|
SIGMA 20 (2024), 112, 26 pages arXiv:2303.07061
https://doi.org/10.3842/SIGMA.2024.112
Tau Functions from Joyce Structures
Tom Bridgeland
Department of Pure Mathematics, University of Sheffield, Sheffield, S3 7RH, UK
Received July 26, 2024, in final form December 12, 2024; Published online December 18, 2024
Abstract
We argued in [Proc. Sympos. Pure Math., Vol. 103, American Mathematical Society, Providence, RI, 2021, 1-66, arXiv:1912.06504] that, when a certain sub-exponential growth property holds, the Donaldson-Thomas invariants of a 3-Calabi-Yau triangulated category should give rise to a geometric structure on its space of stability conditions called a Joyce structure. In this paper, we show how to use a Joyce structure to define a generating function which we call the $\tau$-function. When applied to the derived category of the resolved conifold, this reproduces the non-perturbative topological string partition function of [J. Differential Geom. 115 (2020), 395-435, arXiv:1703.02776]. In the case of the derived category of the Ginzburg algebra of the A$_2$ quiver, we obtain the Painlevé I $\tau$-function.
Key words: Donaldson-Thomas invariants; topological string theory; hyperkähler geometry; twistor spaces; Painlevé equations.
pdf (560 kb)
tex (38 kb)
References
- Alexandrov S., Manschot J., Persson D., Pioline B., Quantum hypermultiplet moduli spaces in ${\mathcal N}=2$ string vacua: a review, in String-Math 2012, Proc. Sympos. Pure Math., Vol. 90, American Mathematical Society, Providence, RI, 2015, 181-211, arXiv:1304.0766.
- Alexandrov S., Persson D., Pioline B., Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence, J. High Energy Phys. 2011 (2011), no. 027, 64 pages, arXiv:1110.0466.
- Allegretti D.G.L., Bridgeland T., The monodromy of meromorphic projective structures, Trans. Amer. Math. Soc. 373 (2020), 6321-6367, arXiv:1802.02505.
- Bailey T.N., Eastwood M.G., Complex paraconformal manifolds -- their differential geometry and twistor theory, Forum Math. 3 (1991), 61-103.
- Bertola M., Korotkin D., Tau-functions and monodromy symplectomorphisms, Comm. Math. Phys. 388 (2021), 245-290, arXiv:1910.03370.
- Bonahon F., Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996), 233-297.
- Bonelli G., Grassi A., Tanzini A., Seiberg-Witten theory as a Fermi gas, Lett. Math. Phys. 107 (2017), 1-30, arXiv:1603.01174.
- Bonelli G., Grassi A., Tanzini A., New results in ${\mathcal N}=2$ theories from non-perturbative string, Ann. Henri Poincaré 19 (2018), 743-774, arXiv:1704.01517.
- Bonelli G., Lisovyy O., Maruyoshi K., Sciarappa A., Tanzini A., On Painlevé/gauge theory correspondence, Lett. Math. Phys. 107 (2017), 2359-2413, arXiv:1612.06235.
- Bridgeland T., Riemann-Hilbert problems from Donaldson-Thomas theory, Invent. Math. 216 (2019), 69-124, arXiv:1611.03697.
- Bridgeland T., Riemann-Hilbert problems for the resolved conifold, J. Differential Geom. 115 (2020), 395-435, arXiv:1703.02776.
- Bridgeland T., Geometry from Donaldson-Thomas invariants, in Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., Vol. 103, American Mathematical Society, Providence, RI, 2021, 1-66, arXiv:1912.06504.
- Bridgeland T., Joyce structures on spaces of quadratic differentials, Geom. Topol., to appear, arXiv:2203.17148.
- Bridgeland T., Joyce structures and their twistor spaces, arXiv:2407.18229.
- Bridgeland T., Masoero D., On the monodromy of the deformed cubic oscillator, Math. Ann. 385 (2023), 193-258, arXiv:2006.10648.
- Bridgeland T., Smith I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 155-278, arXiv:1302.7030.
- Bridgeland T., Strachan I.A.B., Complex hyperkähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys. 111 (2021), 54, 24 pages, arXiv:2006.13059.
- Chakravarty S., Mason L., Newman E.T., Canonical structures on anti-self-dual four-manifolds and the diffeomorphism group, J. Math. Phys. 32 (1991), 1458-1464.
- Coman I., Pomoni E., Teschner J., From quantum curves to topological string partition functions, Comm. Math. Phys. 399 (2023), 1501-1548, arXiv:1811.01978.
- Coman I., Pomoni E., Teschner J., From quantum curves to topological string partition functions II, arXiv:2004.04585.
- Dunajski M., Mason L.J., Hyper-Kähler hierarchies and their twistor theory, Comm. Math. Phys. 213 (2000), 641-672, arXiv:math.DG/0001008.
- Dunajski M., Moy T., Heavenly metrics, hyper-Lagrangians and Joyce structures, J. Lond. Math. Soc. 110 (2024), e13009, 42 pages, arXiv:2402.14352.
- Fock V., Goncharov A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211, arXiv:math.AG/0311149.
- Fock V., Goncharov A., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930, arXiv:math.AG/0311245.
- Gaiotto D., Moore G.W., Neitzke A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239-403, arXiv:0907.3987.
- Haiden F., 3-D Calabi-Yau categories for Teichmüller theory, Duke Math. J. 173 (2024), 277-346, arXiv:2104.06018.
- Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
- Joyce D., Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol. 11 (2007), 667-725, arXiv:hep-th/0607039.
- Kashaev R.M., Nakanishi T., Classical and quantum dilogarithm identities, SIGMA 7 (2011), 102, 29 pages, arXiv:1104.4630.
- Klemm A., Lerche W., Mayr P., Vafa C., Warner N., Self-dual strings and $N=2$ supersymmetric field theory, Nuclear Phys. B 477 (1996), 746-764, arXiv:hep-th/9604034.
- Labardini-Fragoso D., Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. 98 (2009), 797-839, arXiv:0803.1328.
- Lisovyy O., Roussillon J., On the connection problem for Painlevé I, J. Phys. A 50 (2017), 255202, 15 pages, arXiv:1612.08382.
- Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Cambridge Stud. Adv. Math., Vol. 91, Cambridge University Press, Cambridge, 2003.
- Nakanishi T., Periodicities in cluster algebras and dilogarithm identities, in Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2011, 407-443, arXiv:1006.0632.
- Neitzke A., On a hyperholomorphic line bundle over the Coulomb branch, arXiv:1110.1619.
- Plebański J., Some solutions of complex Einstein equations, J. Math. Phys. 16 (1975), 2395-2402.
- Smith I., Quiver algebras as Fukaya categories, Geom. Topol. 19 (2015), 2557-2617, arXiv:1309.0452.
- Zikidis M., Joyce structures from meromorphic quadratic differentials, in preparation.
|
|