Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 112, 26 pages      arXiv:2303.07061      https://doi.org/10.3842/SIGMA.2024.112

Tau Functions from Joyce Structures

Tom Bridgeland
Department of Pure Mathematics, University of Sheffield, Sheffield, S3 7RH, UK

Received July 26, 2024, in final form December 12, 2024; Published online December 18, 2024

Abstract
We argued in [Proc. Sympos. Pure Math., Vol. 103, American Mathematical Society, Providence, RI, 2021, 1-66, arXiv:1912.06504] that, when a certain sub-exponential growth property holds, the Donaldson-Thomas invariants of a 3-Calabi-Yau triangulated category should give rise to a geometric structure on its space of stability conditions called a Joyce structure. In this paper, we show how to use a Joyce structure to define a generating function which we call the $\tau$-function. When applied to the derived category of the resolved conifold, this reproduces the non-perturbative topological string partition function of [J. Differential Geom. 115 (2020), 395-435, arXiv:1703.02776]. In the case of the derived category of the Ginzburg algebra of the A$_2$ quiver, we obtain the Painlevé I $\tau$-function.

Key words: Donaldson-Thomas invariants; topological string theory; hyperkähler geometry; twistor spaces; Painlevé equations.

pdf (560 kb)   tex (38 kb)  

References

  1. Alexandrov S., Manschot J., Persson D., Pioline B., Quantum hypermultiplet moduli spaces in ${\mathcal N}=2$ string vacua: a review, in String-Math 2012, Proc. Sympos. Pure Math., Vol. 90, American Mathematical Society, Providence, RI, 2015, 181-211, arXiv:1304.0766.
  2. Alexandrov S., Persson D., Pioline B., Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence, J. High Energy Phys. 2011 (2011), no. 027, 64 pages, arXiv:1110.0466.
  3. Allegretti D.G.L., Bridgeland T., The monodromy of meromorphic projective structures, Trans. Amer. Math. Soc. 373 (2020), 6321-6367, arXiv:1802.02505.
  4. Bailey T.N., Eastwood M.G., Complex paraconformal manifolds -- their differential geometry and twistor theory, Forum Math. 3 (1991), 61-103.
  5. Bertola M., Korotkin D., Tau-functions and monodromy symplectomorphisms, Comm. Math. Phys. 388 (2021), 245-290, arXiv:1910.03370.
  6. Bonahon F., Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996), 233-297.
  7. Bonelli G., Grassi A., Tanzini A., Seiberg-Witten theory as a Fermi gas, Lett. Math. Phys. 107 (2017), 1-30, arXiv:1603.01174.
  8. Bonelli G., Grassi A., Tanzini A., New results in ${\mathcal N}=2$ theories from non-perturbative string, Ann. Henri Poincaré 19 (2018), 743-774, arXiv:1704.01517.
  9. Bonelli G., Lisovyy O., Maruyoshi K., Sciarappa A., Tanzini A., On Painlevé/gauge theory correspondence, Lett. Math. Phys. 107 (2017), 2359-2413, arXiv:1612.06235.
  10. Bridgeland T., Riemann-Hilbert problems from Donaldson-Thomas theory, Invent. Math. 216 (2019), 69-124, arXiv:1611.03697.
  11. Bridgeland T., Riemann-Hilbert problems for the resolved conifold, J. Differential Geom. 115 (2020), 395-435, arXiv:1703.02776.
  12. Bridgeland T., Geometry from Donaldson-Thomas invariants, in Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., Vol. 103, American Mathematical Society, Providence, RI, 2021, 1-66, arXiv:1912.06504.
  13. Bridgeland T., Joyce structures on spaces of quadratic differentials, Geom. Topol., to appear, arXiv:2203.17148.
  14. Bridgeland T., Joyce structures and their twistor spaces, arXiv:2407.18229.
  15. Bridgeland T., Masoero D., On the monodromy of the deformed cubic oscillator, Math. Ann. 385 (2023), 193-258, arXiv:2006.10648.
  16. Bridgeland T., Smith I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 155-278, arXiv:1302.7030.
  17. Bridgeland T., Strachan I.A.B., Complex hyperkähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys. 111 (2021), 54, 24 pages, arXiv:2006.13059.
  18. Chakravarty S., Mason L., Newman E.T., Canonical structures on anti-self-dual four-manifolds and the diffeomorphism group, J. Math. Phys. 32 (1991), 1458-1464.
  19. Coman I., Pomoni E., Teschner J., From quantum curves to topological string partition functions, Comm. Math. Phys. 399 (2023), 1501-1548, arXiv:1811.01978.
  20. Coman I., Pomoni E., Teschner J., From quantum curves to topological string partition functions II, arXiv:2004.04585.
  21. Dunajski M., Mason L.J., Hyper-Kähler hierarchies and their twistor theory, Comm. Math. Phys. 213 (2000), 641-672, arXiv:math.DG/0001008.
  22. Dunajski M., Moy T., Heavenly metrics, hyper-Lagrangians and Joyce structures, J. Lond. Math. Soc. 110 (2024), e13009, 42 pages, arXiv:2402.14352.
  23. Fock V., Goncharov A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211, arXiv:math.AG/0311149.
  24. Fock V., Goncharov A., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930, arXiv:math.AG/0311245.
  25. Gaiotto D., Moore G.W., Neitzke A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239-403, arXiv:0907.3987.
  26. Haiden F., 3-D Calabi-Yau categories for Teichmüller theory, Duke Math. J. 173 (2024), 277-346, arXiv:2104.06018.
  27. Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
  28. Joyce D., Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol. 11 (2007), 667-725, arXiv:hep-th/0607039.
  29. Kashaev R.M., Nakanishi T., Classical and quantum dilogarithm identities, SIGMA 7 (2011), 102, 29 pages, arXiv:1104.4630.
  30. Klemm A., Lerche W., Mayr P., Vafa C., Warner N., Self-dual strings and $N=2$ supersymmetric field theory, Nuclear Phys. B 477 (1996), 746-764, arXiv:hep-th/9604034.
  31. Labardini-Fragoso D., Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. 98 (2009), 797-839, arXiv:0803.1328.
  32. Lisovyy O., Roussillon J., On the connection problem for Painlevé I, J. Phys. A 50 (2017), 255202, 15 pages, arXiv:1612.08382.
  33. Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Cambridge Stud. Adv. Math., Vol. 91, Cambridge University Press, Cambridge, 2003.
  34. Nakanishi T., Periodicities in cluster algebras and dilogarithm identities, in Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2011, 407-443, arXiv:1006.0632.
  35. Neitzke A., On a hyperholomorphic line bundle over the Coulomb branch, arXiv:1110.1619.
  36. Plebański J., Some solutions of complex Einstein equations, J. Math. Phys. 16 (1975), 2395-2402.
  37. Smith I., Quiver algebras as Fukaya categories, Geom. Topol. 19 (2015), 2557-2617, arXiv:1309.0452.
  38. Zikidis M., Joyce structures from meromorphic quadratic differentials, in preparation.

Previous article  Next article  Contents of Volume 20 (2024)