
(q/a, q/b; q)n

(
1

ab

)n

×

{
1− ab

(1− a)(1− b)
+

(1/a, 1/b; q)n
(1− qn)(a, b; q)n

(−ab)nq−n(n−1)/2

+ (1− ab)
n−1∑
j=1

(1 + qj)(1/a, 1/b; q)j
(a, b; q)j+1

(−ab)jq−j(j−1)/2

}
.

Proof. Setting β = q and γ = 0 in the Sears 4ϕ3 transformation in Proposition 3.6, we deduce
that

3ϕ2

(
q−n, αqn, αab

αa, αb
; q, q

)
=

(q/a, q/b; q)n
(αa, αb; q)n

(
αab

q

)n n∑
k=0

(q−n, αqn; q)kq
k

(q/a, q/b; q)k
.

Replacing α by α/q and (c, d) by (qa, qb) in Theorem 2.4, we conclude that

n∑
k=0

(q−n, αqn; q)kq
k

(q/a, q/b; q)k
= (−1)nqn(n+1)/2 (q, αa, αb; q)n

(α, q/a, q/b; q)n

(
1

ab

)n

×
n∑

j=0

(
1− αq2j−1

)
(α/q, 1/a, 1/b; q)j

(1− α/q)(q, αa, αb; q)j
(−ab)jq−j(j−1)/2.

Combining the above two equations, we complete the proof of Theorem 2.7. ■



12 Z.-G. Liu

Replacing q by q2 in Theorem 2.7 and then taking a = −1 and b = −q, we can deduce that

(1 + q2n)
n∑

k=0

(
q−2n, q2n; q2

)
k
q2k(

−q,−q2; q2
)
k

= (−1)nqn
2

(
q2n

n∑
j=−n

(−1)jq−j2 −
n−1∑

j=−n+1

(−1)jq−j2

)
. (2.14)

Setting a = q1/2 and b = −q1/2 in Theorem 2.7 and simplifying, we arrive at [4, equation (5.3)]

3ϕ2

(
q−n, qn, q

q1/2,−q1/2
; q, q

)
= qn(n−1)/2

qn
n∑

j=0

q−j(j+1)/2 −
n−1∑
j=0

q−j(j+1)/2

 .

3 The q-exponential differential operator
and the Sears 4ϕ3 transformation

3.1 Some basic properties of the q-exponential differential operator

Now we give the definitions of the q-partial derivative and q-partial differential equations [21].

Definition 3.1. Given a multivariable function f(x1, x2, . . . , xn), the q-partial derivative of f
with respect to xj , j = 1, 2, . . . , n, is its q-derivative with respect xj , regarding other variables as
constants, which is denoted by ∂q,xjf . The formula for the q-partial derivative of f is given by

∂q,xjf =
f(x1, . . . , xj , . . . , xn)− f(x1, . . . , xj−1, qxj , xj+1, . . . , xn)

xj
.

Definition 3.2. A q-partial differential equation is an equation that contains unknown multi-
variable functions and their q-partial derivatives.

The concept of q-partial differential equations is quite useful in q-analysis [8, 20, 21, 22].
Based on ∂q,x, we can construct the q-exponential differential operator T (y∂q,x) as follows:

T (y∂q,x) =
∞∑
n=0

(y∂q,x)
n

(q; q)n
.

One of the most important results of the q-exponential differential operational operator is
the following operator identity [16, equation (3.1)].

Proposition 3.3. For max{|as|, |at|, |au|, |bs|, |bt|, |bu|, |abstu/v|} < 1, we have

T (b∂q,a)

{
(av; q)∞

(as, at, au; q)∞

}
=

(av, bv, abstu/v; q)∞
(as, at, au, bs, bt, bu; q)∞

3ϕ2

(
v/s, v/t, v/u

av, bv
; q,

abstu

v

)
.

The following proposition can be found in [20, Lemma 13.2] and its proof is very short. For
completeness, we will repeat the proof here.

Proposition 3.4. Suppose that f(x, y) is a two-variable analytic function near (x, y) = (0, 0).
Then f(x, y) = T (y∂q,x)f(x, 0) if and only if ∂q,xf = ∂q,yf .
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Proof. If f(x, y) = T (y∂q,x)f(x, 0), then by a direct computation we find that ∂q,xf = ∂q,yf =
T (y∂q,x)∂q,xf(x, 0). Conversely, if f is a two-variable analytic function near (x, y) = (0, 0),
satisfying ∂q,xf = ∂q,yf, then we may assume that

f(x, y) =
∞∑
n=0

An(x)
yn

(q; q)n
.

Substituting the equation into the q-partial differential equation ∂q,xf = ∂q,yf , we easily find that

An(x) = ∂q,xAn−1(x) = · · · = ∂n
q,xA0(x).

It is easily seen that A0(x) = f(x, 0). Thus, we conclude that

f(x, y) =

∞∑
n=0

∂n
q,xf(x, 0)

yn

(q; q)n
= T (y∂q,x)f(x, 0).

This completes the proof of Proposition 3.4. ■

It is proved [20, Proposition 13.4] that if f(x) is analytic near x = 0, then T (y∂q,x)f(x) is
analytic near (x, y) = (0, 0).

Using Proposition 3.4, we [20, Proposition 13.9] proved the following proposition, which
allows us to act an infinite series term by term with T (y∂q,x).

Proposition 3.5. Let {fn(x)} be a sequence of analytic functions near x = 0 such that the
series

∞∑
n=0

fn(x)

converges uniformly to an analytic function f(x) near x = 0, and the series

∞∑
n=0

T (y∂q,x)fn(x)

converges uniformly to an analytic function f(x, y) near (x, y) = (0, 0). Then we have f(x, y) =
T (y∂q,x)f(x), or

T (y∂q,x)

{ ∞∑
n=0

fn(x)

}
=

∞∑
n=0

T (y∂q,x)fn(x).

Proof. If we use fn(x, y) to denote T (y∂q,x)fn(x), then by Proposition 3.4, we find that
∂q,xfn(x, y) = ∂q,yfn(x, y). It follows that ∂q,xf(x, y) = ∂q,yf(x, y). Thus, using Proposition 3.4
again, we have f(x, y) = T (y∂q,x)f(x, 0) = T (y∂q,x)f(x). ■

A multivariable form of Proposition 3.5 is proved in [27], and a multiple q-exponential differ-
ential operator identity is derived in [26].

3.2 An extension of the Sears 4ϕ3 transformation formula

One of the fundamental formulas in the theory of q-series is the Sears 4ϕ3 transformation formula
[10, p. 49, equation (2.10.4)], which is stated in the following proposition.
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Proposition 3.6 (the Sears 4ϕ3 transformation formula). We have

4ϕ3

(
q−n, αqn, αβab/q, αγab/q

αa, αb, αβγab/q
; q, q

)
=

(q/a, q/b; q)n
(αa, αb; q)n

(
αab

q

)n

4ϕ3

(
q−n, αqn, β, γ

q/a, q/b, αβγab/q
; q, q

)
.

In this paper, we will extend the Sears 4ϕ3 transformation formula to the following theorem
by using Propositions 3.3 and 3.5.

Theorem 3.7. The following transformation formula for double q-series holds:

n∑
k=0

(q−n, αqn, αβab/q, αγab/q; q)kq
k

(q, αa, αb, βγuv; q)k
Ak

=
(q/a, q/b; q)n
(αa, αb; q)n

(
αab

q

)n n∑
k=0

(q−n, αqn, β, γ; q)kq
k

(q, q/a, q/b, βγuv; q)k
Bk,

where Ak and Bk are given by

Ak = 3ϕ2

(
q−k, αab/qu, αab/qv

αβab/q, αγab/q
; q, βγuvqk

)
, Bk = 3ϕ2

(
q−k, 1/u, 1/v

β, γ
; q, βγuvqk

)
.

Note that when u = 1, Bk reduces to 1 and when v = αab/q, Ak becomes 1; thus we can
take u = 1 and v = αab/q in Theorem 3.7 to obtain the Sears 4ϕ3 transformation formula.
Hence, Theorem 3.7 is an extension of the Sears 4ϕ3 transformation formula. Now we prove
Theorem 3.7.

Proof. Setting γ = 0 in the Sears 4ϕ3 transformation in Proposition 3.6, we obtain the following
transformation:

3ϕ2

(
q−n, αqn, αβab/q

αa, αb
; q, q

)
=

(q/a, q/b; q)n
(αa, αb; q)n

(
αab

q

)n

3ϕ2

(
q−n, αqn, β

q/a, q/b
; q, q

)
.

Using the identity, (z; q)∞ = (z; q)k
(
zqk; q

)
∞, we can rewrite this equation as

n∑
k=0

(q−n, αqn; q)kq
k

(q, αa, αb; q)k

(αβab/q; q)∞
(αβabqk/q; q)∞

=
(q/a, q/b; q)n
(αa, αb; q)n

(
αab

q

)n n∑
k=0

(q−n, αqn; q)kq
k

(q, q/a, q/b; q)k

(β; q)∞
(βqk; q)∞

.

Multiplying both sides of the equation by 1/(βu, βv; q)∞, we arrive at

n∑
k=0

(q−n, αqn; q)kq
k

(q, αa, αb; q)k

(αβab/q; q)∞
(αβabqk/q, βu, βv; q)∞

=
(q/a, q/b; q)n
(αa, αb; q)n

(
αab

q

)n n∑
k=0

(q−n, αqn; q)kq
k

(q, q/a, q/b; q)k

(β; q)∞
(βqk, βu, βv; q)∞

.

Both sides of this equation are finite series, and each term of these two series is analytic at β = 0.
Hence, we can apply T (γ∂q,β) to both sides of the above equation to obtain

n∑
k=0

(q−n, αqn; q)kq
k

(q, αa, αb; q)k
T (γ∂q,β)

{
(αβab/q; q)∞(

αβabqk/q, βu, βv; q
)
∞

}

=
(q/a, q/b; q)n
(αa, αb; q)n

(
αab

q

)n n∑
k=0

(q−n, αqn; q)kq
k

(q, q/a, q/b; q)k
T (γ∂q,β)

{
(β; q)∞(

βqk, βu, βv; q
)
∞

}
. (3.1)
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With the help of the q-exponential operator identity in Proposition 3.3, we have

T (γ∂q,β)

{
(αβab/q; q)∞(

αβabqk/q, βu, βv; q
)
∞

}
=

(
αβab/q, αγab/q, βγuvqk; q

)
∞(

αβabqk/q, βu, βv, αγabqk/q, γu, γv; q
)
∞

3ϕ2

(
q−k, αab/qu, αab/qv

αβab/q, αγab/q
; q, βγuvqk

)
and

T (γ∂q,β)

{
(β; q)∞(

βqk, βu, βv; q
)
∞

}
=

(
β, γ, βγuvqk; q

)
∞(

βqk, βu, βv, γqk, γu, γv; q
)
∞

3ϕ2

(
q−k, 1/u, 1/v

β, γ
; q, βγuvqk

)
.

Substituting these two equations into (3.1) and simplifying, we complete the proof of Theo-
rem 3.7. ■

3.3 The proof of Theorem 1.4

Proof. For convenience, we replace a by c in Theorem 1.7 to conclude that

f(αc) =

∞∑
n=0

(
1− αq2n

)
(α, q/c; q)n(c/q)

n

(1− α)(q, αc; q)n

n∑
k=0

(q−n, αqn; q)kq
k

(q, qα; q)k
f
(
αqk+1

)
. (3.2)

Using the ratio test, we can easily show that the following function is an analytic function of x
at x = 0:

(ax/q, bx/q, βγuvx/qα; q)∞(
x, βabx/q2, γabx/q2; q

)
∞

3ϕ2

(
qα/x, αab/qu, αab/qv

αβab/q, αγab/q
; q,

βγuvx

qα

)
.

Hence, we can replace f(x) by this function in (3.2). It is easily seen that

f(αc) =
(αac/q, αbc/q, βγuvc/q; q)∞(
αc, αβabc/q2, αγabc/q2; q

)
∞

3ϕ2

(
q/c, αab/qu, αab/qv

αβab/q, αγab/q
; q,

βγuvc

q

)
and

f
(
αqk+1

)
=

(αa, αb, βγuv; q)∞(qα, αβab/q, αγab/q; q)k
(qα, αβab/q, αγab/q; q)∞(αa, αb, βγuv; q)k

× 3ϕ2

(
q−k, αab/qu, αab/qv

αβab/q, αγab/q
; q, βγuvqk

)
.

It follows that

(αq, αac/q, αbc/q, αβab/q, αγab/q, βγcuv/q; q)∞(
αa, αb, αc, αβabc/q2, αγabc/q2, βγuv; q

)
∞

3ϕ2

(
q/c, αab/qu, αab/qv

αβab/q, αγab/q
; q,

βγcuv

q

)
=

∞∑
n=0

(
1− αq2n

)
(α, q/c; q)n(c/q)

n

(1− α)(q, αc; q)n

n∑
k=0

(q−n, αqn, αβab/q, αγab/q; q)kq
k

(q, αa, αb, βγuv; q)k

× 3ϕ2

(
q−k, αab/qu, αab/qv

αβab/q, αγab/q
; q, βγuvqk

)
.

Using the extension of the Sears 4ϕ3 transformation in Theorem 3.7 to the right-hand side of
the above equation, we complete the proof of the theorem. ■
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4 Some applications of Theorem 1.3 in number theory

4.1 Some preliminaries

Setting c = 0 and letting α → 1 in Proposition 1.2, we find that

(q, ab/q; q)∞
(a, b; q)∞

= 1 +

∞∑
n=1

(−1)n(1 + qn)(ab)nqn(n−3)/2 (q/a, q/b; q)n
(a, b; q)n

. (4.1)

Setting a = b = 0 in the above equation, we immediately arrive at Euler’s pentagonal theo-
rem [10, equation (15)]

(q; q)∞ = 1 +
∞∑
n=1

(−1)n(1 + qn)q(3n
2−n)/2.

Putting b = 0 and a = −q in (4.1) and simplifying, we arrive at the following identity due to
Gauss [15, p. 347]:

(q; q)∞
(−q; q)∞

= 1 + 2

∞∑
n=1

(−1)nqn
2
=

∞∑
n=−∞

(−1)nqn
2
. (4.2)

Replacing q by q2 in (4.1) and then putting a = q and b = 0, we are led to the Gauss iden-
tity [15, p. 347](

q2; q2
)
∞(

q; q2
)
∞

= 1 +

∞∑
n=1

(
1 + q2n

)
q2n

2−n =

∞∑
n=0

qn(n+1)/2. (4.3)

Applying the Sears 4ϕ3 transformation formula in Proposition 3.6 to Theorem 1.3, we imme-
diately obtain the following summation formula for q-series.

Theorem 4.1. For max
{∣∣αβabc/q2∣∣, ∣∣αγabc/q2∣∣} < 1, we have

∞∑
n=0

(
1− αq2n

)
(α, q/c; q)n(c/q)

n

(1− α)(q, αc; q)n
4ϕ3

(
q−n, αqn, αβab/q, αγab/q

αa, αb, αβγab/q
; q, q

)

=

(
qα, αac/q, αbc/q, αβab/q, αγab/q, αβγabc/q2; q

)
∞(

αa, αb, αc, αβabc/q2, αγabc/q2, αβγab/q; q
)
∞

.

Next, we will discuss some applications of this formula in number theory and Rogers–Hecke
type series.

4.2 Andrews’ identity for the sums of three squares

Setting β = q2/ab, γ = 0 and letting α → 1 in Theorem 4.1, we conclude that

1 +

∞∑
n=1

(1 + qn)
(q/c; q)n(c/q)

n

(c; q)n
3ϕ2

(
q−n, qn, q

a, b
; q, q

)
=

(q, q, ac/q, bc/q; q)∞
(a, b, c, c; q)∞

. (4.4)

Using the q-Chu–Vandermonde summation (1.2), we easily deduce that

2ϕ1

(
q−n, qn

−q
; q, q

)
=

(
−q1−n; q

)
n
qn

2

(−q; q)n
=

2qn(n+1)/2

1 + qn
. (4.5)
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Taking a = c = −q, b = q in (4.4) and then using the equation above, we obtain the following
well-known identity for the sums of two squares (see, for example [2, equation (3.35)]):( ∞∑

n=−∞
(−1)nqn

2

)2

= 1 + 4

∞∑
n=1

(−1)n
qn(n+1)/2

1 + qn
.

Using the q-Pfaff–Saalschütz summation formula (1.1), it is found that

3ϕ2

(
q−n, qn, q

−q,−q
; q, q

)
=

(−1; q)2nq
n

(−q; q)2n
=

4qn

(1 + qn)2
.

Putting a = b = c = −q in (4.4) and then substituting the above equation into the resulting
equation, we arrive at the Jacobi identity for the sums of four squares (see, for example, [2,
equation (3.40)])( ∞∑

n=−∞
(−1)nqn

2

)4

= 1 + 8
∞∑
n=1

(−1)n
qn

(1 + qn)2
.

Upon putting b = 0, a = c = −q in (4.4), we immediately conclude that

(q; q)3∞
(−q; q)3∞

= 1 + 2
∞∑
n=1

(−1)n 3ϕ2

(
q−n, qn, q

−q, 0
; q, q

)
.

By a direct computation, it is found that (2.11) can be written as follows [19, equation (3.10)]:

3ϕ2

(
q−n, qn, q

−q, 0
; q, q

)
=

2qn

1 + qn
+ (−1)n−1 (1− qn)

(1 + qn)

∑
|j|<n

(−1)jqn
2−j2 .

Combining the above two equations and using the Gauss identity (4.2), we arrive at Andrews’
identity for the sum of three squares [3, equation (5.16)]( ∞∑

n=−∞
(−1)nqn

2

)3

= 1 + 4
∞∑
n=1

(−1)n
qn

1 + qn
− 2

∞∑
n=1

1− qn

1 + qn

∑
|j|<n

(−1)jqn
2−j2 .

It should be pointed out that based on this identity, D. Krammer [12] deduced the classical
result of Legendre that a natural number is a sum of three squares if and only if it is not of the
form 4k(8l + 7).

Letting a = b = 0 in (4.4) and then using (2.12), we obtain

(q; q)2∞
(c; q)2∞

=
∞∑
n=0

(−1)n
(
1− q2n+1

)(q/c; q)ncn
(c; q)n+1

n∑
j=−n

(−1)jq(3n
2+n)/2−(3j2+j)/2. (4.6)

When c = 0, the above equation becomes [13, equation (1.2)]

(q; q)2∞ =

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q2n

2+n−(3j2+j)/2.

Replacing q by q2 in (4.6) and then setting c = q using the Gauss identity (4.3), we conclude that( ∞∑
n=0

qn(n+1)/2

)2

=

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1 + q2n+1

)
q3n

2+2n−3j2−j .



18 Z.-G. Liu

Putting c = 0 in (4.4) gives

1 +

∞∑
n=1

(−1)nqn(n−1)/2 (1 + qn)3ϕ2

(
q−n, qn, q

a, b
; q, q

)
=

(q; q)2∞
(a, b; q)∞

.

Replacing q by q2 in the equation above and then putting a = −q, b = −q2 and finally us-
ing (2.14), we obtain [13, equation (1.7)]

(q; q)∞
(
q2; q2

)
∞ =

∞∑
n=0

n∑
j=−n

(
1− q2n+1

)
(−1)jq2n

2+n−j2 .

Setting a = 0 and b = −q in (4.4) and then using (2.11) in the resulting equation, we can
find that for c ̸= q−m, m = 0, 1, 2, . . . ,

(q, q,−c; q)∞
(c, c,−q; q)∞

=
∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)(q/c; q)ncn
(c; q)n+1

qn
2−j2 . (4.7)

Letting c = 0 in (4.7), we immediately arrive at the following identity:

(q; q)2∞
(−q; q)∞

=

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q(3n

2+n)/2−j2 .

Replacing q by q2 in (4.7) and then putting c = −q, we conclude that

(q; q)∞
(
q2; q2

)
∞

(−q; q)∞
(
−q; q2

)
∞

=
∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q2n

2+n−2j2 .

Setting α = q and γ = 0 in Theorem 4.1, we immediately arrive at

∞∑
n=0

(q/c; q)n(c/q)
n

(qc; q)n

(
1− q2n+1

)
3ϕ2

(
q−n, qn+1, βab

qa, qb
; q, q

)
=

(q, ac, bc, βab; q)∞
(qa, qb, qc, βabc/q; q)∞

. (4.8)

Replacing q by q2 in (4.8) and then taking β = q2/ab, we deduce that

∞∑
n=0

(
q2/c; q2

)
n

(
c/q2

)n(
q2c; q2

)
n

(
1− q4n+2

)
3ϕ2

(
q−2n, q2n+2, q2

q2a, q2b
; q2, q2

)

=

(
q2, ac, bc, q2; q2

)
∞(

q2a, q2b, qc2, c; q2
)
∞
. (4.9)

Taking a = q, b = 0 in the equation above and then combining the resulting equation with (2.13),
we find that(

q2, q2, qc; q2
)
∞(

q, c, q2c; q2
)
∞

=
∞∑
n=0

2n∑
j=0

(
1 + q2n+1

)
q2n

2+n−j(j+1)/2

(
q2/c; q2

)
n
cn(

q2c; q2
)
n

. (4.10)

Letting c = q in the equation above, we immediately arrive at Andrews’ identity for sums of
three triangular numbers (1.8).

Taking c = 0 and c = −q respectively in (4.10), we immediately deduce that(
q2; q2

)2
∞

(q; q)∞
=

∞∑
n=0

2n∑
j=0

(−1)n
(
1 + q2n+1

)
q3n

2+2n−j(j+1)/2,
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and

(q; q)∞
(
q4; q4

)3
∞(

q2; q2
)2
∞

=

∞∑
n=0

2n∑
j=0

(−1)nq3n
2+2n−j(j+1)/2.

Using the q-Pfaff–Saalschütz summation formula (1.1), it is found that

3ϕ2

(
q−2n, q2n+2, q2

q3, q3
; q2, q2

)
=

(1− q)2q2n(
1− q2n+1

)2 . (4.11)

Choosing a = b = q in (4.9) and then combining the resulting equation with (4.11), we arrive
at the following interesting q-identity:(

q2, q2, qc, qc; q2
)
∞(

q, q, c, q2c; q2
)
∞

=
∞∑
n=0

(
1 + q2n+1

)(
1− q2n+1

) (q2/c; q2)ncn(
q2c; q2

)
n

. (4.12)

Putting c = −q and c = 0 respectively in the above equation, we find the following two
generating functions for the sums of two triangular numbers:( ∞∑

n=0

qn(n+1)

)2

=
∞∑
n=0

(−1)nqn

1− q2n+1
(4.13)

and ( ∞∑
n=0

qn(n+1)/2

)2

=
∞∑
n=0

(−1)n
(
1 + q2n+1

)
qn

2+n(
1− q2n+1

) .

Identity (4.13) can be found in [6, p. 397, Entry 18.2.4], and can also be found in [24, Theo-
rem 3.8].

Putting c = q in (4.12), we can arrive at the following identity for the sums of four triangular
numbers, which is similar to Andrews’ formula for the sums of three triangular numbers:( ∞∑

n=0

qn(n+1)/2

)4

=

∞∑
n=0

(
1 + q2n+1

)
qn(

1− q2n+1
)2 . (4.14)

We can derive the Legendre formula for the sums of four triangular numbers from (4.14) through
some q-series manipulations [6, Entry 18.2.5].

In their interesting paper, Chen and Wang [9, equation (3.43)] prove that

3ϕ2

(
q−n, qn+1, q

q3/2,−q3/2
; q, q

)
=

(
1− q

1− q2n+1

)
q(n

2+3n)/2
n∑

j=−n

q−j(j+1)/2. (4.15)

Let us choose a = q1/2, b = −q1/2 and β = −1 in (4.8) and use (4.15). Then we deduce that
for |c| < 1,

(q; q)2∞
(
qc2; q2

)
∞

(c, qc; q)∞
(
q; q2

)
∞

=

∞∑
n=0

n∑
j=−n

(q/c; q)nc
n

(qc; q)n
qn(n+1)/2−j(j+1)/2.

When c = 0, the above equation becomes

(q; q)2∞(
q; q2

)
∞

=

∞∑
n=0

n∑
j=−n

(−1)nqn(n+1)−j(j+1)/2.
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5 The proof of Theorem 1.8

5.1 An application of the Sears 3ϕ2 transformation

The Sears 3ϕ2 transformation formula states that (see, for example, [14, Theorem 3])

3ϕ2

(
a1, a2, a3
b1, b2

; q,
b1b2

a1a2a3

)
=

(b2/a3, b1b2/a1a2; q)∞
(b2, b1b2/a1a2a3; q)∞

3ϕ2

(
b1/a1, b1/a2, a3
b1, b1b2/a1a2

; q,
b2
a3

)
.

By making use of the above equation, we immediately conclude that

3ϕ2

(
q/c, αab/qu, αab/q

αβab/q, αγab/q
; q, βγcu/q

)
=

(
αγabc/q2, βγu; q

)
∞

(αγab/q, βγcu/q; q)∞
3ϕ2

(
q/c, βu, β

αβab/q, βγu
; q,

αγabc

q2

)
.

Combining this equation with Corollary 1.6, we are led to the following theorem.

Theorem 5.1. For max
{∣∣αβabc/q2∣∣, ∣∣αγabc/q2∣∣} < 1, we have

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c; q)n

(1− α)(q, αa, αb, αc; q)n

(
αabc

q2

)n

4ϕ3

(
q−n, αqn, β, γ

q/a, q/b, βγu
; q, q

)
=

(qα, αac/q, αbc/q, αβab/q; q)∞(
αa, αb, αc, αβabc/q2; q

)
∞

3ϕ2

(
q/c, βu, β

αβab/q, βγu
; q,

αγabc

q2

)
.

Theorem 5.1 includes the following well-known result [10, equation (3.8.9)] and [19, Theo-
rem 1.8] as a special case, from which one can derive the Rogers–Ramanujan identities.

Proposition 5.2. For |αac/q| < 1, we have the q-transformation formula

(qα, αac/q; q)∞
(αa, αc; q)∞

3ϕ2

(
q/a, q/c, αbd/q

αb, αd
; q,

αac

q

)
=

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c, q/d; q)n

(1− α)(q, αa, αb, αc, αd; q)n

(
−α2abcd

q2

)n

qn(n−1)/2.

Proof. Letting β = q/a, γ = q/b and u = αabd/q2 in Theorem 5.1, we immediately deduce
that

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c; q)n

(1− α)(q, αa, αb, αc; q)n

(
αabc

q2

)n

2ϕ1

(
q−n, αqn

αd
; q, q

)
=

(qα, αac/q; q)∞
(αa, αc; q)∞

3ϕ2

(
q/a, q/c, αbd/q

αb, αd
; q,

αac

q

)
.

Using the q-Chu–Vandermonde summation formula in (1.2), we deduce that

2ϕ1

(
q−n, αqn

αd
; q, q

)
=

(q/d; q)n
(αd; q)n

(−αd)nqn(n−1)/2.

Combining the above two equations completes the proof of Proposition 5.2. ■
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5.2 The proof of Theorem 1.8

Proof. Setting α = q, u = at and β = q/a in Theorem 5.1, we immediately deduce that
∞∑
n=0

(
1− q2n+1

)(q/a, q/b, q/c; q)n
(qa, qb, qc; q)n

(
abc

q

)n

3ϕ2

(
q−n, qn+1, γ

q/b, qγt
; q, q

)
=

(q, ac; q)∞
(qa, qc; q)∞

3ϕ2

(
q/a, q/c, qt

qb, qγt
; q,

abcγ

q

)
. (5.1)

Replacing q by q2 and then putting t = 0, b = q−1, γ = q2 in the resulting equation gives
∞∑
n=0

(
1− q4n+2

)(q2/a, q2/c; q2)
n(

q2a, q2c; q2
)
n

(
ac

q3

)n(1− q2n+1

1− q

)
3ϕ2

(
q−2n, q2n+2, q2

q3, 0
; q2, q2

)

=

(
q2, ac; q2

)
∞(

q2a, q2c; q2
)
∞

2ϕ1

(
q2/a, q2/c

q
; q2,

ac

q

)
.

Substituting (2.13) into the equation above and simplifying, we complete the proof of Theo-
rem 1.8. ■

By making use of (5.1), we can also prove the following theorem.

Theorem 5.3. We have
∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qj

2−n

(
q2/a, q2/c; q2

)
n
(ac)n(

q2a, q2c; q2
)
n

=

(
q2, ca; q2

)
∞(

q2a, q2c; q2
)
∞

∞∑
n=0

(
q2/a, q2/c; q2

)
n
(ac/q)n

(−q; q)2n
(
1 + q2n+1

) .

Proof. Replacing q by q2 in (5.1) and then putting b = −q, t = 1 and γ = −1 in the resulting
equation, it is found that

(1 + q)

∞∑
n=0

(1− q2n+1)

(
q2/a, q2/c; q2

)
n(

q2a, q2c; q2
)
n

(
−ac

q

)n

3ϕ2

(
q−2n, q2n+2,−1

−q,−q2
; q2, q2

)

=

(
q2, ac; q2

)
∞(

q2a, q2c; q2
)
∞

3ϕ2

(
q2/a, q2/c, q2

−q3,−q2
; q2,

ac

q

)
.

Substituting (2.7) into the equation above, we complete the proof of Theorem 5.3. ■

Letting a = c = 0 in Theorem 5.3, we immediately arrive at the identity
∞∑
n=0

q2n
2+n(

1 + q2n+1
)
(−q; q)2n

=
1(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q2n

2+j2+n.

By taking (a, c) = (1, 0) and (a, c) = (−1, 0) respectively in Theorem 5.3, we find that

∞∑
n=0

(−1)n
(
q2; q2

)
n
qn

2(
1 + q2n+1

)
(−q; q)2n

=
∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
qn

2+j2

and
∞∑
n=0

qn
2(

1 + q2n+1
)(
−q; q2

)
n

=

(
−q2; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qn

2+j2 .

Setting a = q and c = 0 in Theorem 5.3 and simplifying, we deduce that
∞∑
n=0

(−1)n
(
q; q2

)
n
qn(n+1)(

1 + q2n+1
)
(−q; q)2n

=

(
q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)n+jqn
2+n+j2 .
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6 Some applications of Corollary 1.6
to Rogers–Hecke type series

In this section, we will discuss the application of Corollary 1.6 to Rogers–Hecke type series.

6.1 Application of Corollary 1.6. Part I

The first main result of this section is the following theorem.

Theorem 6.1. For |a| < 1 and |c| < 1, we have

∞∑
n=0

(q/c; q)nc
n(

q2; q2
)
n
(1 + aqn)

qn(n+1)/2

=
(qa, qc,−ac; q)∞
(q, ac,−a; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qn

2−j2 (q/a, q/c; q)n(ac)
n

(qa, qc; q)n
.

Proof. Setting u = 0, γ = q/a in Corollary 1.6, we immediately find that for max{|αβabc/q2|,
|αbc/q2|} < 1,

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c; q)n

(1− α)(q, αa, αb, αc; q)n

(
αabc

q2

)n

3ϕ2

(
q−n, αqn, β

0, q/b
; q, q

)

=
(qα, αβab/q, αac/q; q)∞(
αa, αc, αβabc/q2; q

)
∞

∞∑
n=0

(q/c, αab/q; q)n
(q, αb, αβab/q; q)n

(
−αβbc

q

)n

qn(n−1)/2. (6.1)

Setting α = β = q and b = −1 in (6.1), we deduce that

∞∑
n=0

(
1− q2n+1

)
(q/a, q/c; q)n

(qa, qc; q)n

(
−ac

q

)n

3ϕ2

(
q−n, qn+1, q

0,−q
; q, q

)

=
(q,−a, ac; q)∞
(qa, qc,−ac; q)∞

∞∑
n=0

(q/c; q)nc
n(

q2; q2
)
n
(1 + aqn)

qn(n+1)/2.

Substituting (2.10) into the left-hand side of the equation above, we complete the proof of
Theorem 6.1. ■

Putting a = c = 0 in Theorem 6.1, we arrive at the following identity of Rogers–Hecke type:

∞∑
n=0

(−1)n
qn

2+n(
q2; q2

)
n

=
1

(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q2n

2+n−j2 .

If we specialize Theorem 6.1 to the case when c = 1, we conclude that

∞∑
n=0

qn(n+1)/2

(−q; q)n(1 + aqn)
=

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qn

2−j2 (q/a; q)na
n

(a; q)n+1
. (6.2)

Letting a = 0 in the above equation, we immediately obtain the Andrews–Dyson–Hickerson
identity [7]

∞∑
n=0

qn(n+1)/2

(−q; q)n
=

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
q(3n

2+n)/2−j2 .
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For any nonnegative integer m, taking a = qm+1 in (6.2) and noting that (q−m; q)n = 0
for n > m, we can get (1.9).

Replacing q by q2 in (6.2) and then setting a = q and a = −q respectively in the resulting
equation, we deduce that

∞∑
n=0

qn(n+1)(
−q2; q2

)
n

(
1 + q2n+1

) =

∞∑
n=0

n∑
j=−n

(−1)j
(
1 + q2n+1

)
q2n

2+n−2j2 (6.3)

and
∞∑
n=0

qn(n+1)(
−q2; q2

)
n

(
1− q2n+1

) =

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
q2n

2+n−2j2 .

It should be pointed out that (6.3) is different from the following identity of [31, equation (2.8)]
due to Wang and Chern:

∞∑
n=0

qn(n+1)(
−q2; q2

)
n

(
1 + q2n+1

) =
∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
q2n

2+n−j2 .

If we specialize Theorem 6.1 to the case when c = −1, we deduce that

∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)n(1 + aqn)

=
(−q, a, a; q)∞

(q,−a,−a; q)∞)∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
qn

2−j2 (q/a; q)na
n

(a; q)n+1
. (6.4)

The special case when a = 0 of the above equation gives the third identity in [19, Proposi-
tion 1.11]

∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)n
=

(q; q)∞
(−q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q(3n

2+n)/2−j2 .

Putting a = q in (6.4) and noting that (1; q)n = δn0, we find that

∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)n
(
1 + qn+1

) =
(q; q)∞
(−q; q)∞

.

Replacing q by q2 in (6.4) then setting a = q and a = −q respectively in the resulting equation
yields

∞∑
n=0

(−1)nqn(n+1)(
q2; q2

)
n

(
1 + q2n+1

) =

(
q, q,−q2; q2

)
∞(

−q,−q, q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1 + q2n+1

)
q2n

2+n−2j2

and
∞∑
n=0

(−1)nqn(n+1)(
q2; q2

)
n

(
1− q2n+1

) =

(
−q,−q,−q2; q2

)
∞(

q, q, q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q2n

2+n−2j2 .

Putting (a, c) = (1, 0) in Theorem 6.1, we arrive at the following identity of Rogers–Hecke
type:

∞∑
n=0

(−1)nqn
2+n(

q2; q2
)
n
(1 + qn)

=
1

2(−q; q)∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
q(3n

2+n)/2−j2 .
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Letting α → 1, β = q and a = c = 0 in (6.1) and simplifying, we conclude that

(q; q)∞

∞∑
n=0

qn
2
bn

(q, b; q)n
= 1 +

∞∑
n=1

(1 + qn)
(q/b; q)nb

n

(b; q)n
qn(n−1)

3ϕ2

(
q−n, qn, q

0, q/b
; q, q

)
. (6.5)

Letting b → ∞ in the equation above and then using (2.12) in the resulting equation, we find that

∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)n
=

1

(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q2n

2+n−(3j2+j)/2.

Replacing q by q2 in (6.5) and then using [9, equation (5.33)] in the resulting equation, we can
arrive at (1.5).

6.2 Application of Corollary 1.6. Part II

The second main result of this section is the following theorem.

Theorem 6.2. We have

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)(q2/a, q2/c; q2)
n
(ac)n(

q2a, q2c; q2
)
n

q2n
2−j(j+1)/2

=
(1− a)

(
q2; q2

)
∞(

1− ac/q2
)(
q2c; q2

)
∞

∞∑
n=0

(
q2/c, a/q; q2

)
n
(−c)n

(q; q)2n
(
a; q2

)
n

qn(n−1).

Proof. Setting α = q in (6.1) and then replacing q by q2 and finally taking (b, β) =
(
q−1, q

)
,

we arrive at

∞∑
n=0

(
1− q4n+2

)(q2/a, q2/c; q2)
n

(
ac/q3

)n(
q2a, q2c; q2

)
n

(
1− q2n+1

1− q

)
3ϕ2

(
q−2n, q2n+2, q

0, q3
; q2, q2

)

=
(1− a)

(
q2; q2

)
∞(

1− ac/q2
)(
q2c; q2

)
∞

∞∑
n=0

(
q2/c, a/q; q2

)
n
(−c)n

(q; q)2n
(
a; q2

)
n

qn(n−1).

Substituting (2.13) into the equation above and simplifying, we complete the proof of Theo-
rem 6.2. ■

Putting a = c = 0 in Theorem 6.2, we immediately arrive at the following identities of
Rogers–Hecke type:

∞∑
n=0

q2n
2

(q; q)2n
=

1(
q2; q2

)
∞

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)
q4n

2+2n−j(j+1)/2.

If we specialize Theorem 6.2 to the case when a = 0 and c = 1, we deduce that

∞∑
n=0

(−1)n
qn

2−n(
q; q2

)
n

=

∞∑
n=0

2n∑
j=0

(−1)n
(
1− q4n+2

)
q3n

2+n−j(j+1)/2.

If we specialize Theorem 6.2 to the case when a = 0 and c = −1, we deduce that

∞∑
n=0

(
−q2; q2

)
n
qn

2−n

(q; q)2n
=

(
−q2; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)
q3n

2+n−j(j+1)/2.
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By letting (a, c) = (0, q) in Theorem 6.2 and simplifying, we conclude that

∞∑
n=0

(−1)n
qn

2(
q2; q2

)
n

=

(
q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

2n∑
j=0

(−1)n
(
1 + q2n+1

)
q3n

2+2n−j(j+1)/2.

Upon taking (a, c) = (0,−q) in Theorem 6.2 and simplifying, we obtain

∞∑
n=0

(
−q; q2

)
n
qn

2(
q2; q2

)
n

=

(
−q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

2n∑
j=0

(
1− q2n+1

)
q3n

2+2n−j(j+1)/2.

Putting (a, c) = (−q, 0) in Theorem 6.2 and making a simple calculation yields

∞∑
n=0

(
−1; q2

)
n
q2n

2

(q; q)2n
(
−q; q2

)
n

=
1(

q2; q2
)
∞

∞∑
n=0

2n∑
j=0

(
1 + q2n+1

)
q3n

2+2n−j(j+1)/2.

6.3 Application of Corollary 1.6. Part III

The Sears 4ϕ3 transformation in Proposition 3.6 can be restated as follows:

4ϕ3

(
q−n, αqn, β, γ

c, d, qαβγ/cd
; q, q

)
=

(qα/c, cd/βγ; q)n
(c, qαβγ; q)n

(
βγ

d

)n

4ϕ3

(
q−n, αqn, d/β, d/γ

d, dc/βγ, qα/c
; q, q

)
.

Setting γ = 0 in the above equation, we immediately deduce that

3ϕ2

(
q−n, αqn, β

c, d
; q, q

)
= (−c)nqn(n−1)/2 (qα/c; q)n

(c; q)n
3ϕ2

(
q−n, αqn, d/β

d, qα/c
; q,

qβ

c

)
. (6.6)

Setting γ = q/a in Corollary 1.6 and simplifying, it is found that

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/b, q/c; q)n

(1− α)(q, αa, αb, αc; q)n

(
αabc

q2

)n

3ϕ2

(
q−n, αqn, β

q/b, qβu/a
; q, q

)
=

(qα, αac/q, αβab/q, βcu/a; q)∞(
αa, αc, αβabc/q2, qβu/a; q

)
∞

3ϕ2

(
q/c, αab/qu, αab/q

αβab/q, αb
; q,

βcu

a

)
.

With the help of (6.6), we deduce that

3ϕ2

(
q−n, αqn, β

q/b, qβu/a
; q, q

)
=

(αb; q)n
(q/b; q)n

(
−q

b

)n
qn(n−1)/2

3ϕ2

(
q−n, αqn, qu/a

αb, qβu/a
; q, βb

)
.

Combining the above two equations, we are led to the following q-transformation formula:

∞∑
n=0

(
1− αq2n

)
(α, q/a, q/c; q)n

(1− α)(q, αa, αc; q)n

(
−αac

q

)n

qn(n−1)/2
3ϕ2

(
q−n, αqn, qu/a

αb, qβu/a
; q, βb

)
=

(qα, αac/q, αβab/q, βcu/a; q)∞(
αa, αc, αβabc/q2, qβu/a; q

)
∞

3ϕ2

(
q/c, αab/qu, αab/q

αβab/q, αb
; q,

βcu

a

)
.

Setting α = q, u = 0, β = b = −1 in the above equation and simplifying, we arrive at

∞∑
n=0

(
1− q2n+1

)(q/a, q/c; q)n
(qa, qc; q)n

(−ac)nqn(n−1)/2
2ϕ1

(
q−n, qn+1

−q
; q, 1

)

=
(1− a)(q; q)∞

(1− ac/q)(qc; q)∞

∞∑
n=0

(q/c,−a; q)n(−c)n(
q2; q2

)
n
(a; q)n

qn(n−1)/2.

Substituting (2.6), we are led to the following theorem.
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Theorem 6.3. We have

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qj

2−n (q/a, q/c; q)n
(qa, qc; q)n

(ac)n

=
(1− a)(q; q)∞

(1− ac/q)(qc; q)∞

∞∑
n=0

(q/c,−a; q)n(−c)n(
q2; q2

)
n
(a; q)n

qn(n−1)/2.

If we specialize Theorem 6.3 to the case when a = 0, then we find that

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
qj

2+n(n−1)/2 (q/c; q)n
(qc; q)n

cn

=
(q; q)∞
(qc; q)∞

∞∑
n=0

(q/c; q)n(−c)n(
q2; q2

)
n

qn(n−1)/2. (6.7)

Putting c = 0 in the equation above, we arrive at the identity [19, equation (4.12)]

∞∑
n=0

qn
2(

q2; q2
)
n

=
1

(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qn

2+j2 .

Letting c = 1 and c = −1 in (6.7) respectively, we conclude that [19, equation (4.13)]

∞∑
n=0

(−1)n
qn(n−1)/2

(−q; q)n
=

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qj

2+n(n−1)/2

and [19, equation (4.14)]

∞∑
n=0

qn(n−1)/2

(q; q)n
=

(−q; q)∞
(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qj

2+n(n−1)/2.

Replacing q by q2 in (6.7) and then putting c = q and c = −q respectively in the resulting
equation, we deduce that

∞∑
n=0

(−1)n
(
q; q2

)
n(

q4; q4
)
n

qn
2
=

(
q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1 + q2j+1

)
q2j

2+n2

and

∞∑
n=0

(
−q; q2

)
n(

q4; q4
)
n

qn
2
=

(
−q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2j+1

)
q2j

2+n2
,

If we specialize Theorem 6.3 to the case when c = 0, we find that

∞∑
n=0

(−a; q)nq
n2(

q2; q2
)
n
(a; q)n

=
1

(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
qj

2+n(n−1)/2 (q/a; q)n
(a; q)n+1

an. (6.8)

Letting a = −1 in the equation above and noting that (1; q)n = δn0, we deduce that

2(q; q)∞ =

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qj

2+n(n−1)/2.
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Replacing q by q2 in (6.8) and then putting a = q and a = −q respectively, we obtain that

∞∑
n=0

(
−q; q2

)
n(

q4; q4
)
n

(
q; q2

)
n

q2n
2
=

1(
q2; q2

)
∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1 + q2n+1

)
q2j

2+n2

and

∞∑
n=0

(
q; q2

)
n
q2n

2(
q4; q4

)
n

(
−q; q2

)
n

=
1(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q2j

2+n2
.

Multiplying both sides of (6.8) by (1− a) and then letting a = 1, we deduce that

∞∑
n=1

(−1; q)nq
n2

(q; q)n−1

(
q2; q2

)
n

=
1

(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
qj

2+n(n−1)/2.

7 The proof of Theorem 1.9

For simplicity, we denote the finite theta function Sn(q) by

Sn(q) :=
n∑

j=−n

(−1)jq−j2 . (7.1)

In this section, we will prove the following theorem, which is more general than Theorem 1.9.

Theorem 7.1. Let Sn(q) be defined by (7.1). Then for max{|a|, |c/q|, |ac/q|} < 1, we have

∞∑
n=0

(q/c; q)n
(−a; q)n

(
− c

q

)n

=
(−q, a, c,−ac/q; q)∞
(q,−a,−c/q, ac/q; q)∞

×

(
2 +

∞∑
n=1

(1 + qn)qn
2−2n (q/a, q/c; q)n(ac)

n

(a, c; q)n
(qnSn(q)− Sn−1(q))

)
.

Proof. Setting α → 1, γ = q/a and u = at in Theorem 5.1, we immediately find that for
max

{∣∣βabc/q2∣∣, ∣∣bc/q∣∣} < 1,

1 +
∞∑
n=1

(1 + qn)
(q/a, q/b, q/c; q)n

(a, b, c; q)n

(
abc

q2

)n

3ϕ2

(
q−n, qn, β

q/b, qβt
; q, q

)
=

(q, ac/q, bc/q, βab/q; q)∞(
a, b, c, βabc/q2; q

)
∞

3ϕ2

(
q/c, βat, β

βab/q, qβt
; q,

bc

q

)
. (7.2)

When a = q the left-hand side becomes 1, and at the same time, the above equation reduces to
the q-Gauss summation formula.

Setting b = −1, t = 0 and β = q in the equation above, we deduce that

∞∑
n=0

(q/c; q)n
(−a; q)n

(
− c

q

)n

=
(−q, a, c,−ac/q; q)∞
(q,−a,−c/q, ac/q; q)∞

×

(
2 +

∞∑
n=1

(1 + qn)2
(q/a, q/c; q)n
(a, c; q)n

(
−ac

q2

)n

3ϕ2

(
q−n, qn, q

−q, 0
; q, q

))
.

Substituting (2.11) into the right-hand side of the equation above, we complete the proof of
Theorem 7.1. ■
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Let c = 0 in Theorem 7.1, we can immediately get Theorem 1.9.
Letting a = 0 in (1.10), we immediately get the following identity:

(q; q)∞
(−q; q)∞

( ∞∑
n=0

qn(n−1)/2

)
=

∞∑
n=0

n∑
j=−n

(−1)j
(
1 + qn − q3n+1 − q4n+2

)
q2n

2−j2 . (7.3)

Suppose that m is a nonnegative integer. Taking a = qm+1 in (1.11) and simplifying, we get
the following identity:

(q; q)m
(−q; q)m

∞∑
n=0

qn(n−1)/2(
−qm+1; q

)
n

= 2 + 2
∞∑
n=1

(−1)n(1 + qn)qn
2 (q; q)2m
(q; q)m+n(q; q)m−n

+

∞∑
n=1

(
1− q2n

)
(q; q)2m

(q; q)m+n(q; q)m−n

∑
|j|<n

(−1)jq2n
2−n−j2 .

If we specialize (7.2) by taking β = q, we immediately conclude that

1 +

∞∑
n=1

(1 + qn)
(q/a, q/b, q/c; q)n

(a, b, c; q)n

(
abc

q2

)n

3ϕ2

(
q−n, qn, q

q/b, q2t
; q, q

)

=
(q, ac/q, bc/q, ab; q)∞
(a, b, c, abc/q; q)∞

∞∑
n=0

(q/c, qat; q)n(
ab, q2t; q

)
n

(
bc

q

)n

. (7.4)

Setting a = c = 0 in the equation above and simplifying, we deduce that

∞∑
n=0

(−b)n(
q2t; q

)
n

qn(n−1)/2

=
(b; q)∞
(q; q)∞

(
1 +

∞∑
n=1

(1 + qn)
(q/b; q)nb

n

(b; q)n
qn(n−1)

3ϕ2

(
q−n, qn, q

q/b, q2t
; q, q

))
. (7.5)

Setting b = −1 and t = 0 in the equation above and then using (2.11) in the resulting equation,
we can arrive at (7.3) again.

Replacing q by q2 in (7.5) and then putting b = −q and t = −q−2 and finally using (2.14) in
the resulting equation, we deduce that

∞∑
n=0

qn
2(

−q2; q2
)
n

=

(
−q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q4n+2

)
q3n

2+n−j2 .

Replacing q by q2 in (7.5) and then putting b = −1 and t = −q−3 and finally using (2.14) in the
resulting equation, we find that

∞∑
n=0

qn(n−1)(
−q; q2

)
n

=

(
−q2; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1 + q2n − q4n+1 − q6n+3

)
q3n

2−j2 .

Multiplying both sides of (7.4) by (1 − a) and then letting a → 1 and putting c = 0, we
conclude that

∞∑
n=1

(
1− q2n

)(q/b; q)n
(b; q)n

(−b)nqn(n−3)/2
3ϕ2

(
q−n, qn, q

q/b, q2t
; q, q

)

=

∞∑
n=0

(qt; q)n(
b, q2t; q

)
n

(−b)nqn(n−1)/2. (7.6)
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Setting t = 0 and b = −1 in the above equation and then using (2.11) in the resulting equation,
we find that

2 +
∞∑
n=0

qn(n+1)/2

(−q; q)n
=

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q4n+2

)
qn(3n−1)/2−j2 .

Replacing q by q2 in (7.6) and then putting b = −q and t = −q−2 in the resulting equation and
finally using (2.14), we conclude that

1 + 2
∞∑
n=1

qn
2(

1 + q2n
)(
−q; q2

)
n

=
∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q4n+2

)
q2n

2−j2 .

Replacing q by q2 in (7.6) and then putting b = −1 and t = −q−3 in the resulting equation and
finally using (2.14), we deduce that

2q + (1 + q)

∞∑
n=0

qn(n+1)(
−q2; q2

)
n

(
1 + q2n+1

)
=

∞∑
n=0

n∑
j=−n

(−1)n+j
(
q − q4n+1 + q2n − q6n+4

)
q2n

2−n−j2 .

8 More Rogers–Hecke type series

In this section, we will continue to discuss the application of Theorem 5.1 to Rogers–Hecke type
series.

8.1 More on Rogers–Hecke type series. Part I

Theorem 8.1. For |ac| < 1, the following double q-formulas holds:

∞∑
n=0

(
1− q2n+1

)(q2/a, q2/c; q2)
n(

q2a, q2c; q2
)
n

(ac)n
n∑

j=−n

(−1)jqn
2−j2

=

(
q2, ac; q2

)
∞(

q2a, q2c; q2
)
∞

∞∑
n=0

(
q2/a, q2/c; q2

)
n(

1 + q2n+1
)(
q4; q4

)
n

(−ac)n. (8.1)

Proof. Setting α = q, u = at and β = q/a in Theorem 5.1, we immediately deduce that

∞∑
n=0

(
1− q2n+1

)(q/a, q/b, q/c; q)n
(qa, qb, qc; q)n

(
abc

q

)n

3ϕ2

(
q−n, qn+1, γ

q/b, qγt
; q, q

)
=

(q, ac; q)∞
(qa, qc; q)∞

3ϕ2

(
q/a, q/c, qt

qb, qγt
; q,

abcγ

q

)
. (8.2)

Replacing q by q2 in (8.2) and then setting γ = q, b = −q, t = −1/q in the resulting equation
and finally dividing both sides by (1 + q), we get that

∞∑
n=0

(
1− q2n+1

)(q2/a, q2/c; q2)
n(

q2a, q2c; q2
)
n

(
−ac

q

)n

3ϕ2

(
q−2n, q2n+2, q

−q,−q2
; q2, q2

)

=

(
q2, ac; q2

)
∞(

q2a, q2c; q2
)
∞

∞∑
n=0

(
q2/a, q2/c; q2

)
n(

1 + q2n+1
)(
q4; q4

)
n

(−ac)n. (8.3)



30 Z.-G. Liu

Letting α → 1 in Theorem 2.4 and then replacing q by q2 and finally setting c = −q, d = −q2,
we deduce that [4, equation (6.15)], [19, equation (4.5)]

3ϕ2

(
q−2n, q2n+2, q

−q,−q2
; q2, q2

)
= (−1)nqn

2+n
n∑

j=−n

(−1)jq−j2 . (8.4)

Substituting (8.4) into the left-hand side of (8.3), we arrive at (8.1). We complete the proof of
Theorem 8.1. ■

Many identities of Rogers–Hecke type can be derived from this theorem; we present only
a few of them here.

Setting c = 0 in (8.1) and then putting a = 1 and a = −1, respectively, in the resulting
equation, we immediately find that

∞∑
n=0

qn
2+n(

1 + q2n+1
)(
−q2; q2

)
n

=

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
q2n

2+n−j2

and

∞∑
n=0

(−1)nqn
2+n(

1 + q2n+1
)(
q2; q2

)
n

=

(
−q2; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q2n

2+n−j2 .

If we specialize Theorem 8.1 to the case when a = c = 0, then we conclude that

∞∑
n=0

(−1)nq2n
2+2n(

1 + q2n+1
)(
q4; q4

)
n

=
1(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
q3n

2+2n−j2 .

Taking c = 0 in (8.1) and then putting a = 1/q and a = −1/q respectively in the resulting
equation, we conclude that

∞∑
n=0

(
q; q2

)
n+1

qn
2(

1 + q2n+1
)(
q4; q4

)
n

=

(
q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)2
q2n

2−j2

and

∞∑
n=0

(−1)n
(
−q; q2

)
n
qn

2(
q4; q4

)
n

=

(
−q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q4n+2

)
q2n

2−j2 .

Setting (a, c) = (1, q) in (8.1) and then replacing q by −q in the resulting equation, we find
that [31, equation (2.10)]

∞∑
n=0

(
−q; q2

)
n
qn(

1− q2n+1
)(
−q2; q2

)
n

=
∞∑
n=0

n∑
j=−n

qn
2+n−j2 .

Using the same method as the derivation of Theorem 8.1, we can prove the following theorem.

Theorem 8.2. For |ac| < q, we have

∞∑
n=0

(
1− q4n+2

)(q2/a, q2/c; q2)
n(

q2a, q2c; q2
)
n

(ac)n
n∑

j=−n

(−1)jqn
2−n−j2

=
2
(
q2, ac; q2

)
∞(

q2a, q2c; q2
)
∞

∞∑
n=0

(
q2/a, q2/c; q2

)
n(

1 + q2n
)(
−q, q2; q2

)
n

(
−ac

q

)n

. (8.5)
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Putting a = c = 0 in (8.5), we are led to the following identity of Rogers–Hecke type:

∞∑
n=0

(−1)nq2n
2+n(

1 + q2n
)(
−q, q2; q2

)
n

=
1(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(−1)jq3n
2+n−j2 .

Taking a = 1 and c = 0 in (8.5), we arrive at the following identity, which is equivalent to
[31, equation (2.6)]:

1 + 2
∞∑
n=1

qn
2(

1 + q2n
)(
−q; q2

)
n

=
∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q4n+2

)
q2n

2−j2 .

Upon taking a = q and c = −q in (8.5) and simplifying, we conclude that

2
∞∑
n=0

(
q; q2

)
n
qn(

1 + q2n
)(
q2; q2

)
n

=

(
q2; q4

)
∞(

q4; q4
)
∞

∞∑
n=0

n∑
j=−n

(−1)n+jqn
2+n−j2 .

8.2 More Rogers–Hecke type series. Part II

The following theorem is the corrected version of [19, Theorem 4.10].

Theorem 8.3. For |c| < 1, we have

∞∑
n=0

(q/a, q/c; q)n(ac/q)
n(

q2; q2
)
n

=
(qa, qc; q)∞
(q, ac; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qj

2−n (q/a, q/c; q)n
(qa, qc; q)n

(ac)n. (8.6)

Proof. Setting α = q, u = at and β = q/a in Theorem 5.1, we immediately deduce that

∞∑
n=0

(
1− q2n+1

)(q/a, q/b, q/c; q)n
(qa, qb, qc; q)n

(
abc

q

)n

3ϕ2

(
q−n, qn+1, γ

q/b, qγt
; q, q

)
=

(q, ac; q)∞
(qa, qc; q)∞

3ϕ2

(
q/a, q/c, qt

qb, qγt
; q,

abcγ

q

)
.

Choosing γ = −1, t = 0 and b = −1 in the equation above, we conclude that

∞∑
n=0

(1− q2n+1)
(q/a, q/c; q)n
(qa, qc; q)n

(
−ac

q

)n

3ϕ2

(
q−n, qn+1,−1

0,−q
; q, q

)
=

(q, ac; q)∞
(qa, qc; q)∞

2ϕ1

(
q/a, q/c

−q
; q,

ac

q

)
.

Substituting (2.5) into the equation above, we complete the proof of Theorem 8.3. ■

When a = c = 0, Theorem 8.3 immediately reduces to the following identity:

∞∑
n=0

qn
2(

q2; q2
)
n

=
1

(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qj

2+n2
.

Putting (a, c) = (1, 0) and (a, c) = (−1, 0) in Theorem 8.3 respectively, we conclude that

∞∑
n=0

(−1)n
qn(n−1)/2

(−q; q)n
=

∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q2n+1

)
qj

2+n(n−1)/2
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and

∞∑
n=0

qn(n−1)/2

(−q; q)n
=

(−q; q)∞
(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q2n+1

)
qj

2+n(n−1)/2.

Theorem 8.4. For |ac/q| < 1, we have(
q2, ac; q2

)
∞(

q2a, q2c; q2
)
∞

∞∑
n=0

(
q2/a, q2/c; q2

)
n
(ac/q)n

(q; q)2n(1 + q2n+1)

=

∞∑
n=0

n∑
j=−n

(
1− q2n+1

)
qn

2−j2−j

(
q2/a, q2/c; q2

)
n
(ac)n(

q2a, q2c; q2
)
n

.

Proof. Setting b = q−1/2, γ = q and t = −q−1/2 in (5.1), we can deduce that

∞∑
n=0

(
1− q2n+1

)(q/a, q/c)n(ac)n
(qa, qc; q)n

(
1− qn+1/2

)(
1− q1/2

) q−3n/2
3ϕ2

(
q−n, qn+1, q

q3/2,−q3/2
; q, q

)

=
(q, ac; q)∞
(qa, qc; q)∞

∞∑
n=0

(
q/a, q/c,−q1/2; q

)
n(

q, q1/2,−q3/2; q
)
n

(
ac

q1/2

)n

.

Substituting (4.15) into the left-hand side of the equation above and then replacing q by q2 and
simplifying, we complete the proof of Theorem 8.4. ■

If we specialize Theorem 8.4 to the case when c = 0, then we find that(
q2; q2

)
∞(

q2a; q2
)
∞

∞∑
n=0

(
q2/a; q2

)
n
(−a)n

(q; q)2n
(
1 + q2n+1

)qn2

=
∞∑
n=0

n∑
j=−n

(−1)n
(
1− q2n+1

)
q2n

2+n−j2−j

(
q2/a; q2

)
n
an(

q2a; q2
)
n

. (8.7)

Setting a = 1 in the equation above, we immediately arrive at the following beautiful identity
of Rogers–Hecke type due to Wang and Chern [31, equation (2.9)]:

∞∑
n=0

(−1)nqn
2(

q; q2
)
n

(
1 + q2n+1

) =
∞∑
n=0

n∑
j=−n

(−1)n
(
1− q2n+1

)
q2n

2+n−j2−j . (8.8)

When a = −1, (8.7) becomes

∞∑
n=0

(
−q2; q2

)
n
qn

2

(q; q)2n
(
1 + q2n+1

) =

(
−q2; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

(
1− q2n+1

)
q2n

2+n−j2−j .

Taking a = q in (8.7), we find that

∞∑
n=0

(−1)n
qn

2+n(
1 + q2n+1

)(
q2; q2

)
n

=

(
q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

n∑
j=−n

q2n
2+2n−j2−j .

Letting a = c = q in Theorem 8.4 and simplifying, we conclude that

∞∑
n=0

(
q; q2

)
n
qn(

q2; q2
)
n

(
1 + q2n+1

) =

(
q; q2

)2
∞(

q2; q2
)2
∞

∞∑
n=0

n∑
j=−n

qn
2+2n−j2−j

1− q2n+1
.
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If we specialize Theorem 8.4 to the case when a = 1, then we find that

∞∑
n=0

(
q2/c; q2

)
n
(c/q)n(

q; q2
)
n

(
1 + q2n+1

) =
∞∑
n=0

n∑
j=−n

(
1− q2n+1

)
qn

2−j2−j

(
q2/c; q2

)
n
cn(

c; q2
)
n+1

.

Equating the coefficients of c on both sides of the above equation and then combining the
resulting equation with (8.8) and finally replacing q by −q, we deduce that

∞∑
n=0

qn
2−2n(

−q; q2
)
n

(
1− q2n+1

) =
∞∑
n=0

n∑
j=−n

q2n
2−n−j2−j

(
1 + q2n+1

)(
1− q2n + q4n+2

)
.

8.3 More Rogers–Hecke type series. Part III

Replacing q by q2 in (8.6), we have

∞∑
n=0

(
1− q4n+2

)(q2/a, q2/b, q2/c; q2)
n(

q2a, q2b, q2c; q2
)
n

(
abc

q2

)n

3ϕ2

(
q−2n, q2n+2, γ

q2/b, q2γt
; q2, q2

)

=

(
q2, ac; q2

)
∞(

q2a, q2c; q
)
∞

3ϕ2

(
q2/a, q2/c, q2t

q2b, q2γt
; q2,

abcγ

q2

)
.

Choosing b = −1, γ = −1 and t = 1/q in the equation above, we conclude that

∞∑
n=0

(1− q4n+2)

(
q2/a, q2/c; q2

)
n(

q2a, q2c; q2
)
n

(
−ac

q2

)n

3ϕ2

(
q−2n, q2n+2,−1

−q,−q2
; q2, q2

)

=

(
q2, ac; q2

)
∞(

q2a, q2c; q
)
∞

3ϕ2

(
q2/a, q2/c, q

−q2,−q
; q2,

ac

q2

)
.

Substituting (2.5) into the left-hand side of the equation above, we get the following theorem.

Theorem 8.5. We have

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q4n+2

)
qj

2−2n

(
q2/a, q2/c; q2

)
n
(ac)n(

q2a, q2c; q2
)
n

=

(
q2, ac; q2

)
∞(

q2a, q2c; q
)
∞

∞∑
n=0

(
q2/a, q2/c, q; q2

)
n

(−q; q)2n
(
q2; q2

)
n

(
ac

q2

)n

.

Letting a = c = 0 in Theorem 8.5 and simplifying, we conclude that

∞∑
n=0

(
q; q2

)
n(

q2; q2
)
n
(−q; q)2n

q2n
2
=

1(
q2; q2

)
∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q4n+2

)
qj

2+2n2
.

If we specialize Theorem 8.5 to the case when a = 1, then we find that

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q4n+2

)
qj

2−2n

(
q2/c; q2

)
n
cn(

c; q2
)
n+1

=

∞∑
n=0

(
q2/c, q; q2

)
n

(−q; q)2n

(
c

q2

)n

. (8.9)

Letting c = 0 in the equation above, we immediately find that

∞∑
n=0

(−1)n
(
q; q2

)
n

(−q; q)2n
qn

2−n =

∞∑
n=0

n∑
j=−n

(−1)j+n
(
1− q4n+2

)
qj

2+n2−n. (8.10)
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Applying the q-derivative operator ∂q2,c to both sides of (8.9) and simplifying, we conclude that

∞∑
n=0

(
1− q2n

)(
q; q2

)
n

(
q2/c; q2

)
n−1

cn−1q−2n

(−q; q)2n
(8.11)

=

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q4n+2

)(
1 + (c− 2)q2n − cq2n+2 + q4n+2

)
qj

2−2n

(
q2/c; q2

)
n−1

cn−1(
c; q2

)
n+2

.

This equation can also be used to derive identities for Rogers–Hecke type series. Putting c = 0
in (8.11), we find that

∞∑
n=0

(−1)n
(
1− q2n

)(
q; q2

)
n

(−q; q)2n
qn

2−3n

=
∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q4n+2

)(
1− 2q2n + q4n+2

)
qn

2+j2−3n. (8.12)

By adding (8.10) and (8.12) together, we conclude that

∞∑
n=0

(−1)n
(
q; q2

)
n

(−q; q)2n
qn

2−3n =
∞∑
n=0

n∑
j=−n

(−1)n+j
(
1− q4n+2

)(
1− q2n + q4n+2

)
qn

2+j2−3n.

Theorem 8.6. We have(
q2, ac, c/q, qa; q2

)
∞(

q2a, q, q2c, ac/q; q2
)
∞

∞∑
n=0

(
q2/c; q2

)
n
(c/q)n(

qa; q2
)
n

=

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)
q2n

2−j(j+1)/2

(
q2/a, q2/c; q2

)
n(

q2a, q2c; q2
)
n

(ac)n.

Proof. Taking α = q, γ = q/a, u = at in Theorem 5.1 and replacing q by q2, we deduce that

∞∑
n=0

(
1− q4n+2

)(q2/a, q2/b, q2/c; q)
n(

q2a, q2b, q2c; q2
)
n

(
abc

q2

)n

3ϕ2

(
q−2n, q2n+2, β

q2/b, q2βt
; q2, q2

)

=

(
q2, ac, bc, βab; q2

)
∞(

q2a, q2b, q2c, βabc/q2; q2
)
∞

3ϕ2

(
q2/c, β, βat

βab, q2βt
; q2, bc

)
.

Making the change (b, β, t) to
(
q−1, q2, 0

)
in the equation above, we obtain

∞∑
n=0

(
1− q4n+2

)(q2/a, q3, q2/c; q)
n(

q2a, q, q2c; q2
)
n

(
ac

q3

)n

3ϕ2

(
q−2n, q2n+2, q2

q3, 0
; q2, q2

)

=

(
q2, ac, c/q, qa; q2

)
∞(

q2a, q, q2c, ac/q; q
)
∞

2ϕ1

(
q2/c, q2

qa
; q2,

c

q

)
.

Substituting (2.13) into the equation above and simplifying, we complete the proof of Theo-
rem 8.6. ■

If we let c = 0 in Theorem 8.6, then we are led to the q-identity(
q2, qa; q2

)
∞(

q, q2a; q2
)
∞

∞∑
n=0

(−1)n
qn

2(
qa; q2

)
n

=

∞∑
n=0

2n∑
j=0

(−1)n
(
1− q4n+2

)
q3n

2+n−j(j+1)/2

(
q2/a; q2

)
n
an(

q2a; q2
)
n

. (8.13)

When a = 1, the above equation reduces to (1.6).
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Letting a = q and a = −q respectively in (8.13), we conclude that

∞∑
n=0

(−1)n
qn

2(
q2; q2

)
n

=

(
q; q2

)2
∞(

q2; q2
)2
∞

∞∑
n=0

2n∑
j=0

(−1)n
(
1 + q2n+1

)
q3n

2+2n−j(j+1)/2

and

∞∑
n=0

(−1)n
qn

2(
−q2; q2

)
n

=

(
q2; q4

)
∞(

q4; q4
)
∞

∞∑
n=0

2n∑
j=0

(
1− q2n+1

)
q3n

2+2n−j(j+1)/2.

Putting a = −1 and a = 0 respectively in (8.13), we are led to the following two identities:

∞∑
n=0

(−1)n
qn

2(
−q; q2

)
n

=

(
q,−q2; q2

)
∞(

q2,−q; q2
)
∞

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)
q3n

2+n−j(j+1)/2

and

∞∑
n=0

(−1)nqn
2
=

(
q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

2n∑
j=0

(
1− q4n+2

)
q4n

2+2n−j(j+1)/2. (8.14)

Replacing q by −q in (8.14), we find that

∞∑
n=0

qn
2
=

(
−q; q2

)
∞(

q2; q2
)
∞

∞∑
n=0

2n∑
j=0

(−1)j(j+1)/2
(
1− q4n+2

)
q4n

2+2n−j(j+1)/2,

which is different from the following identity [18, Proposition 6.11]:

∞∑
n=0

qn
2
=

1

(q; q)∞

∞∑
n=0

n∑
j=−n

(−1)j
(
1− q4n+2

)
q3n

2+n−j(3j+1)/2.

Clearly, we have not exhausted the application of Theorems 1.6 and 5.1 in obtaining Rogers–
Hecke type series. For further applications, we need more terminating 3ϕ2 series identities.

Theorem 1.7 clearly contains infinitely many q-formulas since we can choose f in many
different ways. For example, if we take

f(x) =
m∏
j=1

(bjx/q; q)∞
(cjx/q; q)∞

in Theorem 1.7, then we are led to the following theorem.

Theorem 8.7. For {|αac1/q|, |αb1|, . . . , |αacm/q|, |αbm|} < 1, we have

m∏
j=1

(αabj/q, αcj ; q)∞
(αacj/q, αbj ; q)∞

=
∞∑
n=0

(1− αq2n)(α, q/a; q)n(a/q)
n

(1− α)(q, α, αa; q)n
m+2ϕm+1

(
q−n, αqn, αc1, . . . , αcm

qα, αb1, . . . , αbm
; q, q

)
.

We believe that the application of Theorem 1.7 in q-series and number theory is still worth
exploring.
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