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Abstract. In this paper, modified Toda (mToda) equation is generalized to form an inte-
grable hierarchy in the framework of Sato theory, which is therefore called mToda hierarchy.
Inspired by the fact that Toda hierarchy is 2-component generalization of usual KP hierar-
chy, mToda hierarchy is constructed from bilinear equations of 2-component first modified
KP hierarchy, where we provide the corresponding equivalence with Lax formulations. Then
it is demonstrated that there are Miura links between Toda and mToda hierarchies, which
means the definition of mToda hierarchy here is reasonable. Finally, Darboux transforma-
tions of the Toda and mToda hierarchies are also constructed by using the aforementioned
Miura links.
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1 Introduction

The modified KP (mKP) hierarchy [2, 4, 7, 8, 9, 12, 13] has obtained great success in mathe-
matical physics and integrable systems, which is related to the famous KP hierarchy by Miura
links [19, 23]. As one of the most important generalizations of KP hierarchy, Toda hierar-
chy [20, 21] also plays a key role in mathematical physics. For specific equations, Toda hierar-
chy contains the famous Toda equation, which has many important generalization [3, 6, 16, 17].
Among them, we are more interested in modified Toda (mToda) equation defined by

u(s)y = u(s)(v(s)− v(s+ 1)), v(s)x = v(s)(u(s)− u(s− 1)),

which is related with Toda equation by Miura transformation [6]. If further set u(s) = ∂xφ(s),
v(s) = eφ(s)−φ(s−1), then mToda equation can be rewritten into exponential form

∂x∂yφ(s) +
(
eφ(s+1)−φ(s) − eφ(s)−φ(s−1)

)
∂xφ(s) = 0.

Next, we expect to construct one integrable hierarchy containing this mToda equation, which
will be called mToda hierarchy. Here the expected mToda hierarchy should be related with
Toda hierarchy by Miura links just like the KP and mKP hierarchies. In fact, notice that Toda
hierarchy is the 2-component generalization [7, 15, 21] of the usual KP hierarchy, while the KP
hierarchy has Miura links [19, 23] with the first mKP hierarchy. Thus, it is expected that mToda
hierarchy is the 2-component first mKP hierarchy [7, 22]
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)∣∣
x(i) 7→x(i)−[z−1]

, and ξ
(
x(i), z

)
=
∑

k≥1 x
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k zk.

Here we will investigate the Lax structure of the 2-component first mKP hierarchy (1.1). It
is found that the corresponding Lax operators are expressed by pseudo-difference operators

L1 = u−1(s,x)Λ +
∞∑
i=0

ui(s,x)Λ
−i, u−1 ̸= 0,

L2 = ū−1(s,x)Λ
−1 +

∞∑
i=0

ūi(s,x)Λ
i, ū−1 ̸= 0,

satisfying the Lax equations

∂
x
(1)
n
Lj =

[(
Ln
1

)
∆,≥1

, Lj

]
, ∂

x
(2)
n
Lj =

[(
Ln
2

)
∆∗,≥1

, Lj

]
, j = 1, 2, (1.2)

where Λ is the shift operator defined by Λ(f(s)) = f(s+1), ∆ = Λ− 1 and ∆∗ = Λ−1 − 1. One
can refer to Section 2 for more details on the above symbols. Here we would like to comment that
pseudo-difference operators are widely used in integrable systems [1, 4, 20, 24]. And note that
we find that Lax equations (1.2) contain the mToda equation, which means that 2-component
first mKP hierarchy is just the desired mToda integrable hierarchy.

Notice that in Lax formulations, the initial term in L1 for mToda is u−1(x)Λ for some
nonzero function u−1(x), while for Toda hierarchy, it is just Λ. Another differences are the flow
generators. For mToda flow generators, they have the form A∆,≥1 or A∆∗,≥1, while in Toda
case, they are AΛ,≥0 or AΛ,<0. It is found here that mToda hierarchy is gauge equivalent to
Toda hierarchy, which is called the Miura links, that is,

mToda

anti-Miura: Toda

T1=q(s)−1 33

T2=∆−1r(s) ++ mToda

Toda

Miura: mToda

T1=c−1
0 (s) 33

T2=c−1
0 (s+1)∆ ++ Toda

where q(s) and r(s) are Toda eigenfunction and adjoint eigenfunction, and c0(s) is the coefficient
of Λ0 in S1 defined by L1 = S1ΛS

−1
1 . The existence of Miura links confirms again that (1.2) is

the expected mToda hierarchy. Here we would like to point out that Miura links discussed here
are just gauge transformations in integrable systems. And the concept of gauge transformations
was firstly introduced in [25, 26].

For mToda hierarchy (1.2) discussed here, it has been used in various aspects in integrable
system. Recently, mToda hierarchy has emerged in different types of constraints of Toda hier-
archy, including constrained Toda hierarchy (C-Toda hierarchy) [10] as well as the Toda lattice
with the constraint of type B (B-Toda hierarchy) [5, 11, 18]. Both C-Toda and B-Toda hierar-
chies are sub-hierarchies of mToda hierarchy. The mToda hierarchy can also be used to describe
the spectral representation of Toda eigenfunction and Toda adjoint eigenfunction (see [15]).

Besides the results mentioned before, we also show that the two mToda tau functions τ0,s(x)
and τ1,s(x) are Toda tau functions, which can be linked by Toda eigenfunction or Toda adjoint
eigenfunction. We also derive the mToda bilinear equation from the mToda Lax equations, and
prove the existence of mToda tau functions. Based upon Miura links, the Toda and mToda
Darboux transformations are also obtained by

Toda
anti-Miura−−−−−−→ mToda

Miura−−−→ Toda, mToda
Miura−−−→ Toda

anti-Miura−−−−−−→ mToda.
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This paper is organized as follows. Firstly, in Section 2, some notations and properties for
formal difference operators are given, which will be used in discussion of mToda Lax equations.
In Section 3, starting from the bilinear equation, we derive the Lax formulations of the mToda
hierarchy. We also prove that the bilinear equation can be obtained from the Lax equations.
In Section 4, two kinds of anti-Miura and Miura transformations between the Toda and mToda
hierarchies are discussed. Then, in Section 5, we discuss mToda tau functions and their relations
with Toda tau functions. Finally, in Section 6, the Darboux transformations of Toda and mToda
hierarchies are constructed by means of Miura links.

2 Formal difference operators

In this section, let us review some important properties about formal difference operators, which
will be used in the discussion of mToda Lax equations. Symbols involving ∆ and ∆∗ used here
can be found in [14]. Let A denote the algebra of smooth complex functions in the indeter-
minate s and variables x. The space A

[[
Λ,Λ−1

]]
of formal difference operators consists of all

expressions of the form

A =
∑
m∈Z

am(s)Λm.

Define the following symbols for above A:

AP =
∑

m satisfies P

am(s)Λm, A[k] = ak(s)Λ
k, A∗ =

∑
m∈Z

Λ−mam(s),

where P ∈ {≥ k,≤ k,> k,< k}. Let A((Λ)) and A
((
Λ−1

))
denote the subspace of A

[[
Λ,Λ−1

]]
,

whose elements take the following forms, respectively:

∞∑
m=m0

am(s)Λm ∈ A((Λ)),

n0∑
m=−∞

am(s)Λm ∈ A
((
Λ−1

))
,

for some fixed integers m0 and n0. Both A((Λ)) and A
((
Λ−1

))
are the associative rings, where

the multiplication is defined by(
f(s)Λi

)(
g(s)Λj

)
= f(s)g(s+ i)Λi+j .

Given A ∈ A
((
Λ±1

))
and f ∈ A, we use Af or A · f to denote the multiplication of A with f ,

while A(f) means the action of A on f .
Introduce the difference operator ∆ = Λ − 1 and its adjoint operator ∆∗ = Λ−1 − 1, and

define the following multiplication operations as follows [14], for j ∈ Z:

∆j · f(s) =
∞∑
i=0

(
j

i

)
(∆i(f))(s+ j − i)∆j−i,

∆∗j · f(s) =
∞∑
i=0

(
j

i

)
(∆∗i(f))(s+ j − i)∆∗j−i.

Then two associative rings A
((
∆−1

))
and A

((
∆∗−1

))
are of the following forms:

k0∑
m=−∞

bm(s)∆m ∈ A
((
∆−1

))
,

l0∑
m=−∞

bm(s)∆∗m ∈ A
((
∆∗)−1)

,
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for some fixed integers k0 and l0. If define the following expansions for Q ∈
{
Λ,Λ−1

}
and

R ∈ {∆,∆∗} by

(Q− 1)−1 =

∞∑
j=1

Q−j , (R+ 1)−k =

∞∑
j=0

(
−k

j

)
R−k−j , k > 0, (2.1)

then for arbitrary formal difference operator A ∈ A
((
Λ−1

))
(resp. A((Λ))), it can be trans-

formed into A ∈ A
((
∆−1

)) (
resp. A

((
∆∗)−1))

by (2.1) and Λ = ∆ + 1
(
resp. Λ−1 = ∆∗ + 1

)
,

and vice versa. Then we have

A
((
Λ−1

))
= A

((
∆−1

))
, A((Λ)) = A

((
∆∗)−1)

.

Similar to AP with P ∈ {≥ k,≤ k,> k,< k} and A[k], we can also define A∆,P (or A∆∗,P ) to
be the part of A satisfying property P with respect to operator ∆ (or ∆∗), and A∆,[k]

(
or A∆∗,[k]

)
to be the part ∆k

(
or ∆∗k). In what follows, we will denote ιΛ±1A be the expansion of A in terms

of operator Λi in A
((
Λ±1

))
.

Lemma 2.1. For any formal difference operator A ∈ A
[[
Λ,Λ−1

]]
,

A≥0 = A∆,≥0, A≤0 = A∆∗,≥0,

A∆,[0] = A≥0(1), A∆∗,[0] = A≤0(1).

Proof. Firstly, by (2.1), we can find that Λ−k, k > 0 can not produce non-negative ∆-powers,
therefore if assume A =

∑
i aiΛ

i,

A≥0 =
∑
i≥0

aiΛ
i =

∑
i≥0

ai(∆ + 1)i = A∆,≥0.

If further apply A≥0 = A∆,≥0 to 1, we can prove A∆,[0] = A≥0(1). Others can be similarly
proved. ■

Lemma 2.2. For any formal difference operator A ∈ A
[[
Λ,Λ−1

]]
,(

A · ιΛ−1∆∗−1
)
≥1

·∆∗ = A≥1 −A≥1|Λ=1 = A∆,≥1,(
A · ιΛ−1∆∗−1

)
≤0

·∆∗ = A<0 +A≥0|Λ=1 = A∆,≤0,(
A · ιΛ∆∗−1

)
≥1

·∆∗ = A>0 +A≤0|Λ=1 = A∆∗,≤0,(
A · ιΛ∆∗−1

)
≤0

·∆∗ = A<0 −A<0|Λ=1 = A∆∗,≥1.

Proof. Firstly, by Lemma 2.1,(
A · ιΛ−1∆∗−1

)
≥1

·∆∗ =
(
A · ιΛ−1∆−1

)
≥0

·∆ =
(
A · ιΛ−1∆−1

)
∆,≥0

·∆

=
(
A∆,≥1 · ιΛ−1∆−1

)
·∆ = A∆,≥1.

If subtract A from the first relation, we can obtain the second one. The third and fourth formulas
can be similarly obtained. ■

Lemma 2.3. For any formal difference operator A ∈ A
[[
Λ,Λ−1

]]
and any k ∈ Z,

∆k ·A · ιΛ±1∆−k = ∆∗k · Λk(A) · ιΛ±1∆∗−k,(
ιΛ∆

−k ·A∗ ·∆k
)
∆∗,≥k

= ιΛ∆
−k · (A∆,≥k)

∗ ·∆k = ιΛ−1∆−k · (A∆,≥k)
∗ ·∆k,(

ιΛ−1∆−k ·A∗ ·∆k
)
∆,≥k

= ιΛ∆
−k · (A∆∗,≥k)

∗ ·∆k = ιΛ−1∆−k · (A∆∗,≥k)
∗ ·∆k.
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Proof. The first relation is derived by ∆∗ = −Λ−1∆ and ιΛ±1∆∗−1 = −Λ · ιΛ±1∆−1. If assume
A =

∑
m am(s)∆m, then by ιΛ±1∆∗−k ·∆∗k = 1,

(
ιΛ∆

−k ·A∗ ·∆k
)
∆∗,≥k

=

((
ιΛ∆

∗−kΛ−k
)∑

m

∆∗mam(s)
(
Λk∆∗k))

∆∗,≥k

=
∑
m≥k

∆∗m−kam(s− k)∆∗k,

ιΛ±1∆−k ·
(
A∆,≥k

)∗ ·∆k = ιΛ±1

(
∆∗−kΛ−k

) ∞∑
m≥k

∆∗mam(s)
(
Λk∆∗k)

=

∞∑
m≥k

∆∗m−kam(s− k)∆∗k,

which imply the second relation. Similarly, we can prove the third formula. ■

Lemma 2.4. For any formal difference operator A ∈ A
[[
Λ,Λ−1

]]
and any function f ∈ A,(

f−1 ·A · f
)
∆,≥1

= f−1 ·A≥0 · f − f−1 ·A≥0(f) = f−1 ·A>0 · f − f−1 ·A>0(f),(
f−1 ·A · f

)
∆∗,≥1

= f−1 ·A≤0 · f − f−1 ·A≤0(f) = f−1 ·A<0 · f − f−1 ·A<0(f),(
ιΛ−1∆−1 · f ·A · f−1 ·∆

)
∆,≥1

= ιΛ±1∆−1 · f ·A≥0 · f−1 ·∆− ιΛ±1∆−1 · (A≥0)
∗(f) · f−1 ·∆

= ιΛ±1∆−1 · f ·A>0 · f−1 ·∆− ιΛ±1∆−1 · (A>0)
∗(f) · f−1 ·∆,(

ιΛ∆
∗−1 · f ·A · f−1 ·∆∗)

∆∗,≥1

= ιΛ±1∆∗−1 · f ·A≤0 · f−1 ·∆∗ − ιΛ±1∆∗−1 · (A≤0)
∗(f) · f−1 ·∆

= ιΛ±1∆∗−1 · f ·A<0 · f−1 ·∆∗ − ιΛ±1∆∗−1 · (A<0)
∗(f) · f−1 ·∆∗.

Proof. By using Lemma 2.1, we can get(
f−1 ·A · f

)
∆,≥1

=
(
f−1 ·A · f

)
∆,≥0

−
(
f−1 ·A · f

)
∆,[0]

=
(
f−1 ·A · f

)
≥0

−
(
f−1 ·A · f

)
≥0

|Λ=1

= f−1 ·A≥0 · f − f−1 ·A≥0(f)

= f−1 ·A>0 · f − f−1 ·A>0(f).

Similarly, we can get the second formula. As for the third formula, it can be derived by the
third relation in Lemma 2.3 with k = 1 and formula for

(
f−1 · A · f

)
∆∗,≥1

. As for the fourth
formula, it can be proved by similar to the third one. ■

3 Lax formulations of mToda hierarchy

In this section, we first derive the Lax formulations of the mToda hierarchy from the bilinear
equation (1.1). Then, we also provide the proof of bilinear equation obtained from the Lax
formulations.

For 2-component first mKP hierarchy (1.1), let us introduce wave functions Ψj(s,x, z),
j=1, 2, and their adjoint Ψ∗

j (s,x, z) in terms of the tau function as follows:

Ψ1(s,x, z) =
τ0,s
(
x−

[
z−1
]
1

)
τ1,s(x)

zseξ(x
(1),z) = w(1)(s,x, z)zseξ(x

(1),z), (3.1)



6 W. Rui, W. Guan, Y. Yang and J. Cheng

Ψ∗
1(s,x, z) =

τ1,s
(
x+

[
z−1
]
1

)
τ0,s(x)

z−se−ξ(x(1),z) = w(1)∗(s,x, z)z−se−ξ(x(1),z), (3.2)

Ψ2(s,x, z) =
τ0,s+1(x− [z]2)

τ1,s(x)
zseξ(x

(2),z−1) = w(2)(s,x, z)zseξ(x
(2),z−1), (3.3)

Ψ∗
2(s,x, z) =

τ1,s−1(x+ [z]2)

τ0,s(x)
z−s+1e−ξ(x(2),z−1) = w(2)∗(s,x, z)z−se−ξ(x(2),z−1), (3.4)

where w(j)(s,x, z) and w(j)∗(s,x, z) are formal power series with respect to z−1 (for j = 1) and z
(for j = 2)

w(1)(s,x, z) =

∞∑
i=0

ci(s,x)z
−i, w(2)(s,x, z) =

∞∑
i=0

c̄i(s,x)z
i,

w(1)∗(s,x, z) =

∞∑
i=0

c′i(s,x)z
−i, w(2)∗(s,x, z) =

∞∑
i=0

c̄′i(s,x)z
i+1,

with c0(s,x) ̸= 0 and c̄0(s,x) ̸= 0. Hence, the bilinear equation (1.1) can be rewritten into∮
C∞

dz

2πiz
Ψ1(s,x, z)Ψ

∗
1

(
s′,x′, z

)
+

∮
C0

dz

2πiz
Ψ2(s,x, z)Ψ

∗
2(s

′,x′, z) = 1,

where C∞ denotes the circle around z = ∞, while C0 denotes the circle around z = 0. Both C∞
and C0 are anticlockwise.

Next, introduce the wave operators Wj and W̃j , j = 1, 2, as

W1(s,x,Λ) = S1(s,x,Λ)e
ξ(x(1),Λ), W2(s,x,Λ) = S2(s,x,Λ)e

ξ(x(2),Λ−1),

W̃1(s,x,Λ) = S̃1(s,x,Λ)e
−ξ(x(1),Λ−1), W̃2(s,x,Λ) = S̃2(s,x,Λ)e

−ξ(x(2),Λ), (3.5)

where Sj and S̃j , j = 1, 2, are also called wave operators given by

S1(s,x,Λ) =
∑
i≥0

ci(s,x)Λ
−i, S2(s,x,Λ) =

∑
i≥0

c̄i(s,x)Λ
i,

S̃1(s,x,Λ) =
∑
i≥0

c′i(s,x)Λ
i, S̃2(s,x,Λ) =

∑
i≥0

c̄′i(s,x)Λ
−i−1.

It can be clearly found from (3.1)–(3.4) and (3.5) that the wave functions and the adjoint wave
functions are linked with wave operators in the following manner:

Ψj(s,x, z) = Wj(s,x,Λ)(z
s), Ψ∗

j (s,x, z) = W̃j(s,x,Λ)(z
−s), j = 1, 2.

To derive the Lax formulations of the mToda hierarchy, the following lemma is necessary.

Lemma 3.1 ([1]). Let A(s,Λ) =
∑

i∈Z ai(s)Λ
i, B(s,Λ) =

∑
i∈Z bi(s)Λ

iare two pseudo-difference
operators, then

A(s,Λ) ·B∗(s,Λ) =
∑
i∈Z

Reszz
−1
(
A(s,Λ)

(
z±s
)
·B(s+ i,Λ)

(
z∓s∓i

))
Λi.

According to Lemma 3.1, one has

W1(s,x,Λ)W̃
∗
1

(
s,x′,Λ

)
+W2(s,x,Λ)W̃

∗
2

(
s,x′,Λ

)
=
∑
i∈Z

Λi,

namely,

S1(s,x,Λ)e
ξ(x(1)−x′(1),Λ)S̃∗

1

(
s,x′,Λ

)
+ S2(s,x,Λ)e

ξ(x(2)−x′(2),Λ−1)S̃∗
2

(
s,x′,Λ

)
=
∑
i∈Z

Λi. (3.6)
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Theorem 3.2. The wave operators have the relations

S̃1 = −ιΛ∆
−1
(
S∗
1

)−1
, S̃2 = ιΛ−1∆−1

(
S∗
2

)−1
, (3.7)

W̃1 = −ιΛ−1∆−1
(
W ∗

1

)−1
, W̃2 = ιΛ∆

−1
(
W ∗

2

)−1
, (3.8)

where ιΛ∆
−1 = −

∑
i≥0 Λ

i and ιΛ−1∆−1 =
∑

i≥1 Λ
−i. Moreover, they satisfy the following

evolution equations:

∂
x
(1)
n
S1 = −

(
S1Λ

nS−1
1

)
∆,≤0

S1, ∂
x
(1)
n
S2 =

(
S1Λ

nS−1
1

)
∆,≥1

S2, (3.9)

∂
x
(2)
n
S1 =

(
S2Λ

−nS−1
2

)
∆∗,≥1

S1, ∂
x
(2)
n
S2 = −

(
S2Λ

−nS−1
2

)
∆∗,≤0

S2,

∂
x
(1)
n
Wj =

(
S1Λ

nS−1
1

)
∆,≥1

Wj , ∂
x
(2)
n
Wj =

(
S2Λ

−nS−1
2

)
∆∗,≥1

Wj .

Proof. Firstly, by substituting x′ = x into expression (3.6) and comparing the non-positive
and positive powers of Λ on both sides, we can obtain the following relations:

S1(s,x,Λ)S̃
∗
1(s,x,Λ) = −ιΛ−1∆∗−1, S2(s,x,Λ)S̃

∗
2(s,x,Λ) = ιΛ∆

∗−1, (3.10)

which implies (3.7) and (3.8). Next, by differentiating (3.6) with respect to x
(1)
n and letting

x′ = x, we have

∂
x
(1)
n
S1 · S̃∗

1 + S1Λ
nS̃∗

1 + ∂
x
(1)
n
S2 · S̃∗

2 = 0. (3.11)

Hence, taking the positive power and non-positive power of Λ in (3.11) and making use of (3.10),
we can get, respectively,

∂
x
(1)
n
S2 =

(
S1Λ

nS−1
1 ιΛ−1∆∗−1

)
≥1

∆∗S2, ∂
x
(1)
n
S1 = −

(
S1Λ

nS−1
1 ιΛ−1∆∗−1

)
≤0

∆∗S1.

Then by Lemma 2.2, we have

∂
x
(1)
n
S2 =

((
S1Λ

nS−1
1

)
≥1

−
(
S1Λ

nS−1
1

)
≥1

|Λ=1

)
S2 =

(
S1Λ

nS−1
1

)
∆,≥1

S2,

∂
x
(1)
n
S1 = −

((
S1Λ

nS−1
1

)
<0

+
(
S1Λ

nS−1
1

)
≥0

|Λ=1

)
S1 = −

(
S1Λ

nS−1
1

)
∆,≤0

S1.

Similarly, we can obtain ∂
x
(2)
n
Si. ■

Further introduce the Lax operators L1 and L2 of mToda hierarchy as

L1 = W1ΛW
−1
1 =

∞∑
i=−1

ui(s,x)Λ
−i ∈ A

((
Λ−1

))
,

L2 = W2Λ
−1W−1

2 =

∞∑
i=−1

ūi(s,x)Λ
i ∈ A((Λ)),

then Lax equations follow from Theorem 3.2

∂
x
(1)
n
Lj =

[
B(1)

n , Lj

]
, ∂

x
(2)
n
Lj =

[
B(2)

n , Lj

]
, j = 1, 2, (3.12)

where B
(1)
n =

(
S1Λ

nS−1
1

)
∆,≥1

, B
(2)
n =

(
S2Λ

−nS−1
2

)
∆∗,≥1

.

Corollary 3.3. Wave functions Ψj and the adjoint wave functions Ψ∗
j , j = 1, 2, satisfy the

auxiliary linear equations

L1(Ψ1) = zΨ1, L2(Ψ2) = z−1Ψ2,

∂
x
(1)
n
Ψj = B(1)

n (Ψj), ∂
x
(2)
n
Ψj = B(2)

n (Ψj),(
ιΛ−1∆−1L∗

1∆
)
(Ψ∗

1) = zΨ∗
1,

(
ιΛ∆

−1L∗
2∆
)
(Ψ∗

2) = z−1Ψ∗
2,

∂
x
(1)
n
Ψ∗

j = −
(
ιΛ−1∆−1B(1)∗

n ∆
)
(Ψ∗

j ), ∂
x
(2)
n
Ψ∗

j = −
(
ιΛ∆

−1B(2)∗
n ∆

)
(Ψ∗

j ).
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The following proposition states that mToda is consistent, that is,
[
∂
x
(i)
n
, ∂

x
(j)
m

]
= 0.

Proposition 3.4. B
(j)
m satisfies the following relation:

∂
x
(i)
n
B(j)

m − ∂
x
(j)
m
B(i)

n +
[
B(j)

m , B(i)
n

]
= 0, i, j = 1, 2. (3.13)

Proof. Here we only prove the case of i = 1, j = 2, other cases are similar. Firstly, denote

Ai,j = ∂
x
(i)
n
B(j)

m − ∂
x
(j)
m
B(i)

n +
[
B(j)

m , B(i)
n

]
,

then by (3.12), B
(1)
n = (Ln

1 )≥1 − (Ln
1 )≥1|Λ=1 and B

(2)
n = (Lm

2 )<0 − (Lm
2 )<0|Λ=1, we have

(A1,2)>0 = −∂
x
(2)
m
(Ln

1 )>0 +
[
B(2)

m , B(1)
n

]
>0

=
(
−∂

x
(2)
m
(Ln

1 ) +
[
B(2)

m , Ln
1

])
>0

= 0.

Similarly, we can prove (A1,2)<0. Therefore, by A1,2(1) = 0,

(A1,2)[0] = −((A1,2)>0 + (A1,2)<0)(1) = 0,

which means A1,2 = 0. ■

Example 3.5. Let us give some explicit examples of nonlinear differential-difference equations
of mToda hierarchy. Taking m = n = 1, we have

B
(1)
1 = u−1(s,x)Λ− u−1(s,x), B

(2)
1 = ū−1(s,x)Λ

−1 − ū−1(s,x),

then it follows from (3.13) that

∂
x
(1)
1

ū−1(s,x) + ū−1(s,x)(u−1(s,x)− u−1(s− 1,x)) = 0, (3.14)

− ∂
x
(2)
1

u−1(s,x) + u−1(s,x)(ū−1(s+ 1,x)− ū−1(s,x)) = 0. (3.15)

Equations (3.14) and (3.15) are just the mToda equation [3, 6] mentioned in the introduction.

Conversely, if we start from the evolution equation of wave operators

∂
x
(1)
n
S1 = −

(
S1Λ

nS−1
1

)
∆,≤0

S1, ∂
x
(1)
n
S2 =

(
S1Λ

nS−1
1

)
∆,≥1

S2,

∂
x
(2)
n
S1 =

(
S2Λ

−nS−1
2

)
∆∗,≥1

S1, ∂
x
(2)
n
S2 = −

(
S2Λ

−nS−1
2

)
∆∗,≤0

S2,

∂
x
(1)
n
Wj =

(
S1Λ

nS−1
1

)
∆,≥1

Wj , ∂
x
(2)
n
Wj =

(
S2Λ

−nS−1
2

)
∆∗,≥1

Wj ,

then we have the following theorem.

Theorem 3.6. Given wave operators satisfying above relations and set

Ψ1(s,x, z) = W1(z
s), Ψ∗

1(s,x, z) = −ιΛ−1∆−1(W ∗
1 )

−1(z−s),

Ψ2(s,x, z) = W2(z
s), Ψ∗

2(s,x, z) = ιΛ∆
−1(W ∗

2 )
−1(z−s), (3.16)

then Ψj(s,x, z) and Ψ∗
j (s,x, z), j = 1, 2, satisfy the bilinear identity∮

C∞

dz

2πiz
Ψ1(s,x, z)Ψ

∗
1

(
s′,x′, z

)
+

∮
C0

dz

2πiz
Ψ2(s,x, z)Ψ

∗
1

(
s′,x′, z

)
= 1. (3.17)
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Proof. Firstly, it is obvious that

−W1(s,x,Λ)W
−1
1 (s,x,Λ)ιΛ−1∆∗−1 +W2(s,x,Λ)W

−1
2 (s,x,Λ)ιΛ∆

∗−1 =
∑
i∈Z

Λi.

It follows from evolution equations of Wj that

∂
x
(1)
n
W1 ·W−1

1 = ∂
x
(1)
n
W2 ·W−1

2 , ∂
x
(2)
n
W1 ·W−1

1 = ∂
x
(2)
n
W2 ·W−1

2 .

Therefore, by induction on the order of derivatives with x(1) and x(2), we can get for α =
(α1, α2, . . . ) ≥ 0, β = (β1, β2, . . . ) ≥ 0,

−∂α
x(1)∂

β

x(2)W1 ·W−1
1 ιΛ−1∆∗−1 + ∂α

x(1)∂
β

x(2)W2 ·W−1
2 ιΛ∆

∗−1 =


∑
j∈Z

Λj , (α, β) = (0,0),

0, (α, β) ̸= (0,0),

where

∂α
x(1) = ∂α1

x
(1)
1

∂α2

x
(1)
2

· · · , and ∂β

x(2) = ∂β1

x
(2)
1

∂β2

x
(2)
2

· · · .

By making use of Taylor expansion, finally it can be found that

−W1(s,x,Λ)W1(s,x
′,Λ)−1ιΛ−1∆∗−1 +W2(s,x,Λ)W2(s,x

′,Λ)−1ιΛ∆
∗−1 =

∑
i∈Z

Λi,

which implies (3.17) by applying Lemma 3.1. ■

4 Anti-Miura and Miura transformations between Toda
and mToda hierarchies

In this section, we first briefly introduce some basic facts about the Toda hierarchy and the
automorphism of Toda and mToda hierarchies. Based on these, we will discuss the anti-Miura
and Miura transformations between the Toda and mToda hierarchies. In this paper, we adopt
the following convention, the Miura transformation refer to the transformation from mToda to
Toda, whereas the anti-Miura transformation is the one from Toda to mToda.

4.1 Basic facts about Toda hierarchy and its self-transformation

Recall that Toda hierarchy [20, 21] is defined by the following Lax equations:

∂
x
(1)
n
Lj =

[
(Ln

1 )≥0,Lj

]
, ∂

x
(2)
n
Lj =

[
(Ln

2 )<0,Lj

]
, (4.1)

where Toda Lax operators are given by

L1(s,x,Λ) = Λ +

∞∑
i=0

vi(s,x)Λ
−i, L2(s,x,Λ) = v̄−1(s,x)Λ

−1 +

∞∑
i=0

v̄i(s,x)Λ
i.

Let S1 and S1 be the Toda wave operators of the form

S1(s,x,Λ) = 1 +

∞∑
i=1

wi(s,x)Λ
−i, S2(s,x,Λ) =

∞∑
i=0

w̄i(s,x)Λ
i,
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by which the Lax operators can be expressed as

L1 = S1ΛS−1
1 , L2 = S2Λ

−1S−1
2 .

Then the Lax equations (4.1) are equivalent to the following Sato equations:

∂
x
(1)
n
S1 = −(Ln

1 )<0S1, ∂
x
(2)
n
S1 = (Ln

2 )<0S1,

∂
x
(1)
n
S2 = (Ln

1 )≥0S2, ∂
x
(2)
n
S2 = −(Ln

2 )≥0S2. (4.2)

The wave functions Φj and adjoint wave functions Φ∗
j , j = 1, 2, of the Toda hierarchy are

defined as

Φ1(s,x, z) = W1(s,x,Λ)(z
s), Φ2(s,x, z) = W2(s,x,Λ)(z

s),

Φ∗
1(s,x, z) =

(
W−1

1 (s,x,Λ)
)∗
(z−s), Φ∗

2(s,x, z) =
(
W−1

2 (s,x,Λ)
)∗
(z−s), (4.3)

where W1(s,x,Λ) = S1(s,x,Λ)e
ξ(x(1),Λ) and W2(s,x,Λ) = S2(s,x,Λ)e

ξ(x(2),Λ−1). It can be
verified that wave functions Φj and adjoint wave functions Φ∗

j , j = 1, 2, satisfy the following
auxiliary linear equations:

L1(Φ1) = zΦ1, L2(Φ2) = z−1Φ2, ∂
x
(1)
n
Φi = (Ln

1 )≥0(Φi), ∂
x
(2)
n
Φi = (Ln

2 )<0(Φi),

L∗
1(Φ

∗
1) = zΦ∗

1, L∗
2(Φ

∗
2) = z−1Φ∗

2, ∂
x
(1)
n
Φ∗
i = −(Ln

1 )
∗
≥0(Φ

∗
i ), ∂

x
(2)
n
Φ∗
i = −(Ln

2 )
∗
<0(Φ

∗
i ),

and the bilinear equation∮
C∞

dz

2πiz
Φ1(s,x, z)Φ

∗
1

(
s′,x′, z

)
=

∮
C0

dz

2πiz
Φ2(s,x, z)Φ

∗
2

(
s′,x′, z

)
. (4.4)

The Toda wave functions and adjoint wave functions can be generalized to the eigenfunction q(s)
and adjoint eigenfunction r(s) of the Toda hierarchy defined by

∂
x
(1)
n
q(s) = (Ln

1 )≥0(q(s)), ∂
x
(2)
n
q(s) = (Ln

2 )<0(q(s)), (4.5)

∂
x
(1)
n
r(s) = −((Ln

1 )≥0)
∗(r(s)), ∂

x
(2)
n
r(s) = −((Ln

2 )<0)
∗(r(s)).

There exists one tau function [21] τTodas (x) such that wave functions Φj and adjoint wave
functions Φ∗

j , j = 1, 2, can be expressed in terms of tau functions τTodas (x) as

Φ1(s,x, z) =
τTodas

(
x−

[
z−1
]
1

)
τTodas (x)

eξ(x
(1),z)zs,

Φ2(s,x, z) =
τTodas+1 (x− [z]2)

τTodas (x)
eξ(x

(2),z−1)zs, (4.6)

Φ1
∗(s,x, z) =

τTodas+1

(
x+

[
z−1
]
1

)
τTodas+1 (x)

e−ξ(x(1),z)z−s,

Φ2
∗(s,x, z) =

τTodas (x+ [z]2)

τTodas+1 (x)
e−ξ(x(2),z−1)z−s. (4.7)

Then the bilinear equation (4.4) can be expressed by Toda tau function∮
C∞

dz

2πi
τTodas

(
x−

[
z−1
]
1

)
τTodas′

(
x′ +

[
z−1
]
1

)
zs−s′eξ(x

(1)−x(1)′,z)

=

∮
C0

dz

2πi
τTodas+1

(
x− [z]2

)
τTodas′−1

(
x′ + [z]2

)
zs−s′eξ(x

(2)−x(2)′,z−1).
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Proposition 4.1. Assume Lj and Sj, j = 1, 2, are Toda Lax operators and wave operators,
respectively, and consider the following maps: π0 :

(
Li,Si, x

(1)
n , x

(2)
n

)
7→
(
L̃i, S̃i, x̃

(1)
n , x̃

(2)
n

)
with

L̃i = w̄0L∗
3−iw̄

−1
0 , S̃i = w̄0

(
S−1
3−i

)∗
, x̃(1)n = −x(2)n , x̃(2)n = −x(1)n ,

where w̄0 is the coefficient of Λ0 in wave function S2. Then π0 is a self-transformation of the
Toda hierarchy, that is,

∂
x̃
(1)
n
L̃j =

[
B̃(1)
n , L̃j

]
, ∂

x̃
(2)
n
L̃j =

[
B̃(2)
n , L̃j

]
,

∂
x̃
(1)
n
S̃1 = B̃(1)

n S̃1 − S̃1Λ
n, ∂

x̃
(2)
n
S̃1 = B̃(2)

n S̃1,

∂
x̃
(1)
n
S̃2 = B̃(1)

n S̃2, ∂
x̃
(2)
n
S̃2 = B̃(2)

n S̃2 − S̃2Λ
−n,

where B̃(1)
n =

(
L̃n
1

)
≥0

and B̃(2)
n =

(
L̃n
2

)
<0

.

Proof. Comparing coefficients of Λ0 on both sides of (4.2), we can get

∂
x
(1)
n
w̄0 = (Ln

1 )[0] · w̄0, ∂
x
(2)
n
w̄0 = −(Ln

2 )[0] · w̄0.

Then by using
(
A[0]

)∗
= A[0] and (A<0)

∗ = (A∗)>0, we have the following relations:

B̃(1)
n =

(
w̄0Ln∗

2 w̄−1
0

)
≥0

= w̄0(Ln∗
2 )[0]w̄

−1
0 +

(
w̄0Ln∗

2 w̄−1
0

)
>0

= (Ln
2 )[0] + w̄0(Ln∗

2 )>0w̄
−1
0

= −∂
x
(1)
n
w̄0 · w̄−1

0 + w̄0B(2)∗
n w̄−1

0 ,

B̃(2)
n =

(
w̄0Ln∗

1 w̄−1
0

)
<0

= w̄0(Ln∗
1 )<0w̄

−1
0 = w̄0(Ln

1 )
∗
>0w̄

−1
0 = w̄0B(1)∗

n w̄−1
0 − (Ln∗

1 )[0]

= w̄0B(1)∗
n w̄−1

0 − ∂
x
(2)
n
w̄0 · w̄−1

0 .

Finally, with these two relations, we can prove this proposition by direct computation. ■

Remark 4.2. Note that π2
0 = 1, thus we have π−1

0 = π0.

Corollary 4.3. Suppose q and r are Toda eigenfunction and adjoint eigenfunction with respect

to L1, respectively, and L̃j and x̃
(j)
n , j = 1, 2, are defined in Proposition 4.1, then we have

∂
x̃
(1)
n
(w̄0r(s)) =

(
L̃n
1

)
≥0

(w̄0r(s)), ∂
x̃
(2)
n
(w̄0r(s)) =

(
L̃n
2

)
<0

(w̄0r(s)),

∂
x̃
(1)
n

(
w̄−1
0 q(s)

)
= −

((
L̃n
1

)
≥0

)∗(
w̄−1
0 q(s)

)
, ∂

x̃
(2)
n

(
w̄−1
0 q(s)

)
= −

((
L̃n
2

)
<0

)∗(
w̄−1
0 q(s)

)
,

which means that w̄0r and w̄−1
0 q can be seen as the Toda eigenfunction and adjoint eigenfunction

with respect to L̃i.

4.2 Basic facts about the self-transformation of mToda hierarchies

The following propositions give us a self-transformation of mToda hierarchy.

Proposition 4.4. Assume Lj and Sj, j = 1, 2, are the Lax operators and the dressing operators
of mToda, respectively. Consider the following the map π1 :

(
Li, Si, x

(1)
n , x

(2)
n

)
→
(
L̃i, S̃i, x̃

(1)
n , x̃

(2)
n

)
with

L̃1 = ιΛ−1∆−1L∗
2∆, L̃2 = ιΛ∆

−1L∗
1∆,

S̃1 = ιΛ−1∆−1
(
S−1
2

)∗
Λ, S̃2 = −ιΛ∆

−1
(
S−1
1

)∗
,

x̃(1)n = −x(2)n , x̃(2)n = −x(1)n ,
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then the map π1 is self-transformation of the mToda hierarchy, that is,

∂
x̃
(1)
n
L̃j =

[
B̃(1)

n , L̃j

]
, ∂

x̃
(2)
n
L̃j =

[
B̃(2)

n , L̃j

]
,

∂
x̃
(1)
n
S̃1 = B̃(1)

n S̃1 − S̃1Λ
n, ∂

x̃
(2)
n
S̃1 = B̃(2)

n S̃1,

∂
x̃
(1)
n
S̃2 = B̃(1)

n S̃2, ∂
x̃
(2)
n
S̃2 = B̃(2)

n S̃2 − S̃2Λ
−n,

where B̃
(1)
n =

(
L̃n
1

)
∆,≥1

and B̃
(2)
n =

(
L̃n
2

)
∆∗,≥1

. For symbols A∆,≥1 and A∆∗,≥1, they can be found
in the paragraph above Lemma 2.1.

Proof. Firstly, by using Lemma 2.3, we can get the following relations:

B̃(1)
n =

(
ιΛ−1∆−1(Ln

2 )
∗∆
)
∆,≥1

= ιΛ±1∆−1((Ln
2 )∆∗,≥1)

∗∆ = ιΛ±1∆−1B(2)∗
n ∆,

B̃(2)
n =

(
ιΛ∆

−1(Ln
1 )

∗∆
)
∆∗,≥1

= ιΛ±1∆−1((Ln
1 )∆,≥1)

∗∆ = ιΛ±1∆−1B(1)∗
n ∆.

Then by direct computation, we can at last prove this proposition. ■

Remark 4.5. Firstly, recall that L1 = u−1Λ +
∑∞

i=0 uiΛ
−i, L2 = ū−1Λ

−1 +
∑∞

i=0 ūiΛ
i. Then

we can find that L̃1 and L̃2 can be expressed by coefficients of L1 and L2 in the following way:

L̃1 = ū−1(s,x)Λ +
∞∑
l=0

(
ūl(s− l − 1,x) +

l−1∑
j=−1

(ūj(s− l − 1,x)− ūj(s− l,x))

)
Λ−l,

L̃2 = u−1(s− 1,x)Λ−1 +
∞∑
l=0

(
ul(s+ l,x) +

l−1∑
j=−1

(uj(s+ l,x)− uj(s+ l − 1,x))

)
Λl.

Next, notice that for arbitrary l ∈ Z,

AdΛl(Li(s)) = Λl · Li(s) · Λ−l = Li(s+ l), AdΛl(Si(s)) = Λl · Si(s) · Λ−l = Si(s+ l),

thus we can find AdΛl is also mToda self-transformation. Moreover, we can find that AdΛl

and π1 are commutative and AdΛ ◦ π2
1 = 1, then we get

π−1
1 = AdΛ ◦ π1.

4.3 Miura transformations from mToda to Toda

There exist two kinds of Miura transformation from mToda to Toda, where the first kind is
given by the following proposition.

Proposition 4.6. Given mToda Lax operators Li and wave operators Si, if denote T1 = c−1
0 (s)

with c0(s) being the coefficient of Λ0 in S1, and set

Li = T1LiT
−1
1 , Si = T1Si, i = 1, 2,

then Li are Toda Lax operators, Si are Toda wave operators, and c−1
0 (s) is the corresponding

Toda eigenfunction.

Proof. Firstly, for convenience denote B
(1)
n =

(
S1Λ

nS−1
1

)
∆,≥1

, B
(2)
n =

(
S2Λ

−nS−1
2

)
∆∗,≥1

and
B(1)
n =

(
S1Λ

nS−1
1

)
≥0

, B(2)
n =

(
S2Λ

−nS−1
2

)
<0

. Then by(
f−1 ·A · f

)
P
= f−1 ·AP · f for P ∈ {≥ k,≤ k,> k,< k, [k]},
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we can find that

B(1)
n =

(
S1Λ

nS−1
1

)
≥0

−
(
S1Λ

nS−1
1

)
≥0

(1) = c0 · B(1)
n · c−1

0 − c0 · B(1)
n

(
c−1
0

)
,

B(2)
n =

(
S1Λ

nS−1
1

)
<0

−
(
S1Λ

nS−1
1

)
<0

(1) = c0 · B(2)
n · c−1

0 − c0 · B(2)
n

(
c−1
0

)
.

Next, by comparing the coefficients of Λ0 of (3.9), we can get

∂
x
(1)
n
c−1
0 = B(1)

n

(
c−1
0

)
, ∂

x
(2)
n
c−1
0 = B(2)

n

(
c−1
0

)
,

which imply c−1
0 is the Toda eigenfunction corresponding to Si. Therefore, we can find

B(i)
n = c0 · B(i)

n · c−1
0 − c0 · ∂x(i)

n

(
c−1
0

)
,

that is,

B(i)
n = c−1

0 ·B(i)
n · c0 − c−1

0 ∂
x
(i)
n
(c0),

which implies this proposition. ■

Corollary 4.7. Assume Ψi and Ψ∗
i , i = 1, 2, are mToda wave functions and adjoint wave

functions defined by (3.16), respectively, and let

Φ1(s,x, z) = c−1
0 (s)Ψ1(s,x, z), Φ2(s,x, z) = c−1

0 (s)Ψ2(s,x, z), (4.8)

Φ∗
1(s,x, z) = −c0(s)∆(Ψ∗

1(s,x, z)), Φ∗
2(s,x, z) = c0(s)∆(Ψ∗

2(s,x, z)).

Then Φi and Φ∗
i , i = 1, 2, are Toda the wave functions and adjoint wave functions of Toda

hierarchy.

Proof. Assume Wi to be mToda wave operators, then Wi are the Toda wave operators and
thus Φi = c−1

0 Ψi are Toda wave functions by (3.16) and (4.3). Further, by

W∗−1
1 = −c0∆ ·

(
−ιΛ−1∆−1W ∗−1

1

)
and W∗−1

2 = c0∆ ·
(
ιΛ∆

−1W ∗−1
2

)
,

we can obtain relations between Φ∗
i and Ψ∗

i . ■

Besides the first Miura transformation T1, there also exists a second kind of Miura transfor-
mation from mToda to Toda

T2 = π0 ◦ T1 ◦ π−1
1 : (Li, Si) → (Li,Si), i = 1, 2,

which is showed in the following diagram:

mToda

(Li, Si)

mToda

(L̃i, S̃i)

Toda

(L̃i, S̃i)

Toda

(Li,Si)

π−1
1 T1 π0

Next, let us see the explicit procedure above.

� mToda
π−1
1−−→ mToda. By Remark 4.5, π−1

1 = AdΛ ◦ π1, thus we have

L1(s)
π−1
1−−→ L̃1(s) = ιΛ−1∆−1L∗

2(s+ 1)∆,

L2(s)
π−1
1−−→ L̃2(s) = ιΛ∆

−1L∗
1(s+ 1)∆,

S1(s)
π−1
1−−→ S̃1(s) = ιΛ−1∆−1

(
S−1
2 (s+ 1)

)∗
Λ,

S1(s)
π−1
1−−→ S̃2(s) = −ιΛ∆

−1
(
S−1
1 (s+ 1)

)∗
.

If denote c0(s) and c̄0(s) to be the coefficients of Λ0 in S1 and S2, respectively, it can be
found that the coefficient of Λ0 in S̃1 is c̄−1

0 (s), and Λ0-term in S̃2 is c−1
0 (s+ 1).
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� mToda
T1−→ Toda. In this case, T1 = c̄0(s),

L̃1
T1−→ L̃1 = c̄0(s)L̃1c̄

−1
0 (s) = c̄0(s)ιΛ−1∆−1L∗

2(s+ 1)∆c̄−1
0 (s),

L̃2
T1−→ L̃2 = c̄0(s)L̃2c̄

−1
0 (s) = c̄0(s)ιΛ∆

−1L∗
1(s+ 1)∆c̄−1

0 (s),

S̃1
T1−→ S̃1 = c̄0(s)S̃1 = c̄0(s)ιΛ−1∆−1

(
S−1
2 (s+ 1)

)∗
Λ,

S̃2
T1−→ S̃2 = c̄0(s)S̃2 = −c̄0(s)ιΛ∆

−1
(
S−1
1 (s+ 1)

)∗
.

Now the coefficient of Λ0 in S̃2 is c̄0(s)c
−1
0 (s+ 1).

� Toda
π0−→ Toda. Then

L̃1
π0−→ L1 = c̄0(s)c

−1
0 (s+ 1)L̃∗

2c̄
−1
0 (s)c0(s+ 1)

= c−1
0 (s+ 1)∆ · L1(s) · ιΛ−1∆−1c0(s+ 1),

L̃2
π0−→ L2 = c̄0(s)c

−1
0 (s+ 1)L̃∗

1c̄
−1
0 (s)c0(s+ 1)

= c−1
0 (s+ 1)∆ · L2(s) · ιΛ∆−1c0(s+ 1),

S̃1
π0−→ S1 = c̄0(s)c

−1
0 (s+ 1)S̃−1∗

2 = c−1
0 (s+ 1)∆ · S1(s)Λ

−1,

S̃2
π0−→ S2 = c̄0(s)c

−1
0 (s+ 1)S̃−1∗

1 = −c−1
0 (s+ 1)∆ · S2(s).

Let us summarize above discussion into the following proposition.

Proposition 4.8. Suppose Li and Si, i = 1, 2, are mToda Lax and wave operators, respectively,
where c0(s) is the coefficient of Λ0 in S1, and define

L1 = T2L1ιΛ−1T−1
2 , L2 = T2L2ιΛT

−1
2 ,

S1 = T2S1Λ
−1, S2 = −T2S2,

with operator T2 given by

T2 = c−1
0 (s+ 1)∆,

then Li and Si, i = 1, 2, are Toda Lax and wave operators, respectively.

Corollary 4.9. Under the same condition in Proposition 4.8, c0(s + 1) is the Toda adjoint
eigenfunction with respect to Lax operators Li, i = 1, 2.

Proof. In fact according to Lemma 2.4, we have

∂
x
(1)
n
S1 = ((Ln

1 )∆,≥1 − Ln
1 )S1 = −ιΛ−1∆−1c0(s+ 1) · (L1(s)

n)<0 · c−1
0 (s+ 1)∆ · S1(s)

− ιΛ−1∆−1 · (L1(s)
n)∗≥0(c0(s+ 1)) · c−1

0 (s+ 1)∆ · S1(s).

Compare the coefficients of Λ0 on both sides of the above equation, we have

∂
x
(1)
n
(c0(s)) = −((L1(s− 1)n)≥0)

∗(c0(s)).

Similarly, we can get ∂
x
(2)
n
(c0(s)) = −((L2(s− 1)n)<0)

∗(c0(s)). ■

Corollary 4.10. Assume Ψi and Ψ∗
i , i = 1, 2, are the mToda wave functions and adjoint wave

functions and let

Φ1(s,x, z) = z−1c−1
0 (s+ 1)∆(Ψ1(s,x, z)), Φ2(s,x, z) = −c−1

0 (s+ 1)∆(Ψ2(s,x, z)),

Φ∗
1(s,x, z) = zc0(s+ 1)Ψ∗

1(s+ 1,x, z), Φ∗
2(s,x, z) = c0(s+ 1)Ψ∗

2(s+ 1,x, z),

then Φi and Φ∗
i , i = 1, 2, are Toda wave functions and adjoint wave functions, respectively.
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4.4 Anti-Miura transformation from Toda to mToda

There exist two kinds of anti-Miura transformation from Toda to mToda, where the first kind
is given by the following proposition.

Proposition 4.11. Given Toda wave operators Si, i = 1, 2, and Toda Lax operators L, i = 1, 2,
if denote T1 = q(s)−1 with q(s) being Toda eigenfunction defined by (4.5), then Li = T1LiT −1

1

and Si = T1Si will be the mToda Lax operator and mToda wave operator, respectively.

Proof. Firstly, if for convenience denote B
(1)
n =

(
S1Λ

nS−1
1

)
∆,≥1

, B
(2)
n =

(
S2Λ

−nS−1
2

)
∆∗,≥1

and
B(1)
n =

(
S1Λ

nS−1
1

)
Λ,≥0

, B(2)
n =

(
S2Λ

−nS−1
2

)
Λ,<0

, then according to Lemma 2.4,

B(1)
n = (q−1S1Λ

nS−1
1 q)∆,≥1 = q−1B(1)

n · q − q−1B(1)
n (q),

B(2)
n = (q−1S2Λ

nS−1
2 q)∆∗,≥1 = q−1B(2)

n · q − q−1B(2)
n (q).

The next computations are quite direct from the corresponding evolutions of Li and Si. ■

Corollary 4.12. Assume Φi and Φ∗
i , i = 1, 2, to be Toda wave functions and adjoint wave

functions defined by (4.3), respectively, and let

Ψ1(s,x, z) = q−1(s)Φ1(s,x, z), Ψ2(s,x, z) = q−1(s)Φ2(s,x, z),

Ψ∗
1(s,x, z) = −ιΛ∆

−1q(s)(Φ∗
1(s,x, z)), Ψ∗

2(s,x, z) = ιΛ−1∆−1q(s)(Φ∗
2(s,x, z)),

then Ψi and Ψ∗
i , i = 1, 2, are mToda wave functions and adjoint wave functions.

Similar to the case of Miura transformation, we can also define the second kind of anti-Miura
transformation from Toda to mToda constructed by

T2 = π1 ◦ T1 ◦ π0 : (Li,Si) → (Li, Si), i = 1, 2,

Toda

(Li,Si)

Toda

(L̃i, S̃i)

mToda

(L̃i, S̃i)

mToda

(Li, Si)

π0 T1 π1

� Toda
π0−→ Toda,

Li
π0−→ L̃i = w̄0L∗

3−iw̄
−1
0 , Si

π0−→ S̃i = w̄0(S−1
3−i)

∗,

where w̄0 is Λ
0-coefficient in S2. By using Corollary 4.3, w̄0(s)r(s) is the Toda eigenfunction

with respect to L̃i for Toda adjoint eigenfunction r(s) corresponding to Lax operator Li.

� Toda
T1−→ mToda,

L̃i
T1−→ L̃i = (w̄0r(s))

−1L̃i(s)(w̄0r(s)) = r−1(k)L(s)∗3−ir(s),

S̃i
T1−→ S̃i = (w̄0r(s))

−1S̃i(s) = r−1(s)(S−1
3−i)(s)

∗.

� mToda
π1−→ mToda,

L̃1
π1−→ L1 = ιΛ−1∆−1L̃∗

2∆ = ιΛ−1∆−1r(s) · L1(s) · r−1(s)∆,

L̃2
π1−→ L2 = ιΛ∆

−1L̃∗
1∆ = ιΛ∆

−1r(s) · L2(s) · r−1(s)∆,

S̃1
π1−→ S1 = ιΛ−1∆−1

(
S̃−1
2

)∗
Λ = ιΛ−1∆−1r(s) · S1(s)Λ,

S̃2
π1−→ S2 = −ιΛ∆

−1
(
S̃−1
1

)∗
= −ιΛ∆

−1r(s) · S2(s).
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Let us summarize above discussion into the following proposition.

Proposition 4.13. Given Toda Lax operators Li, Toda wave operators Wi, Toda wave func-
tions Φi, i = 1, 2, Toda adjoint wave functions Ψ∗

i and Toda adjoint eigenfunction r(s), if define

T2 = ∆−1r(s),

L1 = ιΛ−1T2 · L1 · T −1
2 , L2 = ιΛTn · L2 · T −1

2 ,

S1 = ιΛ−1T2 · S1Λ, S2 = −ιΛT2 · S2,

and let

Ψ1(s,x, z) = zιΛ−1∆−1r(s)(Φ1(s,x, z)), Ψ2(s,x, z) = −ιΛ∆
−1r(s)(Φ2(s,x, z)),

Ψ∗
1(s,x, z) = z−1r−1(s− 1)Φ∗

1(s− 1,x, z), Ψ∗
2(s,x, z) = r−1(s− 1)Φ∗

2(s− 1,x, z),

then Li, Si, Ψi and Ψ∗
i are corresponding mToda objects.

5 mToda tau functions

In this section, we will discuss mToda tau functions and their relations with Toda tau functions.
Note that from mToda Lax formulation, we have proved the mToda bilinear equation in terms
of wave functions. Firstly, let us prove the existence of tau functions for mToda hierarchy from
mToda bilinear equation.

Proposition 5.1. Given mToda wave functions Ψi and mToda adjoint wave functions Ψ∗
i ,

i = 1, 2, satisfying∮
C∞

dz

2πiz
Ψ1(s,x, z)Ψ

∗
1

(
s′,x′, z

)
+

∮
C0

dz

2πiz
Ψ2(s,x, z)Ψ

∗
2

(
s′,x′, z

)
= 1, (5.1)

then there exist tau functions τ0,s(x) and τ1,s(x) such that

Ψ1(s,x, z) =
τ0,s
(
x−

[
z−1
]
1

)
τ1,s(x)

zseξ(x
(1),z),

Ψ∗
1(s,x, z) =

τ1,s
(
x+

[
z−1
]
1

)
τ0,s(x)

z−se−ξ(x(1),z),

Ψ2(s,x, z) =
τ0,s+1(x− [z]2)

τ1,s(x)
zseξ(x

(2),z−1),

Ψ∗
2(s,x, z) =

τ1,s−1(x+ [z]2)

τ0,s(x)
z−s+1e−ξ(x(2),z−1),

where (τ0,s(x), τ1,s(x)) is called mToda tau pair.

Proof. Firstly, by Corollary 4.7, we can find that Φj(s,x, z), j = 1, 2, defined by (4.8) are Toda
wave functions, thus there exists tau functions τTodas such that

c−1
0 (s)Ψ1(s,x, z) =

τTodas

(
x−

[
z−1
]
1

)
τTodas (x)

eξ(x
(1),z)zs,

c−1
0 (s)Ψ2(s,x, z) =

τTodas+1 (x− [z]2)

τTodas (x)
eξ(x

(2),z−1)zs.

So, if denote τ0,s(x) = τTodas (x), τ1,s(x) = c−1
0 (s)τTodas (x), then we can get relations for Ψ1

and Ψ2.
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Next, if let x′ = x+
[
λ−1

]
1
and s′ = s in (5.1), we can get

w(1)
(
s,x+

[
λ−1

]
1
, λ
)
w(1)∗(s,x, λ) = 1,

then we can derive the expression for Ψ∗
1(s,x, z). Similarly, letting x′ = x+ [λ]2, we can get

λ−1w(2)(s,x+ [λ]2, λ)w
(2)∗(s+ 1,x, λ) = 1,

from which we can get the expression for Ψ∗
2(s,x, z). ■

Lemma 5.2. For the function f(s,x) ∈ A, if it satisfies

e±ξ(∂̃
x(1)

,z−1)f(s,x) = Λ∓e±ξ(∂̃
x(2)

,z)f(s,x), (5.2)

then f is a constant independent of s and x.

Proof. Compare the coefficients of zj , j ∈ Z, in (5.2), we can get

f(s,x) = f(s∓ 1,x), ∂
x
(1)
n
f(s, x) = ∂

x
(2)
n
f(s∓ 1,x) = 0,

which implies that f is a constant independent of s and x. ■

Proposition 5.3. Given mToda tau pair (τ0,s(x), τ1,s(x)), both τ0,s(x) and τ1,s(x) are Toda tau
functions. And if denote q = τ1/τ0 and r = Λ(τ0/τ1), then q is the Toda eigenfunction with
respect to τ0 and r is the Toda adjoint eigenfunction with respect to τ1.

Proof. Firstly, notice that c0 = τ0/τ1, then by using (4.6) and (4.7) and relations of Ψi and Φi

in Corollary 4.7, we can get

τTodas

(
x−

[
z−1
]
1

)
τTodas (x)

=
τ0,s
(
x−

[
z−1
]
1

)
τ0,s(x)

,
τTodas+1 (x− [z]2)

τTodas (x)
=

τ0,s+1(x− [z]2)

τ0,s(x)
,

which implies

e−ξ(∂̃
x(1)

,z−1)(logτTodas (x)− logτ0,s(x)
)
= Λe−ξ(∂̃

x(2)
,z)(logτTodas (x)− logτ0,s(x)

)
.

Thus by Lemma 5.2, we can obtain τ0,s = const · τTodas . Similarly, by relations between Ψ∗
i

and Φ∗
i in Corollary 4.10, we can prove τ1,s = const · τTodas . Finally, by Proposition 4.6 and

Corollary 4.9, we can find q is the Toda eigenfunction with respect to τ0 and r is the Toda
adjoint eigenfunction with respect to τ1. ■

Corollary 5.4. From mToda to Toda, we can find for mToda tau pair (τ0, τ1),

� Case T1 = c−1
0 (s),

τTodas (x) = τ0,s(x),

� Case T2 = c−1
0 (s+ 1)∆,

τTodas (x) = τ1,s(x).

While from Toda to mToda,

� Case T1 = q(s)−1,

τ0,s(x) = τTodas (x), τ1,s(x) = q(s)τTodas (x).
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� Case T2 = ∆−1r(s),

τ0,s(x) = r(s− 1)τTodas (x), τ1,s(x) = τTodas (x).

Here q(s) and r(s) are the Toda eigenfunction and adjoint eigenfunction with respect to τTodas ,
respectively.

Proof. For the results from mToda to Toda, they can be found in the proof of Proposition 5.3.
While for the results in T1 from Toda to mToda, we can find from results for wave functions in
Corollary 4.12 that

τTodas

(
x−

[
z−1
]
1

)
q(s,x)τTodas (x)

=
τ0,s
(
x−

[
z−1
]
1

)
τ1,s(x)

,
τTodas+1 (x− [z]2)

q(s,x)τTodas (x)
=

τ0,s+1(x− [z]2)

τ1,s(x)
, (5.3)

which implies that

e−ξ(∂̃
x(1)

,z−1) log
τTodas (x)

τ0,s(x)
= e−ξ(∂̃

x(2)
,z) log

τTodas+1 (x)

τ0,s+1(x)
.

By Lemma 5.2, we can obtain τ0,s(x) = const · τTodas (x). Then we can get τ1,s(x) = const ·
q(s,x)τTodas (x) by (5.3). Similarly, by results for adjoint wave functions in Proposition 4.13, we
can prove the case for T2. ■

6 Darboux transformations for Toda and mToda hierarchies

Now we can use Miura and anti-Miura transformations shown in above section to construct the
corresponding Darboux transformations of Toda and mToda hierarchies by the following way:

Toda
anti-Miura−−−−−−→ mToda

Miura−−−→ Toda, mToda
Miura−−−→ Toda

anti-Miura−−−−−−→ mToda.

Proposition 6.1. Given Toda eigenfunction q and Toda adjoint eigenfunction r, Toda Lax op-
erators (L1,L2) and wave operators (S1,S2), if denote

(
L[1]
1 ,L[1]

2

)
and

(
S [1]
1 ,S [1]

2

)
in the following

way:

� Case T1,2(q) = q(s+ 1) ·∆ · q(s)−1,

L[1]
1 = T1,2 · L1 · ιΛ−1T −1

1,2 , L[1]
2 = T1,2 · L2 · ιΛT −1

1,2 ,

S [1]
1 = T1,2 · S1 · Λ−1, S [1]

2 = −T1,2 · S2,

� Case T2,1(r) = r−1(s− 1) ·∆−1 · r(s),

L[1]
1 = ιΛ−1T2,1 · L1 · T −1

2,1 , L[1]
2 = ιΛT2,1 · L2 · T −1

2,1 ,

S [1]
1 = ιΛ−1T2,1 · S1 · Λ, S [1]

2 = −ιΛT2,1 · S2,

then
(
L[1]
1 ,L[1]

2

)
and

(
S [1]
1 ,S [1]

2

)
are new Toda Lax operators and new Toda wave operators, re-

spectively.

Proof. Firstly, by Proposition 4.13, under the action of T2,

S1
T2=∆−1r(s)−−−−−−−−→ S1 = ιΛ−1∆−1r(s)S1Λ,
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where the coefficient of Λ0 in S1 is r(s− 1), then under the action of T1 = r−1(s− 1),

S1
T1=r−1(s−1)−−−−−−−−→ S [1]

1 = r−1(s− 1)S1 = r−1(s− 1)ιΛ−1∆−1r(s)S1Λ.

Similarly, we can prove

S [1]
2 = −r−1(s− 1)ιΛ∆

−1r(s)S2.

The form of L[1]
i , i = 1, 2, are given by L[1]

1 = S [1]
1 ΛS [1]−1

1 and L[1]
2 = S [1]

2 Λ−1S [1]−1
2 . As for case

T1,2(q) = q(s+ 1) ·∆ · q(s)−1, it can be similarly proved. ■

Remark 6.2. The following transformations are trivial:

Toda
Ti−→ mToda

Ti−→ Toda, i = 1, 2.

Corollary 6.3. Under the same conditions of Proposition 6.1, if assume that τTodas is the Toda
tau function corresponding to (L1,L2), and Ψi, i = 1, 2, is the Toda wave functions, then τ

Toda,[1]
s

given below is the new Toda tau functions corresponding to
(
L[1]
1 ,L[1]

2

)
.

� Case T1,2(q) = q(s+ 1) ·∆ · q(s)−1,

τToda,[1]s = q(s)τTodas .

� Case T2,1(r) = r−1(s− 1) ·∆−1 · r(s),

τToda,[1]s = r(s− 1)τTodas .

Proof. Since Toda Darboux transformation T1,2(q) = q(s+ 1) ·∆ · q(s)−1 is determined by

Toda
T1−→ mToda

T2−→ Toda,

thus by Corollary 5.4, we can find that

τTodas
T1−→ (τ0(s), τ1(s)) =

(
τTodas , q(s)τTodas

) T2−→ τToda,[1]s = q(s)τTodas .

Similarly, we can obtain the result in case T2,1(r) = r−1(s− 1) ·∆−1 · r(s). ■

Proposition 6.4. For mToda hierarchy, given wave operators (S1, S2), Lax operators (L1, L2),
tau pair (τ0, τ1), eigenfunction Θ(s) and adjoint eigenfunction Θ̄(s), if denote A[1] to be the
transformed object A by the following way:

� Case T1,1(Θ) = Θ(s)−1,

L
[1]
1 = T1,1 · L1 · T−1

1,1 , L
[1]
2 = T1,1 · L2 · T−1

1,1 ,

S
[1]
1 = T1,1 · S1, S

[1]
2 = T1,1 · S2,

τ
[1]
0,s(x) = τ0,s(x), τ

[1]
1,s(x) = Θ(s) · τ1,s(x),

� Case T1,2(Θ̄) = ∆−1 ·∆
(
Θ̄(s)

)
,

L
[1]
1 = ιΛ−1T1,2 · L1 · T−1

1,2 , L
[1]
2 = ιΛT1,2 · L2 · T−1

1,2 ,

S
[1]
1 = ιΛ−1T1,2 · S1 · Λ, S

[1]
2 = −ιΛT1,2 · S2,

τ
[1]
0,s = τ0,s(x)τ0,s−1(x)∆

(
Θ̄(s− 1)

)
/τ1,s−1(x), τ

[1]
1,s(x) = τ0,s(x),
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� Case T2,1(Θ) = (∆(Θ(s)))−1 ·∆,

L
[1]
1 = T2,1 · L1 · ιΛ−1T−1

2,1 , L
[1]
2 = T2,1 · L2 · ιΛT−1

2,1 ,

S
[1]
1 = T2,1 · S1 · Λ−1, S

[1]
2 = −T2,1 · S2,

τ
[1]
0,s = τ1,s, τ

[1]
1,s = τ1,s(x)τ1,s+1(x)∆(Θ(s))/τ0,s+1(x),

� Case T2,2(Θ̄) = ∆−1 · Θ̄(s+ 1) ·∆,

L
[1]
1 = ιΛ−1T2,2 · L1 · T−1

2,2 , L
[1]
2 = ιΛT2,2 · L2 · T−1

2,2 ,

S
[1]
1 = ιΛ−1T2,2 · S1, S

[1]
2 = ιΛT2,2 · S2,

τ
[1]
0,s = Θ̄(s) · τ0,s, τ

[1]
1,s = τ1,s(x),

then
(
S
[1]
1 , S

[1]
2

)
,
(
L
[1]
1 , L

[1]
2

)
and

(
τ
[1]
0 , τ

[1]
1

)
are mToda wave operators, Lax operators and tau

pair, respectively.

Proof. Here we only give the proof for the case of T2,1 since other cases can be proved similarly.
Firstly, by Proposition 4.8, under the action of T2,

S1
T2=c−1

0 (s+1)∆
−−−−−−−−−→ S1 = c−1

0 (s+ 1)∆ · S1 · Λ−1,

where c0(s) is the coefficient of Λ0 in S1. Notice that mToda eigenfunction Θ will become Toda
eigenfunction q(s) = c−1

0 (s+ 1)∆(Θ(s)), then under the action of T1

S1
T1=q−1(s)−−−−−−→ S

[1]
1 = q−1(s)S1 = (∆(Θ))−1∆ · S1 · Λ−1.

In the same way, we can get S
[1]
2 = −(∆(Θ))−1∆S2. The form of L

[1]
i , i = 1, 2, are given by

L
[1]
i = S

[1]
i Λ3−2iS

[1]−1
i . As for the transformations of tau functions, we can find them from the

following transformation derived by Corollary 5.4:

(τ0,s(x), τ1,s(x))
T2−→ τTodas (x) = τ1,s(x)

T1−→(
τ
[1]
0,s(x), τ

[1]
1,s(x)

)
=
(
τTodas (x), q(s)τTodas (x)

)
= (τ1,s(x), τ1,s(x)τ1,s+1(x)∆(Θ(s))/τ0,s+1(x)). ■
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