|
SIGMA 20 (2024), 111, 21 pages arXiv:2403.07258
https://doi.org/10.3842/SIGMA.2024.111
Harmonic Metrics for Higgs Bundles of Rank 3 in the Hitchin Section
Hitoshi Fujioka
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
Received April 21, 2024, in final form November 29, 2024; Published online December 11, 2024
Abstract
Given a tuple of holomorphic differentials on a Riemann surface, one can define a Higgs bundle in the Hitchin section and a natural symmetric pairing of the Higgs bundle. We study whether a Higgs bundle of rank 3 in the Hitchin section has a compatible harmonic metric when the spectral curve is a 2-sheeted branched covering of the Riemann surface. In particular, we give a condition for Higgs bundles in the Hitchin section on $\mathbb{C}$ or $\mathbb{C}^*$ to have compatible harmonic metrics.
Key words: Higgs bundles; Hitchin section; harmonic metrics.
pdf (429 kb)
tex (22 kb)
References
- Biquard O., Boalch P., Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004), 179-204, arXiv:math.DG/0111098.
- Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
- Hitchin N.J., Lie groups and Teichmüller space, Topology 31 (1992), 449-473.
- Li Q., Mochizuki T., Complete solutions of Toda equations and cyclic Higgs bundles over non-compact surfaces, arXiv:2010.05401.
- Li Q., Mochizuki T., Higgs bundles in the Hitchin section over non-compact hyperbolic surfaces, Proc. London Math. Soc., to appear, arXiv:2307.03365.
- Li Q., Mochizuki T., Harmonic metrics of generically regular semisimple Higgs bundles on noncompact Riemann surfaces, Tunis. J. Math. 5 (2023), 663-711, arXiv:2210.08215.
- Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque 340 (2011), x+607 pages, arXiv:0803.1344.
- Simpson C.T., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867-918.
- Simpson C.T., Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770.
|
|