Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 017, 32 pages      arXiv:2406.18337      https://doi.org/10.3842/SIGMA.2025.017

The Geometry of Generalised Spin${}^r$ Spinors on Projective Spaces

Diego Artacho a and Jordan Hofmann b
a) Imperial College London, London SW7 2AZ, UK
b) King's College London, London WC2R 2LS, UK

Received July 01, 2024, in final form March 01, 2025; Published online March 11, 2025

Abstract
In this paper, we adapt the characterisation of the spin representation via exterior forms to the generalised spin$^r$ context. We find new invariant spin$^r$ spinors on the projective spaces $\mathbb{CP}^n$, $\mathbb{HP}^n$, and the Cayley plane $\mathbb{OP}^2$ for all their homogeneous realisations. Specifically, for each of these realisations, we provide a complete description of the space of invariant spin$^r$ spinors for the minimum value of $r$ for which this space is non-zero. Additionally, we demonstrate some geometric implications of the existence of special spin$^r$ spinors on these spaces.

Key words: special spinors; projective spaces; generalized spin structures; spin$^c$; spin$^h$.

pdf (626 kb)   tex (45 kb)  

References

  1. Agricola I., Chiossi S.G., Friedrich T., Höll J., Spinorial description of ${\rm SU}(3)$- and ${\rm G}_2$-manifolds, J. Geom. Phys. 98 (2015), 535-555, arXiv:1411.5663.
  2. Agricola I., Hofmann J., Lawn M.-A., Invariant spinors on homogeneous spheres, Differential Geom. Appl. 89 (2023), 102014, 57 pages, arXiv:2023.10201.
  3. Agricola I., Naujoks H., Theiss M., Geometry of principal fibre bundles, in preparation.
  4. Albanese M., Milivojević A., ${\rm Spin}^h$ and further generalisations of spin, J. Geom. Phys. 164 (2021), 104174, 13 pages, arXiv:2021.10417.
  5. Artacho D., Lawn M.-A., Generalised ${\rm Spin}^r$ structures on homogeneous spaces, arXiv:2303.05433.
  6. Arvanitoyeorgos A., An introduction to Lie groups and the geometry of homogeneous spaces, Stud. Math. Libr., Vol. 22, American Mathematical Society, Providence, RI, 2003.
  7. Baez J.C., The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 145-205, arXiv:math/0105155.
  8. Bär C., Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509-521.
  9. Baum H., Friedrich T., Grunewald R., Kath I., Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte Math., Vol. 124, B.G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1991.
  10. Bayard P., Lawn M.-A., Roth J., Spinorial representation of submanifolds in Riemannian space forms, Pacific J. Math. 291 (2017), 51-80, arXiv:1602.02919.
  11. Besse A.L., Einstein manifolds, Class. Math., Springer, Berlin, 2008.
  12. Conti D., Salamon S., Generalized Killing spinors in dimension 5, Trans. Amer. Math. Soc. 359 (2007), 5319-5343, arXiv:math.DG/0508375.
  13. Cortés V., Lazaroiu C., Shahbazi C.S., Spinors of real type as polyforms and the generalized Killing equation, Math. Z. 299 (2021), 1351-1419, arXiv:1911.08658.
  14. Espinosa M., Herrera R., Spinorially twisted spin structures, I: Curvature identities and eigenvalue estimates, Differential Geom. Appl. 46 (2016), 79-107, arXiv:1409.6246.
  15. Friedrich T., Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146.
  16. Friedrich T., On the spinor representation of surfaces in Euclidean $3$-space, J. Geom. Phys. 28 (1998), 143-157, arXiv:dg-ga/9712021.
  17. Friedrich T., Dirac operators in Riemannian geometry, Grad. Stud. Math., Vol. 25, American Mathematical Society, Providence, RI, 2000, arXiv:gr-qc/9507046.
  18. Friedrich T., Weak Spin(9)-structures on 16-dimensional Riemannian manifolds, Asian J. Math. 5 (2001), 129-160, arXiv:math/9912112.
  19. Friedrich T., Kath I., Moroianu A., Semmelmann U., On nearly parallel $G_2$-structures, J. Geom. Phys. 23 (1997), 259-286.
  20. Friedrich T., Trautman A., Spin spaces, Lipschitz groups, and spinor bundles, Ann. Global Anal. Geom. 18 (2000), 221-240, arXiv:math/9901137.
  21. Fulton W., Harris J., Representation theory, Grad. Texts in Math., Vol. 129, Springer, New York, 1991.
  22. Gillard J., Gran U., Papadopoulos G., The spinorial geometry of supersymmetric backgrounds, Classical Quantum Gravity 22 (2005), 1033-1076, arXiv:hep-th/0410155.
  23. Goodman R., Wallach N.R., Symmetry, representations, and invariants, Grad. Texts in Math., Vol. 255, Springer, Dordrecht, 2009.
  24. Grunewald R., Six-dimensional Riemannian manifolds with a real Killing spinor, Ann. Global Anal. Geom. 8 (1990), 43-59.
  25. Herrera H., Herrera R., ${\rm Spin}^q$ manifolds admitting parallel and Killing spinors, J. Geom. Phys. 57 (2007), 1525-1539.
  26. Herrera R., Santana N., Spinorially twisted Spin structures. II: Twisted pure spinors, special Riemannian holonomy and Clifford monopoles, SIGMA 15 (2019), 072, 48 pages, arXiv:1506.07681.
  27. Hirzebruch F., Slodowy P., Elliptic genera, involutions, and homogeneous spin manifolds, Geom. Dedicata 35 (1990), 309-343, arXiv:0712.57010.
  28. Hofmann J., Homogeneous Sasakian and 3-Sasakian structures from the spinorial viewpoint, Adv. Math. 439 (2024), 109493, 39 pages, arXiv:2024.10949.
  29. Itzkowitz G., Rothman S., Strassberg H., A note on the real representations of ${\rm SU}(2,{\mathbb C})$, J. Pure Appl. Algebra 69 (1991), 285-294.
  30. Kusner R., Schmitt N., The spinor representation of surfaces in space, arXiv:dg-ga/9610005.
  31. Lawson Jr. H.B., ${\rm Spin}^h$ manifolds, SIGMA 19 (2023), 012, 7 pages, arXiv:2301.09683.
  32. Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
  33. Lazaroiu C.I., Shahbazi C.S., Complex Lipschitz structures and bundles of complex Clifford modules, Differential Geom. Appl. 61 (2018), 147-169, arXiv:1711.07765.
  34. Lazaroiu C.I., Shahbazi C.S., Real pinor bundles and real Lipschitz structures, Asian J. Math. 23 (2019), 749-836, arXiv:1606.07894.
  35. Lazaroiu C.I., Shahbazi C.S., Dirac operators on real spinor bundles of complex type, Differential Geom. Appl. 80 (2022), 101849, 53 pages, arXiv:2022.10184.
  36. Leeuwen M., Cohen A.M., Lisser B., LiE: a computer algebra package for Lie group computations, 1988, available at http://wwwmathlabo.univ-poitiers.fr/ maavl/LiE/.
  37. Moroianu A., Parallel and Killing spinors on ${\rm Spin}^c$ manifolds, Comm. Math. Phys. 187 (1997), 417-427.
  38. Nomizu K., Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
  39. Onišvcik A., Transitive compact transformation groups, in Eleven Papers on Topology and Algebra, 2nd ed., Amer. Math. Soc. Transl., Vol. 55, Springer, New York, 1966, 153-194.
  40. Samelson H., Notes on Lie algebras, 2nd ed., Universitext, Springer, New York, 1990.
  41. Wang M.Y., Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59-68.
  42. Wernli K., Lecture notes on spin geometry, arXiv:1911.09766.
  43. Ziller W., Lie groups. Representation theory and symmetric spaces, 2010, available at https://www2.math.upenn.edu/ wziller/math650/LieGroupsReps.pdf.
  44. Ziller W., Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), 351-358.

Previous article  Next article  Contents of Volume 21 (2025)