|
SIGMA 21 (2025), 017, 32 pages arXiv:2406.18337
https://doi.org/10.3842/SIGMA.2025.017
The Geometry of Generalised Spin${}^r$ Spinors on Projective Spaces
Diego Artacho a and Jordan Hofmann b
a) Imperial College London, London SW7 2AZ, UK
b) King's College London, London WC2R 2LS, UK
Received July 01, 2024, in final form March 01, 2025; Published online March 11, 2025
Abstract
In this paper, we adapt the characterisation of the spin representation via exterior forms to the generalised spin$^r$ context. We find new invariant spin$^r$ spinors on the projective spaces $\mathbb{CP}^n$, $\mathbb{HP}^n$, and the Cayley plane $\mathbb{OP}^2$ for all their homogeneous realisations. Specifically, for each of these realisations, we provide a complete description of the space of invariant spin$^r$ spinors for the minimum value of $r$ for which this space is non-zero. Additionally, we demonstrate some geometric implications of the existence of special spin$^r$ spinors on these spaces.
Key words: special spinors; projective spaces; generalized spin structures; spin$^c$; spin$^h$.
pdf (626 kb)
tex (45 kb)
References
- Agricola I., Chiossi S.G., Friedrich T., Höll J., Spinorial description of ${\rm SU}(3)$- and ${\rm G}_2$-manifolds, J. Geom. Phys. 98 (2015), 535-555, arXiv:1411.5663.
- Agricola I., Hofmann J., Lawn M.-A., Invariant spinors on homogeneous spheres, Differential Geom. Appl. 89 (2023), 102014, 57 pages, arXiv:2023.10201.
- Agricola I., Naujoks H., Theiss M., Geometry of principal fibre bundles, in preparation.
- Albanese M., Milivojević A., ${\rm Spin}^h$ and further generalisations of spin, J. Geom. Phys. 164 (2021), 104174, 13 pages, arXiv:2021.10417.
- Artacho D., Lawn M.-A., Generalised ${\rm Spin}^r$ structures on homogeneous spaces, arXiv:2303.05433.
- Arvanitoyeorgos A., An introduction to Lie groups and the geometry of homogeneous spaces, Stud. Math. Libr., Vol. 22, American Mathematical Society, Providence, RI, 2003.
- Baez J.C., The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 145-205, arXiv:math/0105155.
- Bär C., Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509-521.
- Baum H., Friedrich T., Grunewald R., Kath I., Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte Math., Vol. 124, B.G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1991.
- Bayard P., Lawn M.-A., Roth J., Spinorial representation of submanifolds in Riemannian space forms, Pacific J. Math. 291 (2017), 51-80, arXiv:1602.02919.
- Besse A.L., Einstein manifolds, Class. Math., Springer, Berlin, 2008.
- Conti D., Salamon S., Generalized Killing spinors in dimension 5, Trans. Amer. Math. Soc. 359 (2007), 5319-5343, arXiv:math.DG/0508375.
- Cortés V., Lazaroiu C., Shahbazi C.S., Spinors of real type as polyforms and the generalized Killing equation, Math. Z. 299 (2021), 1351-1419, arXiv:1911.08658.
- Espinosa M., Herrera R., Spinorially twisted spin structures, I: Curvature identities and eigenvalue estimates, Differential Geom. Appl. 46 (2016), 79-107, arXiv:1409.6246.
- Friedrich T., Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146.
- Friedrich T., On the spinor representation of surfaces in Euclidean $3$-space, J. Geom. Phys. 28 (1998), 143-157, arXiv:dg-ga/9712021.
- Friedrich T., Dirac operators in Riemannian geometry, Grad. Stud. Math., Vol. 25, American Mathematical Society, Providence, RI, 2000, arXiv:gr-qc/9507046.
- Friedrich T., Weak Spin(9)-structures on 16-dimensional Riemannian manifolds, Asian J. Math. 5 (2001), 129-160, arXiv:math/9912112.
- Friedrich T., Kath I., Moroianu A., Semmelmann U., On nearly parallel $G_2$-structures, J. Geom. Phys. 23 (1997), 259-286.
- Friedrich T., Trautman A., Spin spaces, Lipschitz groups, and spinor bundles, Ann. Global Anal. Geom. 18 (2000), 221-240, arXiv:math/9901137.
- Fulton W., Harris J., Representation theory, Grad. Texts in Math., Vol. 129, Springer, New York, 1991.
- Gillard J., Gran U., Papadopoulos G., The spinorial geometry of supersymmetric backgrounds, Classical Quantum Gravity 22 (2005), 1033-1076, arXiv:hep-th/0410155.
- Goodman R., Wallach N.R., Symmetry, representations, and invariants, Grad. Texts in Math., Vol. 255, Springer, Dordrecht, 2009.
- Grunewald R., Six-dimensional Riemannian manifolds with a real Killing spinor, Ann. Global Anal. Geom. 8 (1990), 43-59.
- Herrera H., Herrera R., ${\rm Spin}^q$ manifolds admitting parallel and Killing spinors, J. Geom. Phys. 57 (2007), 1525-1539.
- Herrera R., Santana N., Spinorially twisted Spin structures. II: Twisted pure spinors, special Riemannian holonomy and Clifford monopoles, SIGMA 15 (2019), 072, 48 pages, arXiv:1506.07681.
- Hirzebruch F., Slodowy P., Elliptic genera, involutions, and homogeneous spin manifolds, Geom. Dedicata 35 (1990), 309-343, arXiv:0712.57010.
- Hofmann J., Homogeneous Sasakian and 3-Sasakian structures from the spinorial viewpoint, Adv. Math. 439 (2024), 109493, 39 pages, arXiv:2024.10949.
- Itzkowitz G., Rothman S., Strassberg H., A note on the real representations of ${\rm SU}(2,{\mathbb C})$, J. Pure Appl. Algebra 69 (1991), 285-294.
- Kusner R., Schmitt N., The spinor representation of surfaces in space, arXiv:dg-ga/9610005.
- Lawson Jr. H.B., ${\rm Spin}^h$ manifolds, SIGMA 19 (2023), 012, 7 pages, arXiv:2301.09683.
- Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
- Lazaroiu C.I., Shahbazi C.S., Complex Lipschitz structures and bundles of complex Clifford modules, Differential Geom. Appl. 61 (2018), 147-169, arXiv:1711.07765.
- Lazaroiu C.I., Shahbazi C.S., Real pinor bundles and real Lipschitz structures, Asian J. Math. 23 (2019), 749-836, arXiv:1606.07894.
- Lazaroiu C.I., Shahbazi C.S., Dirac operators on real spinor bundles of complex type, Differential Geom. Appl. 80 (2022), 101849, 53 pages, arXiv:2022.10184.
- Leeuwen M., Cohen A.M., Lisser B., LiE: a computer algebra package for Lie group computations, 1988, available at http://wwwmathlabo.univ-poitiers.fr/ maavl/LiE/.
- Moroianu A., Parallel and Killing spinors on ${\rm Spin}^c$ manifolds, Comm. Math. Phys. 187 (1997), 417-427.
- Nomizu K., Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- Onišvcik A., Transitive compact transformation groups, in Eleven Papers on Topology and Algebra, 2nd ed., Amer. Math. Soc. Transl., Vol. 55, Springer, New York, 1966, 153-194.
- Samelson H., Notes on Lie algebras, 2nd ed., Universitext, Springer, New York, 1990.
- Wang M.Y., Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59-68.
- Wernli K., Lecture notes on spin geometry, arXiv:1911.09766.
- Ziller W., Lie groups. Representation theory and symmetric spaces, 2010, available at https://www2.math.upenn.edu/ wziller/math650/LieGroupsReps.pdf.
- Ziller W., Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), 351-358.
|
|