Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 109, 13 pages      arXiv:2408.14883      https://doi.org/10.3842/SIGMA.2024.109

Lagrangian Surplusection Phenomena

Georgios Dimitroglou Rizell a and Jonathan David Evans b
a) Department of Mathematics, Uppsala Universitet, Uppsala, Sweden
b) Department of Mathematics and Statistics, Lancaster University, Bailrigg, UK

Received September 03, 2024, in final form November 23, 2024; Published online December 06, 2024

Abstract
Suppose you have a family of Lagrangian submanifolds $L_t$ and an auxiliary Lagrangian $K$. Suppose that $K$ intersects some of the $L_t$ more than the minimal number of times. Can you eliminate surplus intersection (surplusection) with all fibres by performing a Hamiltonian isotopy of $K$? Or will any Lagrangian isotopic to $K$ surplusect some of the fibres? We argue that in several important situations, surplusection cannot be eliminated, and that a better understanding of surplusection phenomena (better bounds and a clearer understanding of how the surplusection is distributed in the family) would help to tackle some outstanding problems in different areas, including Oh's conjecture on the volume-minimising property of the Clifford torus and the concurrent normals conjecture in convex geometry. We pose many open questions.

Key words: symplectic geometry; Lagrangian intersections; Floer theory.

pdf (483 kb)   tex (24 kb)  

References

  1. Abreu M., Gadbled A., Toric constructions of monotone Lagrangian submanifolds in $\mathbb{CP}^2$ and $\mathbb{CP}^1\times \mathbb{CP}^1$, J. Symplectic Geom. 15 (2017), 151-187, arXiv:1411.6564.
  2. Abreu M., Macarini L., Remarks on Lagrangian intersections in toric manifolds, Trans. Amer. Math. Soc. 365 (2013), 3851-3875, arXiv:1105.0640.
  3. Alston G., Lagrangian Floer homology of the Clifford torus and real projective space in odd dimensions, J. Symplectic Geom. 9 (2011), 83-106, arXiv:0902.0197.
  4. Alston G., Amorim L., Floer cohomology of torus fibers and real Lagrangians in Fano toric manifolds, Int. Math. Res. Not. 2012 (2012), 2751-2793, arXiv:1003.3651.
  5. Arnold V.I., Singularities of ray systems, Russian Math. Surveys 38 (1983), no. 2, 87-176.
  6. Arnold V.I., Topological invariants of plane curves and caustics, Univ. Lecture Ser., Vol. 5, American Mathematical Society, Providence, RI, 1994.
  7. Arnold V.I., Topological problems in the theory of wave propagation, Russian Math. Surveys 51 (1996), no. 1, 1-47.
  8. Chekanov Yu., Schlenk F., Notes on monotone Lagrangian twist tori, Electron. Res. Announc. Math. Sci. 17 (2010), 104-121, arXiv:1003.5960.
  9. Croft H.T., Falconer K.J., Guy R.K., Unsolved problems in geometry. Unsolved problems in intuitive mathematics, Probl. Books in Math., Springer, New York, 1991.
  10. Evans C.G., Lagrangian mean curvature flow in the complex projective plane, Geom. Topol., to appear, arXiv:2202.06859.
  11. Gathercole E., Superheavy skeleta for non-normal crossings divisors, arXiv:2408.13187.
  12. Goldstein E., Some estimates related to Oh's conjecture for the Clifford tori in $\mathbb{CP}^n$, arXiv:math.DG/0311460.
  13. Heil E., Existenz eines $6$-Normalenpunktes in einem konvexen Körper, Arch. Math. (Basel) 32 (1979), 412-416.
  14. Heil E., Existenz eines $6$-Normalenpunktes in einem konvexen Körper, Arch. Math. (Basel) 33 (1979), 496-496.
  15. Heil E., Concurrent normals and critical points under weak smoothness assumptions, in Discrete Geometry and Convexity (New York, 1982), Ann. New York Acad. Sci., Vol. 440, New York Academy of Sciences, New York, 1985, 170-178, arXiv:6632.1985.
  16. Howard R., The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc. 106 (1993), vi+69 pages.
  17. Klain D.A., Rota G.C., Introduction to geometric probability, Lezioni Lincee., Cambridge University Press, Cambridge, 1997.
  18. Kuiper N.H., Double normals of convex bodies, Israel J. Math. 2 (1964), 71-80.
  19. Lê H.V., Application of integral geometry to minimal surfaces, Internat. J. Math. 4 (1993), 89-111.
  20. Lusternik L., Schnirelmann L., Méthodes topologiques dans les problèmes variationnels, Issledowatelskij Institut Mathematiki i Mechaniki, Moskau, 1930.
  21. Mak C.Y., Smith I., Non-displaceable Lagrangian links in four-manifolds, Geom. Funct. Anal. 31 (2021), 438-481, arXiv:1909.09924.
  22. Oakley J., Usher M., On certain Lagrangian submanifolds of $S^2\times S^2$ and $\mathbb{C}{\rm P}^n$, Algebr. Geom. Topol. 16 (2016), 149-209, arXiv:1311.5152.
  23. Oh Y.-G., Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), 501-519.
  24. Oh Y.-G., Tight Lagrangian submanifolds in $\mathbb{C}{\rm P}^n$, Math. Z. 207 (1991), 409-416.
  25. Oh Y.-G., Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. 212 (1993), 175-192.
  26. Pardon J., Concurrent normals to convex bodies and spaces of Morse functions, Math. Ann. 352 (2012), 55-71.
  27. Polterovich L., Shelukhin E., Lagrangian configurations and Hamiltonian maps, Compos. Math. 159 (2023), 2483-2520, arXiv:2102.06118.
  28. Viterbo C., Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc. 13 (2000), 411-431.
  29. Weinstein A., Lectures on symplectic manifolds, CBMS Reg. Conf. Ser. Math., Vol. 29, American Mathematical Society, Providence, RI, 1977.

Previous article  Next article  Contents of Volume 20 (2024)