|
SIGMA 20 (2024), 110, 21 pages arXiv:2408.09450
https://doi.org/10.3842/SIGMA.2024.110
The Modified Toda Hierarchy
Wenjuan Rui ab, Wenchuang Guan a, Yi Yang c and Jipeng Cheng ab
a) School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P.R. China
b) Jiangsu Center for Applied Mathematics (CUMT), Xuzhou, Jiangsu 221116, P.R. China
c) School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
Received August 20, 2024, in final form December 05, 2024; Published online December 11, 2024
Abstract
In this paper, modified Toda (mToda) equation is generalized to form an integrable hierarchy in the framework of Sato theory, which is therefore called mToda hierarchy. Inspired by the fact that Toda hierarchy is 2-component generalization of usual KP hierarchy, mToda hierarchy is constructed from bilinear equations of 2-component first modified KP hierarchy, where we provide the corresponding equivalence with Lax formulations. Then it is demonstrated that there are Miura links between Toda and mToda hierarchies, which means the definition of mToda hierarchy here is reasonable. Finally, Darboux transformations of the Toda and mToda hierarchies are also constructed by using the aforementioned Miura links.
Key words: modified Toda hierarchy; Toda hierarchy; Miura transformation; Darboux transformation; tau function.
pdf (431 kb)
tex (25 kb)
References
- Adler M., van Moerbeke P., Vertex operator solutions to the discrete KP-hierarchy, Comm. Math. Phys. 203 (1999), 185-210, arXiv:solv-int/9912014.
- Cheng J., Li M., Tian K., On the modified KP hierarchy: tau functions, squared eigenfunction symmetries and additional symmetries, J. Geom. Phys. 134 (2018), 19-37.
- Dai H.H., Geng X., Explicit solutions of the $2+1$-dimensional modified Toda lattice through straightening out of the relativistic Toda flows, J. Phys. Soc. Japan 72 (2003), 3063-3069.
- Dickey L.A., Modified KP and discrete KP, Lett. Math. Phys. 48 (1999), 277-289.
- Guan W., Wang S., Rui W., Cheng J., Lax structure and tau function for large BKP hierarchy, arXiv:2404.09815.
- Hirota R., The direct method in soliton theory, Cambridge Tracts in Math., Vol. 155, Cambridge University Press, Cambridge, 2004.
- Jimbo M., Miwa T., Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), 943-1001.
- Kac V.G., van de Leur J.W., Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions, Jpn. J. Math. 13 (2018), 235-271, arXiv:1801.02845.
- Kiso K., A remark on the commuting flows defined by Lax equations, Progr. Theoret. Phys. 83 (1990), 1108-1114.
- Krichever I., Zabrodin A., Constrained Toda hierarchy and turning points of the Ruijsenaars-Schneider model, Lett. Math. Phys. 112 (2022), 23, 26 pages, arXiv:2109.05240.
- Krichever I., Zabrodin A., Toda lattice with constraint of type B, Phys. D 453 (2023), 133827, 11 pages, arXiv:2210.12534.
- Kupershmidt B.A., Mathematics of dispersive water waves, Comm. Math. Phys. 99 (1985), 51-73.
- Kupershmidt B.A., Canonical property of the Miura maps between the mKP and KP hierarchies, continuous and discrete, Comm. Math. Phys. 167 (1995), 351-371.
- Liu S., Cheng Y., He J., The determinant representation of the gauge transformation for the discrete KP hierarchy, Sci. China Math. 53 (2010), 1195-1206, arXiv:0904.1868.
- Liu Y., Yan X., Wang J., Cheng J., Generalized bigraded Toda hierarchy, J. Math. Phys. 65 (2024), 103506, arXiv:2405.19952.
- Mikhailov A.V., Integrability of a two-dimensional generalization of the Toda chain, JETP Lett. 30 (1979), 414-418.
- Mikhailov A.V., Olshanetsky M.A., Perelomov A.M., Two-dimensional generalized Toda lattice, Comm. Math. Phys. 79 (1981), 473-488.
- Prokofev V.V., Zabrodin A.V., Tau-function of the B-Toda hierarchy, Theoret. Math. Phys. 217 (2023), 1673-1688, arXiv:2303.17467.
- Shaw J.-C., Tu M.-H., Miura and auto-Bäcklund transformations for the cKP and cmKP hierarchies, J. Math. Phys. 38 (1997), 5756-5773.
- Takasaki K., Toda hierarchies and their applications, J. Phys. A 51 (2018), 203001, 35 pages, arXiv:1801.09924.
- Ueno K., Takasaki K., Toda lattice hierarchy, in Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., Vol. 4, North-Holland, Amsterdam, 1984, 1-95.
- van de Leur J.W., Orlov A.Yu., Pfaffian and determinantal tau functions, Lett. Math. Phys. 105 (2015), 1499-1531, arXiv:1404.6076.
- Yang Y., Cheng J., Bilinear equations in Darboux transformations by boson-fermion correspondence, Phys. D 433 (2022), 133198, 30 pages, arXiv:2022.13319.
- Zabrodin A.V., Hirota difference equations, Theoret. and Math. Phys. 113 (1997), 1347-1392.
- Zakharov V.E., Mikhailov A.V., Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method, Sov. Phys. JEPT 47 (1978), 1017-1027.
- Zakharov V.E., Takhtadzhyan L.A., Equivalence of a nonlinear Schrödinger equation and a Heisenberg ferromagnet equation, Theoret. and Math. Phys. 38 (1979), 17-23.
|
|