|
SIGMA 20 (2024), 114, 24 pages arXiv:2009.10417
https://doi.org/10.3842/SIGMA.2024.114
Real Forms of Holomorphic Hamiltonian Systems
Philip Arathoon a and Marine Fontaine b
a) Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
b) Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
Received June 12, 2024, in final form December 10, 2024; Published online December 21, 2024
Abstract
By complexifying a Hamiltonian system, one obtains dynamics on a holomorphic symplectic manifold. To invert this construction, we present a theory of real forms which not only recovers the original system but also yields different real Hamiltonian systems which share the same complexification. This provides a notion of real forms for holomorphic Hamiltonian systems analogous to that of real forms for complex Lie algebras. Our main result is that the complexification of any analytic mechanical system on a Grassmannian admits a real form on a compact symplectic manifold. This produces a 'unitary trick' for Hamiltonian systems which curiously requires an essential use of hyperkähler geometry. We demonstrate this result by finding compact real forms for the simple pendulum, the spherical pendulum, and the rigid body.
Key words: Hamiltonian dynamics; integrable systems; hyperkähler geometry.
pdf (521 kb)
tex (70 kb)
References
- Adler M., van Moerbeke P., Vanhaecke P., Algebraic integrability, Painlevé geometry and Lie algebras, Ergeb. Math. Grenzgeb. (3), Vol. 47, Springer, Berlin, 2004.
- Arathoon P., Unifying the hyperbolic and spherical $2$-body problem with biquaternions, Regul. Chaotic Dyn. 28 (2023), 822-834, arXiv:2012.12166.
- Arnold V.I., Kozlov V.V., Neishtadt A.I., Dynamical systems. III. Mathematical aspects of classical and celestial mechanics, 3rd ed., Encyclopaedia Math. Sci., Vol. 3, Springer, Berlin, 2006.
- Bates L., Cushman R., Complete integrability beyond Liouville-Arnol'd, Rep. Math. Phys. 56 (2005), 77-91.
- Beauville A., Antisymplectic involutions of holomorphic symplectic manifolds, J. Topol. 4 (2011), 300-304, arXiv:1008.3108.
- Biquard O., Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann. 304 (1996), 253-276.
- Biquard O., Gauduchon P., Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés, Université de Grenoble I, Institut Fourier, Saint-Martin-d'Hères, 1998, 127-173.
- Bolsinov A.V., Jovanović B., Noncommutative integrability, moment map and geodesic flows, Ann. Global Anal. Geom. 23 (2003), 305-322, arXiv:math-ph/0109031.
- Calabi E., Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. 12 (1979), 269-294.
- Cattaneo A., Automorphisms of Hilbert schemes of points on a generic projective K3 surface, Math. Nachr. 292 (2019), 2137-2152, arXiv:1801.05682.
- Crainic M., Fernandes R.L., Integrability of Poisson brackets, J. Differential Geom. 66 (2004), 71-137, arXiv:math.DG/0210152.
- Crooks P., Rayan S., Abstract integrable systems on hyperkähler manifolds arising from Slodowy slices, Math. Res. Lett. 26 (2019), 9-33, arXiv:1706.05819.
- Doss-Bachelet C., Françoise J.P., Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions, Theoret. and Math. Phys. 122 (2000), 170-175.
- Franco E., Jardim M., Menet G., Brane involutions on irreducible holomorphic symplectic manifolds, Kyoto J. Math. 59 (2019), 195-235, arXiv:1606.09040.
- Gaiotto D., Witten E., Probing quantization via branes, in Surveys in Differential Geometry 2019. Differential Geometry, Calabi-Yau theory, and General Relativity. Part 2, Surv. Differ. Geom., Vol. 24, International Press, Boston, MA, 2022, 293-402, arXiv:2107.12251.
- Gerdjikov V.S., Kyuldjiev A., Marmo G., Vilasi G., Complexifications and real forms of Hamiltonian structures, Eur. Phys. J. B Condens. Matter Phys. 29 (2002), 177-181.
- Gerdjikov V.S., Kyuldjiev A., Marmo G., Vilasi G., Construction of real forms of complexified Hamiltonian dynamical systems, in Nonlinear Physics: Theory and Experiment, II (Gallipoli, 2002), World Scientific, River Edge, NJ, 2003, 172-178.
- Gerdjikov V.S., Kyuldjiev A., Marmo G., Vilasi G., Real Hamiltonian forms of Hamiltonian systems, Eur. Phys. J. B Condens. Matter Phys. 38 (2004), 635-649, arXiv:nlin.SI/0310005.
- Gukov S., Witten E., Branes and quantization, Adv. Theor. Math. Phys. 13 (2009), 1445-1518, arXiv:0809.0305.
- Izosimov A., Singularities of integrable systems and algebraic curves, Int. Math. Res. Not. 2017 (2017), 5475-5524, arXiv:1509.08996.
- Kazhdan D., Kostant B., Sternberg S., Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978), 481-507.
- Kovalev A.G., Nahm's equations and complex adjoint orbits, Quart. J. Math. Oxford Ser. (2) 47 (1996), 41-58.
- Kozlov V.V., Integrability and nonintegrability in Hamiltonian mechanics, Russ. Math. Surv. 38 (1983), 3-67.
- Kulkarni R.S., On complexifications of differentiable manifolds, Invent. Math. 44 (1978), 46-64.
- Kyuldjiev A., Gerdjikov V., Marmo G., Vilasi G., Real forms of complexified Hamiltonian dynamics, in Geometry, Integrability and Quantization (Varna, 2001), Geom. Integrability Quantization, Vol. 3, Coral Press Scientific Publishing, Sofia, 2002, 318-327.
- Pelayo A., V u Ngdoc S., Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.) 48 (2011), 409-455, arXiv:1306.0115.
- Seppälä M., Quotients of complex manifolds and moduli spaces of Klein surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 113-124.
- Shutrick H.B., Complex extensions, Quart. J. Math. Oxford Ser. (2) 9 (1958), 189-201.
- Skerritt P., Vizman C., Dual pairs for matrix groups, J. Geom. Mech. 11 (2019), 255-275, arXiv:1805.01519.
- Vanhaecke P., Integrable systems in the realm of algebraic geometry, 2nd ed., Lecture Notes in Math., Vol. 1638, Springer-Verlag, Berlin, 2001.
- Whitney H., Bruhat F., Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv. 33 (1959), 132-160.
- Wilson G., Collisions of Calogero-Moser particles and an adelic Grassmannian (with an appendix by I.G. Macdonald), Invent. Math. 133 (1998), 1-41.
|
|