|
SIGMA 21 (2025), 013, 61 pages arXiv:2002.11125
https://doi.org/10.3842/SIGMA.2025.013
Modular Exercises for Four-Point Blocks - I
Miranda C.N. Cheng a, Terry Gannon b and Guglielmo Lockhart cd
a) Korteweg-de Vries Institute for Mathematics and Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
b) Department of Mathematics, University of Alberta, Canada
c) Institute of Physics, University of Amsterdam, The Netherlands
d) CERN, Theory Department, Geneva, Switzerland
Received May 08, 2024, in final form February 12, 2025; Published online February 28, 2025
Abstract
The well-known modular property of the torus characters and torus partition functions of (rational) vertex operator algebras (VOAs) and 2d conformal field theories (CFTs) has been an invaluable tool for studying this class of theories. In this work we prove that sphere four-point chiral blocks of rational VOAs are vector-valued modular forms for the groups $\Gamma(2)$, $\Gamma_0(2)$, or $\mathrm{SL}_2(\mathbb{Z})$. Moreover, we prove that the four-point correlators, combining the holomorphic and anti-holomorphic chiral blocks, are modular invariant. In particular, in this language the crossing symmetries are simply modular symmetries. This gives the possibility of exploiting the available techniques and knowledge about modular forms to determine or constrain the physically interesting quantities such as chiral blocks and fusion coefficients, which we illustrate with a few examples. We also highlight the existence of a sphere-torus correspondence equating the sphere quantities of certain theories ${\mathcal T}_s$ with the torus quantities of another family of theories ${\mathcal T}_t$. A companion paper will delve into more examples and explore more systematically this sphere-torus duality.
Key words: conformal field theory; vertex operator algebras; modularity.
pdf (970 kb)
tex (148 kb)
References
- Afkhami-Jeddi N., Hartman T., Tajdini A., Fast conformal bootstrap and constraints on 3d gravity, J. High Energy Phys. 2019 (2019), no. 5, 087, 24 pages, arXiv:1903.06272.
- Alvarez-Gaumé L., Sierra G., Gomez C., Topics in conformal field theory, in Physics and Mathematics of Strings, World Scientific Publishing, Teaneck, NJ, 1990, 16-184.
- Anagiannis V., Cheng M.C.N., Gannon T., Lockhart G., Modular exercises for four-point blocks -- II, in preparation.
- Anderson G., Moore G., Rationality in conformal field theory, Comm. Math. Phys. 117 (1988), 441-450.
- Arakawa T., Kawasetsu K., Quasi-lisse vertex algebras and modular linear differential equations, in Lie Groups, Geometry, and Representation Theory, Progr. Math., Vol. 326, Birkhäuser, Cham, 2018, 41-57, arXiv:1610.05865.
- Arakawa T., Moreau A., Joseph ideals and lisse minimal $W$-algebras, J. Inst. Math. Jussieu 17 (2018), 397-417, arXiv:1506.00710.
- Atkin A.O.L., Swinnerton-Dyer H.P.F., Modular forms on noncongruence subgroups, in Combinatorics (Univ. California, Los Angeles, Calif., 1968), Proc. Sympos. Pure Math., Vol. 19, American Mathematical Society, Providence, RI, 1971, 1-25.
- Bae J.-B., Lee S., Song J., Modular constraints on conformal field theories with currents, J. High Energy Phys. 2017 (2017), no. 12, 045, 42 pages, arXiv:1708.08815.
- Bakalov B., Kirillov Jr. A., Lectures on tensor categories and modular functors, Univ. Lecture Ser., Vol. 21, American Mathematical Society, Providence, RI, 2001.
- Bantay P., Gannon T., Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Number Theory Phys. 1 (2007), 651-680, arXiv:0705.2467.
- Beem C., Lemos M., Liendo P., Peelaers W., Rastelli L., van Rees B.C., Infinite chiral symmetry in four dimensions, Comm. Math. Phys. 336 (2015), 1359-1433, arXiv:1312.5344.
- Beem C., Meneghelli C., Rastelli L., Free field realizations from the Higgs branch, J. High Energy Phys. 2019 (2019), no. 9, 058, 36 pages, arXiv:1903.07624.
- Beem C., Rastelli L., Vertex operator algebras, Higgs branches, and modular differential equations, J. High Energy Phys. 2018 (2018), no. 8, 114, 71 pages, arXiv:1707.07679.
- Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), 333-380.
- Birman J.S., Braids, links, and mapping class groups, Ann. of Math. Stud., Vol. 82, Princeton University Press, Princeton, NJ, 1974.
- Cappelli A., Itzykson C., Zuber J.-B., Modular invariant partition functions in two dimensions, Nuclear Phys. B 280 (1987), 445-465.
- Cappelli A., Itzykson C., Zuber J.-B., The ${\rm A}$-${\rm D}$-${\rm E}$ classification of minimal and $A^{(1)}_1$ conformal invariant theories, Comm. Math. Phys. 113 (1987), 1-26.
- Chandra A.R., Mukhi S., Towards a classification of two-character rational conformal field theories, J. High Energy Phys. 2019 (2019), no. 4, 153, 61 pages, arXiv:1810.09472.
- Cheng M.C.N., Duncan J.F.R., On Rademacher sums, the largest Mathieu group and the holographic modularity of moonshine, Commun. Number Theory Phys. 6 (2012), 697-758, arXiv:1110.3859.
- Collier S., Lin Y.-H., Yin X., Modular bootstrap revisited, J. High Energy Phys. 2018 (2018), no. 9, 061, 31 pages, arXiv:1608.06241.
- Creutzig T., Private communication.
- Curtright T.L., Thorn C.B., Conformally invariant quantization of the Liouville theory, Phys. Rev. Lett. 48 (1982), 1309-1313, Errarum, Phys. Rev. Lett. 48 (1982), 1768.
- Cvitanović P., Group theory. Birdtracks, Lie's, and exceptional groups, Princeton University Press, Princeton, NJ, 2008.
- Deligne P., La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 321-326.
- Dijkgraaf R., Maldacena J., Moore G., Verlinde E., A black hole Farey tale, arXiv:hep-th/0005003.
- Dijkgraaf R., Vafa C., Verlinde E., Verlinde H., The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), 485-526.
- Dotsenko V.S., Fateev V.A., Conformal algebra and multipoint correlation functions in $2$D statistical models, Nuclear Phys. B 240 (1984), 312-348.
- Dotsenko V.S., Fateev V.A., Four-point correlation functions and the operator algebra in $2$D conformal invariant theories with central charge $C\leq 1$, Nuclear Phys. B 251 (1985), 691-734.
- Duncan J.F.R., Frenkel I.B., Rademacher sums, moonshine and gravity, Commun. Number Theory Phys. 5 (2011), 849-976, arXiv:0907.4529.
- Esterlis I., Fitzpatrick A.L., Ramirez D.M., Closure of the operator product expansion in the non-unitary bootstrap, J. High Energy Phys. 2016 (2016), no. 11, 030, 34 pages, arXiv:1606.07458.
- Farb B., Margalit D., A primer on mapping class groups, Princeton Math. Ser., Vol. 49, Princeton University Press, Princeton, NJ, 2012.
- Frenkel I.B., Huang Y.-Z., Lepowsky J., On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), viii+64 pages.
- Friedan D., Keller C.A., Constraints on 2d CFT partition functions, J. High Energy Phys. 2013 (2013), no. 10, 180, 39 pages, arXiv:1307.6562.
- Gaberdiel M.R., A general transformation formula for conformal fields, Phys. Lett. B 325 (1994), 366-370, arXiv:hep-th/9401166.
- Gaberdiel M.R., Goddard P., Axiomatic conformal field theory, Comm. Math. Phys. 209 (2000), 549-594, arXiv:hep-th/9810019.
- Gannon T., Automorphic forms and Riemann-Hilbert, in preparation.
- Gannon T., The classification of affine ${\rm SU}(3)$ modular invariant partition functions, Comm. Math. Phys. 161 (1994), 233-263, arXiv:hep-th/9810019.
- Gannon T., Moonshine beyond the Monster. The bridge connecting algebra, modular forms and physics, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2006.
- Gannon T., The theory of vector-valued modular forms for the modular group, in Conformal Field Theory, Automorphic Forms and Related Topics, Contrib. Math. Comput. Sci., Vol. 8, Springer, Heidelberg, 2014, 247-286.
- Hartman T., Mazávc D., Rastelli L., Sphere packing and quantum gravity, J. High Energ. Phys. 2019 (2019), no. 12, 048, 68 pages, arXiv:1905.01319.
- Hellerman S., A universal inequality for CFT and quantum gravity, J. High Energy Phys. 2011 (2011), no. 8, 130, 34 pages, arXiv:0902.2790.
- Huang Y.-Z., Two-dimensional conformal geometry and vertex operator algebras, Progr. Math., Vol. 148, Birkhäuser, Boston, MA, 1997.
- Huang Y.-Z., Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), 871-911, arXiv:math.QA/0502533.
- Huang Y.-Z., Lepowsky J., A theory of tensor products for module categories for a vertex operator algebra, II, Selecta Math. (N.S.) 1 (1995), 757-786, arXiv:hep-th/9309159.
- Kaneko M., Nagatomo K., Sakai Y., Modular forms and second order ordinary differential equations: applications to vertex operator algebras, Lett. Math. Phys. 103 (2013), 439-453.
- Kawasetsu K., The intermediate vertex subalgebras of the lattice vertex operator algebras, Lett. Math. Phys. 104 (2014), 157-178, arXiv:1305.6463.
- Knizhnik V.G., Zamolodchikov A.B., Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83-103.
- Knopp M., Mason G., Vector-valued modular forms and Poincaré series, Illinois J. Math. 48 (2004), 1345-1366.
- Knopp M.I., Construction of a class of modular functions and forms, Pacific J. Math. 11 (1961), 275-293.
- Knopp M.I., Construction of a class of modular functions and forms. II, Pacific J. Math. 11 (1961), 661-678.
- Knopp M.I., Construction of automorphic forms on $H$-groups and supplementary Fourier series, Trans. Amer. Math. Soc. 103 (1962), 168-188.
- Knopp M.I., On abelian integrals of the second kind and modular functions, Amer. J. Math. 84 (1962), 615-628.
- Landsberg J.M., Manivel L., The sextonions and $E_{7\frac 12}$, Adv. Math. 201 (2006), 143-179, arXiv:math.RT/0402157.
- Lunin O., Mathur S.D., Correlation functions for $M^N/S_n$ orbifolds, Comm. Math. Phys. 219 (2001), 399-442, arXiv:hep-th/0006196.
- Mahanta R., Maharana A., Crossing, modular averages and $N \leftrightarrow k$ in WZW models, J. High Energy Phys. 2019 (2019), no. 10, 061, 35 pages, arXiv:1905.02816.
- Maloney A., Maxfield H., Ng G.S., A conformal block Farey tail, J. High Energy Phys. 2017 (2017), no. 6, 117, 47 pages, arXiv:1609.02165.
- Manschot J., Moore G.W., A modern fareytail, Commun. Number Theory Phys. 4 (2010), 103-159, arXiv:0712.0573.
- Mason G., Vector-valued modular forms and linear differential operators, Int. J. Number Theory 3 (2007), 377-390.
- Mathur S.D., Mukhi S., Sen A., On the classification of rational conformal field theories, Phys. Lett. B 213 (1988), 303-308.
- Mathur S.D., Mukhi S., Sen A., Differential equations for correlators and characters in arbitrary rational conformal field theories, Nuclear Phys. B 312 (1989), 15-57.
- Mathur S.D., Mukhi S., Sen A., Reconstruction of conformal field theories from modular geometry on the torus, Nuclear Phys. B 318 (1989), 483-540.
- Milas A., Virasoro algebra, Dedekind $\eta$-function, and specialized Macdonald identities, Transform. Groups 9 (2004), 273-288, arXiv:math.QA/0311405.
- Moore G., Seiberg N., Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), 177-254.
- Moore G., Seiberg N., Naturality in conformal field theory, Nuclear Phys. B 313 (1989), 16-40.
- Moore G., Seiberg N., Lectures on RCFT, in Physics, Geometry and Topology, NATO ASI Ser., Vol. 238, Springer, Boston, MA, 1990, 263-361.
- Naculich S.G., Differential equations for rational conformal characters, Nuclear Phys. B 323 (1989), 423-440.
- Niebur D., Construction of automorphic forms and integrals, Trans. Amer. Math. Soc. 191 (1974), 373-385.
- Perlmutter E., Virasoro conformal blocks in closed form, J. High Energy Phys. 2015 (2015), no. 8, 088, 29 pages, arXiv:1502.07742.
- Rademacher H., The Fourier series and the functional equation of the absolute modular invariant $J(\tau)$, Amer. J. Math. 61 (1939), 237-248.
- Shtepin V.V., Intermediate Lie algebras and their finite-dimensional representations, Russian Acad. Sci. Izv. Math. 43 (1994), 559-579.
- Tuba I., Wenzl H., Representations of the braid group $B_3$ and of ${\rm SL}(2,{\bf Z})$, Pacific J. Math. 197 (2001), 491-510, arXiv:math.RT/9912013.
- Vafa C., Conformal theories and punctured surfaces, Phys. Lett. B 199 (1987), 195-202.
- Verlinde E., Fusion rules and modular transformations in $2$D conformal field theory, Nuclear Phys. B 300 (1988), 360-376.
- Whalen D., Vector-valued rademacher sums and automorphic integrals, arXiv:1406.0571.
- Witten E., Three-dimensional gravity revisited, arXiv:0706.3359.
- Zamolodchikov A.B., Conformal symmetry in two dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Comm. Math. Phys. 96 (1984), 419-422.
- Zamolodchikov A.B., Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theoret. and Math. Phys. 73 (1987), 1088-1093.
|
|