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Abstract. The present article is devoted to studying the categorical relationships between
the categories of Hopf trusses, weak twisted post-Hopf algebras, introduced by Wang (2023),
and weak twisted relative Rota–Baxter operators. The latter objects are a generalisation
of the relative Rota–Baxter operators defined by Li–Sheng–Tang (2024), where the Rota–
Baxter condition is modified through a cocycle. Under certain conditions, this work shows
that the three aforementioned categories are equivalent.
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1 Introduction

An important issue in the field of mathematical physics consists in the study of the solutions
of the quantum Yang–Baxter equation. Drinfeld has successfully tackled the challenge of con-
structing its solutions and proposed in [6] to focus on the study of the set-theoretical ones.
In order to study this kind of solutions, Rump introduced in [26] the notion of brace, which was
subsequently generalized for the non-abelian setting by Guarnieri and Vendramin in [13], who
introduced the concept of skew brace.

A skew brace is a pair of groups, (G, .) and (G, ⋆), satisfying the following compatibility
condition:

g ⋆ (h.t) = (g ⋆ h).g−1.(g ⋆ t) (1.1)

for all g, h, t ∈ G and where g−1 denotes the inverse of g for the group structure (G, .). The im-
portance of these objects lies in the fact that they induce non-degenerate and non necessarily
involutive solutions of the quantum Yang–Baxter equation. Through a linearisation process,
Angiono, Galindo and Vendramin in [3] obtained Hopf braces, which are also relevant from
a physical point of view because the subclass of the cocommutative ones also gives rise to so-
lutions of the above mentioned equation. Since the emergence of Hopf braces, many structures
were born as a generalization of these, being Hopf trusses the most notable and the ones we are
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going to be interested in throughout this paper. Hopf trusses were defined by Brzeziński in [5]
as the quantum version of skew trusses, which consist of a group structure (A, ⋄) together with
an associative operation ◦ : A×A→ A and a function σ : A→ A such that the relation

a ◦ (b ⋄ c) = (a ◦ b) ⋄ σ(a)⋄ ⋄ (a ◦ c) (1.2)

holds for all a, b, c ∈ A and where σ(a)⋄ denotes the inverse of σ(a) in the group (A, ⋄). It is
easy to see that (1.2) becomes (1.1) when σ is the identity.

Due to the fact that cocommutative Hopf braces give rise to solutions of the quantum Yang–
Baxter equation, some objects appeared with the aim of characterising these structures. Exam-
ples of these are brace triples and post-Hopf algebras, whose respective categories are isomorphic
to the category of cocommutative Hopf braces as can be consulted in [8, Theorems 2.18 and 3.16]
(see also [16]). Thus, a natural question that arises at this point is what are the analogues of
post-Hopf algebras and brace triples for Hopf trusses. In order to answer it, Wang defined in [29]
the notion of weak twisted post-Hopf algebra in the category of vector spaces over a field F, and
proved that the category of these objects is isomorphic to the category of cocommutative Hopf
trusses. The main difference between weak twisted post-Hopf algebras and classical post-Hopf
algebras is that the structure of the new ones is modified using an endomorphism ΦH : H → H,
where H denotes the underlying Hopf algebra, called the cocycle. Therefore, in Section 3 of
this article, we first give the notion of (weak) twisted post-Hopf algebra for an arbitrary braided
monoidal category C. After that, we prove that the categories of Hopf trusses and weak twisted
post-Hopf algebras are isomorphic requiring a weaker hypothesis than cocommutativity which is
related with the so-called cocommutativity class introduced in [1] (see Theorem 3.11). To con-
clude, we show that, if ΦH preserves the unit, ΦH is an idempotent morphism. Then if the base
category C admits split idempotents, under suitable conditions, we have a new Hopf algebra
structure over I(ΦH), which is the image of ΦH (see Theorem 3.21 and Corollary 3.23).

On the other hand, this paper also explores structures associated with Rota–Baxter operators.
These objects were born in [4] in the setting of differential operators on commutative Banach
algebras and intensively studied from a probabilistic and combinatorial point of view after [25].
Then, this notion was extended for cocommutative Hopf algebras by Goncharov in [11]. In this
work, we are going to be interested in the so-called relative Rota–Baxter operators, which are
the most recent generalization of Rota–Baxter operators introduced by Li et al. in [16]. These
objects are no more than coalgebra morphisms T : H → B between two Hopf algebras in the
category of vector spaces over a field F, such that H with the action ⇀ is a left B-module
bialgebra and the following equality holds:

T (a)T (b) = T
(
a(1)
(
T (a(2))⇀ b

))
. (1.3)

Goncharov’s operators are a particular case of the previous ones taking H = B and the adjoint
action. The relevance of relative Rota–Baxter operators lies in the fact that there exists a cor-
respondence between them and Hopf braces which induces an adjunction between the functors
involved (see [16, Theorem 3.3]). So, the aim of Section 4 is going to be trying to generalize
previous correspondence for Hopf trusses. A first approach to the previously stated problem
was given by Li and Wang in [18] (see also [17]). They introduced the notion of Rota–Baxter
systems which are triples (H,B1, B2), where H is a Hopf algebra in the category of vector spaces
and Bk : H → H, k = 1, 2, are coalgebra morphisms verifying that

Bk(a)Bk(b) = Bk

(
B1(a(1))bS

(
B2(a(2))

))
for k = 1, 2 and for all a, b ∈ H, where S denotes the antipode for the Hopf algebra H.
Take into account that every Rota–Baxter operator T : H → H in Goncharov’s sense gives
an example of Rota–Baxter system taking B1(a) = a(1)T (a(2)) for all a ∈ H and B2 = T .



Twisted Post-Hopf Algebras, Twisted Relative Rota–Baxter Operators and Hopf Trusses 3

With these particular structures, Li and Wang are capable of constructing Hopf trusses from
Rota–Baxter systems (see [18, Proposition 3.8]), but not the other way round. Hence, in order
to achieve the desired correspondence with the Hopf trusses category, what we have done is
to introduce the notion of (weak) twisted relative Rota–Baxter operator. These objects differ
from the usual ones in the fact that (1.3) is amended using a cocycle ΨH : H → H. Therefore,
Section 4 is organized as follows. After defining the category of weak twisted relative Rota–
Baxter operators, we first construct a functor from the subcategory of these objects satisfying
condition (4.13) to the category of Hopf trusses (see Theorem 4.9). Then, we prove that every
Hopf truss verifying (3.14) induces a weak twisted relative Rota–Baxter (see Theorem 4.10) and
also show that these two functors give rise to an adjoint pair (see Theorem 4.12) which supposes
the sought-after generalization to this context of [16, Theorem 3.3]. Note that conditions (3.14)
and (4.13) are again related with the cocommutativity class of a Hopf algebra introduced in [1].
To conclude, we show that if we consider the subcategory of weak twisted relative Rota–Baxter
operators satisfying (4.13) whose objects are isomorphisms too, then the previous adjoint pair
induce a categorical equivalence between the respective subcategories (see Theorem 4.13).

2 Preliminaries

A monoidal category C is a category endowed with a tensor functor ⊗ : C × C → C, a unit
object K and families of natural isomorphisms in C,

aM,N,P : (M ⊗N)⊗ P →M ⊗ (N ⊗ P ), rM : M ⊗K →M, lM : K ⊗M →M,

called associativity, right and left unit constraints, respectively, verifying the pentagon ax-
iom (PA) and the triangle axiom (TA), which refer to the identities

aM,N,P⊗Q ◦ aM⊗N,P,Q = (idM ⊗ aN,P,Q) ◦ aM,N⊗P,Q ◦ (aM,N,P ⊗ idQ), (PA)

(idM ⊗ lN ) ◦ aM,K,N = rM ⊗ idN , (TA)

where idX denotes the identity morphism for all object X ∈ C. It is an important result that
every monoidal category is monoidal equivalent to a strict one (see [15, Proposition XI.5.1]),
which is the name given to a monoidal category where the constraints mentioned before are
identities. Therefore, every monoidal category can be assumed to be strict without loss of
generality and also every result proved in a strict setting hold in the general framework.

Given a monoidal category C, it is said that C is braided if there exists a braiding, which is
a family of natural isomorphisms in C

cM,N : M ⊗N → N ⊗M

subject to conditions

cM,N⊗P = (N ⊗ cM,P ) ◦ (cM,N ⊗ P ), cM⊗N,P = (cM,P ⊗N) ◦ (M ⊗ cN,P ).

A. Joyal and R. Street in [14] introduced these particular kind of categories as a tool for studying
links and braids in topology. When the braiding c also satisfies that cY,X ◦ cX,Y = idX⊗Y for
each X,Y ∈ C, c is called a symmetry for C and, in this situation, C is said to be a symmetric
monoidal category. Examples of this kind of categories are, between others, the category of vector
spaces over a field F, FVect, and also the category of modules over a commutative ring R, RMod,
where the tensor functor is defined by the usual tensor product of modules and the braiding is
the flip. For further information the reader is referred to [20].

Thus, throughout this paper, we will denote by C = (C,⊗,K, c) a strict braided monoidal
category. Thanks to being working with a strict category, the identities cX,K = idX = cK,X
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hold for all X ∈ C. Moreover, if f : X → Y is a morphism in C and Z an object, Z ⊗ f
and f ⊗ Z will be used to write idZ ⊗ f and f ⊗ idZ , respectively. In some instances, we will
employ the standard graphical calculus in braided monoidal categories. Recall that, in graphical
notation, the composition of morphisms is represented from the top to the bottom, the identity is
described as a vertical line, and the tensor product of morphisms is expressed through horizontal
concatenation. If f : A⊗B → C is a morphism in the category C, then it will be represented by

f

and, if g : A→ B ⊗ C is a morphism in C, then it will represented by

g

Moreover, the braiding and its inverse will be represented by

c and c−1

respectively.
In what follows, we will sum up some basic definitions in the context in which we are working.

Definition 2.1. A non-unital algebra in C is a pair A = (A,µA), where A is an object in C
and µA : A⊗A→ A is a morphism in C called the product of A, satisfying that µA is associative,
i.e., µA ◦ (µA⊗A) = µA ◦ (A⊗µA). A non-unital algebra (A,µA) is said to be an algebra if there
exists a morphism ηA : K → A in C, called the unit of the algebra, such that µA ◦ (ηA ⊗ A) =
idA = µA ◦ (A⊗ ηA). Following the graphical notation, for each algebra A, the product µA and
the unit ηA will be represented by

µA and ηA =

When there is no risk of confusion with the product which is being used, the circle in the
previous diagram will be omitted.

Given A = (A,µA) and B = (B,µB) non-unital algebras, f : A → B is a morphism of
non-unital algebras if f ◦ µA = µB ◦ (f ⊗ f). If A and B are algebras with units ηA and ηB,
respectively, f is an algebra morphism if it also satisfies that f◦ηA = ηB. Moreover, A⊗B admits
a structure of non-unital algebra whose product is given by µA⊗B := (µA⊗µB) ◦ (A⊗ cB,A⊗B)
and, in the unital case, A⊗B is also an algebra with unit ηA⊗B := ηA ⊗ ηB.

Definition 2.2. A coalgebra in C is a triple D = (D, εD, δD), where D is an object in C
and εD : D → K and δD : D → D⊗D are morphisms in C called the counit and the coproduct,
respectively, verifying that (εD⊗D)◦δD = idD = (D⊗εD)◦δD and also that δD is coassociative,
which means that (δD⊗D)◦δD = (D⊗δD)◦δD. Graphically, the coproduct δD and the counit εD
will be represented by

δD and εD =

As in the case of the product, when there is no risk of confusion with the coproduct which is
being used, again the circle in the previous diagram will be omitted.
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If D = (D, εD, δD) and E = (E, εE , δE) are coalgebras in C, a morphism f : D → E is
a coalgebra morphism if δE ◦ f = (f ⊗ f) ◦ δD and εE ◦ f = εD. Note also that the tensor
product D ⊗E has a natural coalgebra structure given by δD⊗E := (D ⊗ cD,E ⊗E) ◦ (δD ⊗ δE)
and εD⊗E := εD ⊗ εE .

Definition 2.3. Let A = (A,µA) be a non-unital algebra and M an object in C. A non-unital
left A-module is a pair (M,φM ), where φM : A⊗M →M is a morphism in C called the action
of A over M , satisfying that φM ◦ (A ⊗ φM ) = φM ◦ (µA ⊗M). When A is an algebra with
unit ηA and (M,φM ) is a non-unital left A-module, (M,φM ) is said to be a left A-module if the
condition φM ◦ (ηA⊗M) = idM holds too. Following the graphical notation, the action φM will
be represented by

φM

If (M,φM ) and (N,φN ) are non-unital left A-modules, f : M → N is a morphism of non-
unital left A-modules if f is A-linear, i.e., f ◦ φM = φN ◦ (A ⊗ f). With these morphisms,
non-unital left A-modules constitute a category for which left A-modules are a full subcategory.

Definition 2.4. Consider (X,µX) a non-unital algebra and (X, εX , δX) a coalgebra in C.
X = (X,µX , εX , δX) is a non-unital bialgebra in C if µX is a coalgebra morphism. A non-
unital bialgebra X = (X,µX , εX , δX) is said to be a bialgebra in C if there exists a morphism
ηX : K → X such that (X, ηX , µX) is an algebra and ηX is a coalgebra morphism in C. Note
that ηX and µX are coalgebra morphisms if and only if εX and δX are algebra morphisms,
respectively.

A morphism f : X → Y is a morphism of non-unital bialgebras in C if f is a morphism of non-
unital algebras and coalgebras simultaneously. When X and Y are bialgebras, f is a bialgebra
morphism if it also satisfies that f ◦ ηX = ηY .

Consider a left module M with action φM . It is possible that M may have an additional
structure, e.g., it may be an algebra or a coalgebra. So, in what follows, we introduce the struc-
tures of module (co)algebra which require some compatibility conditions between the (co)algebra
structure and the module action.

Definition 2.5. Let X = (X,µX , εX , δX) be a non-unital bialgebra and A = (A, ηA, µA) an
algebra in C. A pair (A,φA) is a non-unital left X-module algebra if (A,φA) is a non-unital left
X-module such that ηA and µA are morphisms of non-unital left X-modules which means that
the equalities

φA ◦ (X ⊗ ηA) = εX ⊗ ηA, φA ◦ (X ⊗ µA) = µA ◦ φA⊗A

hold, where φA⊗A = (φA ⊗ φA) ◦ (X ⊗ cX,A ⊗ A) ◦ (δX ⊗ A ⊗ A) is the left action on A ⊗ A.
When X is a bialgebra, a non-unital left X-module algebra (A,φA) is said to be a left X-module
algebra if (A,φA) is a left X-module.

Definition 2.6. Let X = (X,µX , εX , δX) be a non-unital bialgebra and D = (D, εD, δD)
a coalgebra in C. A pair (D,φD) is said to be a non-unital left X-module coalgebra if (D,φD)
is a non-unital left X-module satisfying that εD and δD are morphisms of non-unital left X-
modules, that is to say, the following equalities hold:

εD ◦ φD = εX ⊗ εD, (2.1)

δD ◦ φD = φD⊗D ◦ (X ⊗ δD). (2.2)

Note that (2.1) and (2.2) are equivalent to the fact that φD is a coalgebra morphism. In case
that X is a bialgebra, a non-unital left X-module coalgebra (D,φD) is said to be a left X-module
coalgebra if (D,φD) is a left X-module.



6 J.M. Fernández Vilaboa, R. González Rodŕıguez and B. Ramos Pérez

Next step consists in introducing the concept of Hopf algebra in C. In these particular objects
the convolution operation is highly relevant, so we define it first.

Definition 2.7. Let A = (A, ηA, µA) be an algebra and D = (D, εD, δD) a coalgebra in C.
Hom(D,A) will denote the set of morphisms in C from D to A. With the convolution product,
f ∗ g := µA ◦ (f ⊗ g) ◦ δD, Hom(D,A) is an algebra with unit element ηA ◦ εD = εD ⊗ ηA.

Definition 2.8. If X = (X, ηX , µX , εX , δX) is a bialgebra in C, we will say X is a Hopf algebra
in C if there exists a morphism λX : X → X, called the antipode, satisfying that

λX ∗ idX = εX ⊗ ηX = idX ∗ λX , (2.3)

that is to say, λX is the convolution inverse of idX in Hom(X,X).
A morphism between Hopf algebras, f : X → Y , is a Hopf algebra morphism if f is an algebra-

coalgebra morphism. Note that both, λY ◦ f and f ◦λX , are inverses of f for the convolution in
Hom(X,Y ). So, due to the uniqueness of the inverse,

λY ◦ f = f ◦ λX . (2.4)

Given a Hopf algebra X, we will say that X is commutative if µX ◦ cX,X = µX , and cocom-
mutative if cX,X ◦ δX = δX .

Moreover, in every Hopf algebra X, the following properties of the antipode λX are satisfied:
On the one hand, λX is unique, antimultiplicative and anticomultiplicative, i.e., the equalities

λX ◦ µX = µX ◦ (λX ⊗ λX) ◦ cX,X ,

δX ◦ λX = cX,X ◦ (λX ⊗ λX) ◦ δX (2.5)

hold, and, on the other hand, λX leaves the unit and the counit invariant, that is to say,

λX ◦ ηX = ηX , εX ◦ λX = εX . (2.6)

Thus, it is a direct consequence of the previous equalities that, when X is commutative, λX is
an algebra morphism and, in case that X is cocommutative, λX is a coalgebra morphism.
In addition, whenX is commutative or cocommutative, λX∗(λX◦λX) = εX⊗ηX = (λX◦λX)∗λX
and so, owing to the uniqueness of the inverse for the convolution in Hom(X,X), λX ◦λX = idX .

To finish, it will be relevant along the paper that if X is a cocommutative Hopf algebra in C,
then the inverse of cX,X is cX,X itself, so the identity

cX,X ◦ cX,X = idX⊗X (2.7)

holds (see [27, Corollary 5]).

Remark 2.9. Every Hopf algebra X in C has a structure of left module algebra over itself
with the so called adjoint action φad

X := µX ◦ (µX ⊗ λX) ◦ (X ⊗ cX,X) ◦ (δX ⊗X). If X is also
cocommutative, then

(
X,φad

X

)
is a left X-module algebra-coalgebra.

The proof of the following theorem can be found in [8, Theorem 1.8].

Theorem 2.10. Let X = (X, ηX , µX , εX , δX , λX) and H = (H, ηH , µH , εH , δH , λH) be Hopf
algebras in C such that there exists a morphism φH : X ⊗ H → H satisfying the following
conditions:

(i) φH ◦ (X ⊗ µH) = µH ◦ (φH ⊗ φH) ◦ (X ⊗ cX,H ⊗H) ◦ (δX ⊗H ⊗H),

(ii) φH is a coalgebra morphism.

Then, φH ◦ (X ⊗ ηH) = εX ⊗ ηH holds.

As a direct corollary we obtain that, if (H,φH) is a left X-module coalgebra such that µH is
X-linear, then (H,φH) is a left X-module algebra too.
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Finally, we are going to recall the notion of Hopf truss introduced by T. Brzeziński in [5],
which are a generalization of Hopf braces (see [3]). So, Hopf trusses are defined as follows in the
braided monoidal setting.

Definition 2.11. Let H = (H, εH , δH) be a coalgebra in C. Let us assume that there are an
algebra structure

(
H, ηH , µ

1
H

)
defined on H, an associative product µ2H : H ⊗H → H and two

endomorphisms of H denoted by λH and σH . We will say that(
H, ηH , µ

1
H , µ

2
H , εH , δH , λH , σH

)
is a Hopf truss in C if

(i) H1 =
(
H, ηH , µ

1
H , εH , δH , λH

)
is a Hopf algebra in C.

(ii) H2 =
(
H,µ2H , εH , δH

)
is a non-unital bialgebra in C.

(iii) The morphism σH is a coalgebra morphism satisfying the following equality:

µ2H ◦
(
H ⊗ µ1H

)
= µ1H ◦

(
µ2H ⊗ ΓσH

H1

)
◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H),

where ΓσH
H1

:= µ1H ◦
(
(λH ◦ σH)⊗ µ2H

)
◦ (δH ⊗H), i.e.,

Following [12], a Hopf truss will be denoted by H = (H1, H2, σH) (or simply by H) and the
morphism σH is called the cocycle of H.

We will say that a Hopf truss H is cocommutative if the underlying coalgebra (H, εH , δH) is
cocommutative, that is to say, if δH = cH,H ◦ δH .

Remark 2.12. A Hopf truss H is a Hopf brace if there exists a morphism SH : H → H such
that H2 =

(
H, ηH , µ

2
H , εH , δH , SH

)
is a Hopf algebra in C and σH = idH .

Definition 2.13. Let H = (H1, H2, σH) and B = (B1, B2, σB) be Hopf trusses in C. A mor-
phism f between the two underlying objects is a morphism of Hopf trusses if f : H1 → B1 is
a Hopf algebra morphism and f : H2 → B2 is a morphism of non-unital bialgebras.

As was proved in [5, Proposition 6.8], for every f : H → B morphism of Hopf trusses, the
equality

σB ◦ f = f ◦ σH (2.8)

holds.
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Therefore, Hopf trusses give rise to a category that we will denote by HTr. Cocommutative
Hopf trusses form a full subcategory of Hopf trusses that we will denote by coc-HTr.

The proofs that we can find in [5, Section 6] can be replicated in the braided monoidal setting
since they do not depend on the symmetry of the category F-Vect. Then we have the following
property: Given a Hopf truss H in C the second product µ2H admits the following expression:

µ2H = µ1H ◦
(
σH ⊗ ΓσH

H1

)
◦ (δH ⊗H). (2.9)

By [5, Lemma 6.2], it is known that the cocycle σH is fully determined by ηH and the
product µ2H in the following way:

σH = µ2H ◦ (H ⊗ ηH).

Then, as a consequence of the associativity for the product µ2H , we have that

σH ◦ µ2H = µ2H ◦ (H ⊗ σH) (2.10)

holds. In addition, by [5, Theorem 6.5] we know that
(
H1,Γ

σH
H1

)
is a non-unital left H2-module

algebra.

This introductory section concludes with the notion of finite object in C.

Definition 2.14. An object P in C is finite if there exists an object P ∗, called the dual of P ,
and a C-adjunction P ⊗− ⊣ P ∗ ⊗− between the tensor functors.

For example, if C is the category of left modules over a commutative ring R, then P is finite
if and only if P is finitely generated and projective. Moreover, it is well known that for every
finite Hopf algebra in a braided monoidal category its antipode is an isomorphism (see [19]) and,
as a consequence, the associated category of Yetter–Drinfeld modules is an example of braided
monoidal category.

We will denote by aP and bP the unit and the counit of the previous C-adjunction, respectively.
Then, aP (K) : K → P ∗ ⊗P and bP (K) : P ⊗P ∗ → K, which will be represented graphically by

aP (K) = and bP (K) =

By the properties of the adjunction, the following equalities hold:

(bP (K)⊗ P ) ◦ (P ⊗ aP (K)) = idP ,

(P ∗ ⊗ bP (K)) ◦ (aP (K)⊗ P ∗) = idP ∗ ,

i.e.,

= idP and = idP ∗ ,

respectively. Finite objects in C constitute a full subcategory of C that we will denote by Cf .

Note that, for every finite object P in C, we have a natural algebra structure in C over the
tensor object P ∗ ⊗ P as we can see in the following lemma, whose proof is straightforward.

Lemma 2.15. Let P be a finite object in C, then P ∗ ⊗ P is an algebra in C with product given
by µP ∗⊗P := P ∗ ⊗ bP (K)⊗ P and unit ηP ∗⊗P := aP (K).
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3 (Weak) twisted post-Hopf algebras and Hopf trusses

Post-Hopf algebras are a particular kind of structures introduced by Y. Li, Y. Sheng and R. Tang
in [16] in the category of vector spaces over a field F. These objects are specially interesting
because their respective category is isomorphic to the category of Hopf braces under cocom-
mutativity hypothesis (see [16, Theorem 2.12]). This concept was generalized for an arbitrary
braided monoidal category C in [8], which is not a straightforward step, and also the categorical
isomorphism with the category of Hopf braces was extended to this framework (see [8, Theo-
rem 3.16 and Corollary 3.17]). Subsequently, (weak) twisted post-Hopf algebras were introduced
by S. Wang in [29] for the category FVect with the aim of generalising all the above-mentioned
results for Hopf trusses as can be consulted along [29, Section 6].

In this section, the notion of (weak) twisted post-Hopf algebra is going to be extended to
the braided monoidal setting and we are going to prove two fundamental results: Firstly, an
isomorphism between the categories of Hopf trusses and weak twisted post-Hopf algebras is
obtained in which, in contrast with [29, Theorem 6.7], the hypothesis of cocommutativity is
replaced by a weaker condition and, in addition, we will also prove that, when the base category
admits split idempotents, every twisted post-Hopf algebra induces a new Hopf algebra structure.

Definition 3.1. A weak twisted post-Hopf algebra in C is a triple (H,mH ,ΦH) where H is
a Hopf algebra in C and mH : H ⊗H → H and ΦH : H → H are morphisms in C satisfying the
following conditions:

(i) mH is a coalgebra morphism, which means that the following equalities hold:

(i.1) δH ◦mH = (mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH),

(i.2) εH ◦mH = εH ⊗ εH .

(ii) ΦH is a coalgebra morphism, that is to say

(ii.1) δH ◦ ΦH = (ΦH ⊗ ΦH) ◦ δH ,

(ii.2) εH ◦ ΦH = εH .

(iii) ΦH ◦ µH ◦ (ΦH ⊗mH) ◦ (δH ⊗H) = µH ◦ (ΦH ⊗mH) ◦ (δH ⊗ ΦH), i.e.,

(iv) mH ◦ (H ⊗mH) = mH ◦ ((µH ◦ (ΦH ⊗mH) ◦ (δH ⊗H))⊗H), i.e.,
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(v) mH ◦ (H ⊗ µH) = µH ◦ (mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H), i.e.,

The morphism ΦH will be called the cocycle of the weak twisted post-Hopf algebra H.
Moreover, if H is a finite Hopf algebra and the conditions

(vi) ΦH ◦ ηH = ηH , i.e., the cocycle ΦH preserves the unit,

(vii) the morphism

αH := (H∗ ⊗mH) ◦ (cH,H∗ ⊗H) ◦ (H ⊗ aH(K)) : H → H∗ ⊗H

is convolution invertible in Hom(H,H∗ ⊗H), which means that there exists

βH : H → H∗ ⊗H

such that

(H∗ ⊗ bH(K)⊗H) ◦ (αH ⊗ βH) ◦ δH = εH ⊗ aH(K)

= (H∗ ⊗ bH(K)⊗H) ◦ (βH ⊗ αH) ◦ δH ,

i.e.,

hold, then the triple (H,mH ,ΦH) is said to be a twisted post-Hopf algebra.

Definition 3.2. Let (H,mH ,ΦH) and (B,mB,ΦB) be weak twisted post-Hopf algebras in C.
We will say that f : (H,mH ,ΦH) → (B,mB,ΦB) is a morphism of weak twisted post-Hopf
algebras if f : H → B is a Hopf algebra morphism such that

f ◦mH = mB ◦ (f ⊗ f), (3.1)

ΦB ◦ f = f ◦ ΦH . (3.2)

Therefore, weak twisted post-Hopf algebras give rise to a category that we will denote by
wt-Post-Hopf. In addition, twisted post-Hopf algebras constitute a full subcategory of weak
twisted post-Hopf algebras that we will denote by t-Post-Hopf. If the underlying Hopf algebra
is cocommutative, the structure (H,mH ,ΦH) is referred to as a cocommutative weak twisted
post-Hopf algebra. The corresponding full subcategory is denoted as coc-wt-Post-Hopf. In the
twisted and cocommutative setting, this full subcategory is denoted as coc-t-Post-Hopf.
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Remark 3.3. Note that [29, Definition 6.3], that is the definition of (weak) twisted post-Hopf
algebras proposed by S. Wang in the category FVect, always requires cocommutativity of the
underlying Hopf algebra. In the previous definition, this requirement was omitted.

Note also that when C = Set the category of sets, which is an example of braided monoidal
category whose braiding is defined by the usual flip, then (H,mH ,ΦH) is a (weak) twisted post-
Hopf algebra if and only (H,mH ,ΦH) is a (weak) twisted post-group following the definition
introduced in [29, Definition 2.1].

Example 3.4. If C is the category of vector spaces over a field F, then every twisted post-Hopf
algebra in C is a post-Hopf algebra in the sense of Li, Sheng and Tang if ΦH = idH . In the same
setting and under finite conditions, every Yetter–Drinfeld post-Hopf algebra in Sciandra’s sense
(see [28]) is an example of twisted post-Hopf algebra in a braided monoidal category (in this
case this category is the category of Yetter–Drinfeld modules over the subadjacent Hopf algebra)
where ΦH = idH . Note that Yetter–Drinfeld post-Hopf algebras are usual post-Hopf algebras in
the cocommutative setting and also note that the category of Yetter–Drinfeld post-Hopf algebras
is isomorphic to the category of Yetter–Drinfeld braces introduced by Ferri and Sciandra in [9].

Lemma 3.5. Let (H,mH ,ΦH) be an object in wt-Post-Hopf. The equality

mH ◦ (H ⊗ ηH) = εH ⊗ ηH (3.3)

holds. Moreover, when the Hopf algebra H is finite,

mH ◦ c−1
H,H = (bH(K)⊗H) ◦ (H ⊗ αH) (3.4)

holds. Then,

mH = (bH(K)⊗H) ◦ (H ⊗ αH) ◦ cH,H (3.5)

also holds and, if (H,mH ,ΦH) is an object in t-Post-Hopf, we obtain that

mH ◦ (ηH ⊗H) = idH . (3.6)

Proof. Firstly, by conditions (i) and (v) of Definition 3.1, the proof of (3.3) follows by The-
orem 2.10. Moreover, the proof of (3.4) and (3.5) is completely analogous to the proof of
[8, Lemma 3.4]. In addition, note that morphismmH◦(ηH⊗H) is idempotent when (H,mH ,ΦH)
is a twisted post-Hopf algebra. Indeed,

mH ◦ (ηH ⊗ (mH ◦ (ηH ⊗H)))

= mH ◦ ((µH ◦ (ΦH ⊗mH) ◦ ((δH ◦ ηH)⊗ ηH))⊗H) (by (iv) of Definition 3.1)

= mH ◦ ((µH ◦ ((ΦH ◦ ηH)⊗ (mH ◦ (ηH ⊗ ηH))))⊗H)

(by the condition of coalgebra morphism for ηH)

= mH ◦ ((µH ◦ (ηH ⊗ (mH ◦ (ηH ⊗ ηH))))⊗H) (by (vi) of Definition 3.1)

= (εH ◦ ηH)⊗ (mH ◦ (ηH ⊗H)) (by unit property and (3.3))

= mH ◦ (ηH ⊗H) (by (co)unit properties).

Following the rest of the proof as in [8, Lemma 3.5], (3.6) holds. ■

Theorem 3.6. Let (H,mH ,ΦH) be an object in wt-Post-Hopf. If

(mH ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H) = (mH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H), (3.7)
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i.e.,

holds, then H = (H,µH , εH , δH) is a non-unital bialgebra in C, where

µH := µH ◦ (ΦH ⊗mH) ◦ (δH ⊗H),

i.e.,

Moreover, note that

µH ◦ (H ⊗ ηH) = ΦH , (3.8)

and, if (H,mH ,ΦH) is an object in t-Post-Hopf, then

µH ◦ (ηH ⊗H) = idH . (3.9)

Proof. Let us start the proof with the associative character of µH ,

µH ◦ (µH ⊗H)

= µH ◦ (ΦH ⊗mH) ◦ (((µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ ΦH)⊗ (δH ◦mH)))⊗H)

◦ (δH ⊗H ⊗H) (by the condition of coalgebra morphism for µH)

= µH ◦ (ΦH ⊗mH) ◦ (((µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H))⊗H)

◦ (((ΦH ⊗ ΦH) ◦ δH)⊗ ((mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))⊗H)

◦ (δH ⊗H ⊗H) (by (i.1) and (ii.1) of Definition 3.1)

= µH ◦ ((ΦH ◦ µH ◦ (ΦH ⊗H))⊗ (mH ◦ ((µH ◦ (ΦH ⊗mH))⊗H)))

◦ (H ⊗ ((mH ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H))⊗H ⊗H ⊗H)

◦ (H ⊗ ((H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))⊗H) ◦ (δH ⊗H ⊗H)

(by naturality of c and coassociativity of δH)

= µH

◦ ((ΦH ◦ µH ◦ (ΦH ⊗mH) ◦ (δH ⊗H))⊗ (mH ◦ ((µH ◦ (ΦH ⊗mH) ◦ (δH ⊗H))⊗H)))

◦ (((H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))⊗H) (by (3.7), coassociativity of δH and naturality of c)

= µH ◦ ((µH ◦ (ΦH ⊗mH) ◦ (δH ⊗ ΦH))⊗ (mH ◦ (H ⊗mH)))

◦ (((H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))⊗H) (by (iii) and (iv) of Definition 3.1)

= µH ◦ (ΦH ⊗ (µH ◦ (mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)))

◦ (δH ⊗ ((ΦH ⊗mH) ◦ (δH ⊗H)))

(by naturality of c, coassociativity of δH and associativity of µH)
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= µH ◦ (H ⊗ µH) (by (v) of Definition 3.1).

Moreover, µH is a coalgebra morphism. Indeed, it is straightforward to prove that εH ◦µH =
εH ⊗ εH and also

δH ◦ µH = (µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH) ◦ (ΦH ⊗mH) ◦ (δH ⊗H)

(by the condition of coalgebra morphism for µH)

= (µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H)

◦ (((ΦH ⊗ ΦH) ◦ δH)⊗ ((mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH)))

◦ (δH ⊗H) (by (i.1) and (ii.1) of Definition 3.1)

= (µH ⊗ µH) ◦ (ΦH ⊗ ((mH ⊗ ΦH) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H))⊗mH)

◦ (δH ⊗ cH,H ⊗H) ◦ (δH ⊗ δH) (by naturality of c and coassociativity of δH)

= (µH ⊗ µH) ◦ (ΦH ⊗ ((mH ⊗ ΦH) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗mH)

◦ (δH ⊗ cH,H ⊗H) ◦ (δH ⊗ δH) (by (3.7))

= (µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH)

(by coassociativity of δH , naturality of c and definition of µH).

Therefore,

(H,µH , εH , δH)

is a non-unital bialgebra.
The proof of (3.8) follows by (3.3) and by the (co)unit properties because

µH ◦ (H ⊗ ηH) = µH ◦ (ΦH ⊗ (ηH ◦ εH)) ◦ δH = ΦH .

To finish, let us see that (3.9) holds when (H,mH ,ΦH) is a twisted post-Hopf algebra,

µH ◦ (ηH ⊗H)

= µH ◦ ((ΦH ◦ ηH)⊗ (mH ◦ (ηH ⊗H))) (by the condition of coalgebra morphism for ηH)

= µH ◦ (ηH ⊗H) (by (vi) of Definition 3.1 and (3.6))

= idH (by unit properties). ■

Remark 3.7. If C is a symmetric category, condition (3.7) means that (H,mH) is in the
cocommutativity class of H following the notion introduced in [1, Definitions 2.1 and 2.2]. This
condition has its roots in the study of the notion of bicrossed product (or double cross product)
of Hopf algebras introduced by Majid in [21] (see also [22]). The construction of this type of
products is closely associated with the notion of matched pair of Hopf algebras. A matched pair
of Hopf algebras in a symmetric category C is a quadruple (A,H,φA, ϕH), where A and H are
Hopf algebras, (A,φA) is a left H-module coalgebra, (H,ϕH) is a right A-module coalgebra and
the following compatibility conditions hold:

φA ◦ (H ⊗ ηA) = εH ⊗ ηA,

φA ◦ (H ⊗ µA) = µA ◦ (A⊗ φA) ◦ (Ψ⊗A),

ϕH ◦ (ηH ⊗A) = εA ⊗ ηH ,

ϕH ◦ (µH ⊗A) = µH ◦ (ϕH ⊗A) ◦ (H ⊗Ψ),

cA,H ◦ ψ = (ϕH ⊗ φA) ◦ δH⊗A,

where Ψ = (φA ⊗ ϕH) ◦ δH⊗A.
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If (A,H,φA, ϕH) is a matched pair of Hopf algebras, the bicrossed product of Hopf algebras
A ▷◁ H is the tensor coalgebra with the product and antipode defined as follows:

µA▷◁H = (µA ⊗ µH) ◦ (A⊗Ψ⊗H),

λA▷◁H = Ψ ◦ (λH ⊗ λA) ◦ cA,H .

Moreover, under the previous conditions, A ▷◁ H is a Hopf algebra if and only if (A,H,φA, ϕH)
is a matched pair of Hopf algebras.

It is well known that the construction of A ▷◁ H gives a complete answer to the factorization
problem, i.e., describe all Hopf algebras L for which, giving two Hopf algebras A and H such
that there exist Hopf algebra monomorphisms iA : A → L and iH : H → L, the morphism
µL ◦ (iA ⊗ iH) : A ⊗ H → L is an isomorphism. As we can see in [22, Theorem 7.2.3], a Hopf
algebra L factorizes through the Hopf algebras A and H if and only if there exists a matched
pair of Hopf algebras (A,H,φA, ϕH) and a Hopf algebra isomorphism between L and A ▷◁ H.

An example of the previous bicrossed product is the one where ϕH = H ⊗ εA, i.e., ϕH is
trivial. In this case A ▷◁ H, denoted by A⋉H, is the semidirect (smash) product introduced by
Molnar [24] in the cocommutative Hopf algebra setting. Note that for the semidirect product
we have that Ψ = (φA ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A) and the following holds: If (A,φA) is a left
H-module coalgebra, A⋉H is a Hopf algebra if and only if (A,φA) is a left H-module algebra
and

(φA ⊗H) ◦ (H ⊗ cH,A) ◦ ((cH,H ◦ δH)⊗A) = (φA ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A) (3.10)

holds, i.e., (A,φA) is in the cocommutativity class of H. Obviously, if H is cocommutative this
condition holds automatically. In the category of sets, A⋉H is the semidirect product of groups
because in the category Set Hopf algebras are groups. Finally, remember that in the category
of vector spaces over a filed a Hopf algebra L factorizes through a normal Hopf subalgebra A
and a Hopf subalgebra H if and only if L is isomorphic as a Hopf algebra to a semidirect
product A⋉H.

On the other hand, a general notion of crossed module of Hopf algebras was given by Frégier
and Wagemann [10], who considered two Hopf algebras A and H, a morphism φA : H ⊗A→ A
such that (A,φA) is a leftH-module algebra (coalgebra) and a Hopf algebra morphism ∂ : A→ H
such that ∂ is a morphism of H-modules where H carries the H-module structure given by the
adjoint action for H, i.e.,

∂ ◦ φA = φad
H ◦ (H ⊗ ∂), (3.11)

and the Peiffer identity holds, i.e.,

φA ◦ (∂ ⊗A) = φad
A , (3.12)

where φad
H and φad

A denote the adjoint action for H and A, respectively. In the same setting,
Majid [23] gives a notion of crossed module of Hopf algebras (see also [7]) assuming (3.11)
and (3.12), the condition of morphism of left H-modules for the antipode of A and (3.10).
The main reason for assuming (3.10) is that it is a necessary condition to assure that a crossed
product of Hopf algebras is compatible with the tensor coproduct in the sense of the semidirect
product. We also want to emphasize that, as was proved in [2], (3.10) allows us to ensure that
any Hopf algebra H induces a crossed module of Hopf algebras (H,H, idH), in a similar way to
what happen in the group setting.

Theorem 3.8. Let (H,mH ,ΦH) be an object in wt-Post-Hopf such that (3.7) holds. Then, the
triple H =

(
H,H,ΦH

)
is an object in HTr.
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Proof. Thanks to Theorem 3.6, it is enough to see that (iii) of Definition 2.11 holds. First of
all, note that

ΓΦH
H = mH . (3.13)

Indeed,

ΓΦH
H = µH ◦ ((µH ◦ ((λH ◦ ΦH)⊗ ΦH) ◦ δH)⊗mH) ◦ (δH ⊗H)

(by associativity of µH and coassociativity of δH)

= µH ◦ (((λH ∗ idH) ◦ ΦH)⊗mH) ◦ (δH ⊗H) (by (ii.1) of Definition 3.1)

= µH ◦ ((ηH ◦ εH ◦ ΦH)⊗mH) ◦ (δH ⊗H) (by (2.3))

= µH ◦ ((ηH ◦ εH)⊗mH) ◦ (δH ⊗H) (by (ii.2) of Definition 3.1)

= mH (by (co)unit property).

Therefore, we obtain

µH ◦
(
µH ⊗ ΓΦH

H

)
◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)

= µH ◦ ((µH ◦ (ΦH ⊗mH) ◦ (δH ⊗H))⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)

(by definition of µH and (3.13))

= µH ◦ (ΦH ⊗ (µH ◦ (mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H))) ◦ (δH ⊗H ⊗H)

(by coassociativity of δH and associativity of µH)

= µH ◦ (H ⊗ µH) (by (v) of Definition 3.1). ■

As a consequence, if we set wt-Post-Hopf⋆ to be the full subcategory of wt-Post-Hopf whose
objects satisfy (3.7), then there exists a functor F : wt-Post-Hopf⋆ −→ HTr defined on objects
by F ((H,mH ,ΦH)) = H and on morphisms by the identity. Note that F is well defined
on morphisms. Indeed, if f : (H,mH ,ΦH) → (B,mB,ΦB) is a morphism in wt-Post-Hopf⋆,
then

f ◦ µH = µB ◦ ((f ◦ ΦH)⊗ (f ◦mH)) ◦ (δH ⊗H) (by the condition of algebra morphism for f)

= µB ◦ (ΦB ⊗mB) ◦ (((f ⊗ f) ◦ δH)⊗ f) (by (3.1) and (3.2))

= µB ◦ (f ⊗ f) (by the condition of coalgebra morphism for f).

Now, our aim is to construct a functor in the opposite sense, that is to say, we want to
construct a functor from HTr to wt-Post-Hopf⋆.

Theorem 3.9. Let H = (H1, H2, σH) be an object in HTr such that the condition(
ΓσH
H1

⊗H
)
◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H) =

(
ΓσH
H1

⊗H
)
◦ (H ⊗ cH,H) ◦ (δH ⊗H), (3.14)

that is,

holds. Under these hypothesis,
(
H1,Γ

σH
H1
, σH

)
is an object in wt-Post-Hopf⋆.
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Proof. Let us see that the triple
(
H1,Γ

σH
H1
, σH

)
satisfies conditions (i)–(v) of Definition 3.1.

Thanks to Hopf truss’ axioms of Definition 2.11, σH is a coalgebra morphism, so (ii) of Defini-
tion 3.1 holds. Moreover,

(
H1,Γ

σH
H1

)
is a non-unital left H2-module algebra. Therefore, due to

this fact and (2.9), conditions (iv) and (v) of Definition 3.1 hold. Condition (iii) follows by (2.9)
and (2.10). So, to conclude the proof it is enough to see that ΓσH

H1
is a coalgebra morphism.

Indeed,

δH ◦ ΓσH
H1

=
(
µ1H ⊗ µ1H

)
◦ (H ⊗ cH,H ⊗H)

◦
(
(δH ◦ λH ◦ σH)⊗

((
µ2H ⊗ µ2H

)
◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH)

))
◦ (δH ⊗H)(

by the condition of coalgebra morphism for µk
H , k = 1, 2

)
=
(
µ1H ⊗ µ1H

)
◦ (H ⊗ cH,H ⊗H)

◦
(
(cH,H ◦ (λH ⊗ λH) ◦ (σH ⊗ σH) ◦ δH)⊗

((
µ2H ⊗ µ2H

)
◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH)

))
◦ (δH ⊗H) (by (2.5) and the condition of coalgebra morphism for σH)

=
((
µ1H ◦

(
(λH ◦ σH)⊗ µ2H

))
⊗
(
µ1H ◦

((
λH ◦ σH

)
⊗ µ2H

)))
◦ (H ⊗H ⊗ cH,H ⊗H ⊗H)

◦ (((H ⊗ cH,H) ◦ (cH,H ⊗H) ◦ (H ⊗ δH) ◦ δH)⊗H ⊗H ⊗H) ◦ (H ⊗ cH,H ⊗H)

◦ (δH ⊗ δH) (by coassociativity of δH and naturality of c)

=
(
H ⊗

(
µ1H ◦

(
(λH ◦ σH)⊗ µ2H

)))
◦
(((

ΓσH
H1

⊗H
)
◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H)

)
⊗H ⊗H

)
◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH)

(
by naturality of c and definition of ΓσH

H1

)
=
(
H ⊗

(
µ1H ◦

(
(λH ◦ σH)⊗ µ2H

)))
◦
(((

ΓσH
H1

⊗H
)
◦ (H ⊗ cH,H) ◦ (δH ⊗H)

)
⊗H ⊗H

)
◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH) (by (3.14))

=
(
ΓσH
H1

⊗ ΓσH
H1

)
◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH) (by coassociativity of δH and naturality of c),

and it is straightforward to see that εH ◦ ΓσH
H1

= εH ⊗ εH , so (i) of Definition 3.1 also holds. ■

Remark 3.10. When C is symmetric, note that (3.14) means that
(
H1,Γ

σH
H1

)
is in the cocom-

mutativity class of H2.

From now on, let us denote by HTr⋆ to the full subcategory of HTr whose objects satisfy con-
dition (3.14). Therefore, we can interpret the previous theorem as follows: There exists a functor
G : HTr⋆ −→ wt-Post-Hopf⋆ acting on objects by G(H) =

(
H1,Γ

σH
H1
, σH

)
and on morphisms by

the identity. Note that G is well defined on morphisms because, if f : H = (H1, H2, σH) → B =
(B1, B2, σB) is a morphism of Hopf trusses, then

f ◦ ΓσH
H1

= µ1B ◦
(
(f ◦ λH ◦ σH)⊗

(
f ◦ µ2H

))
◦ (δH ⊗H)

(by the condition of algebra morphism for f : H1 → B1)

= µ1B ◦
(
(λB ◦ σB)⊗ µ2B

)
◦ (((f ⊗ f) ◦ δH)⊗ f)

(by the condition of algebra morphism for f : H2 → B2, (2.4) and (2.8))

= ΓσB
B1

◦ (f ⊗ f) (by the condition of coalgebra morphism for f). (3.15)

Note also that if (H,mH ,ΦH) is an object in wt-Post-Hopf⋆, the Hopf truss F ((H,mH ,ΦH)) = H
defined in Theorem 3.8 belongs to the category HTr⋆, so F admits a restriction from wt-Post-
Hopf⋆ to HTr⋆.

The following theorem is one of the most important of this section, and this is the gener-
alization to the braided monoidal framework of [29, Theorem 6.7]. Note also that, in contrast
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with the result cited before, weak twisted post-Hopf algebras and Hopf trusses are not required
to be cocommutative.

Theorem 3.11. The categories wt-Post-Hopf⋆ and HTr⋆ are isomorphic.

Proof. On the one side, consider (H,mH ,ΦH) an object in wt-Post-Hopf⋆. By (3.13), we obtain
that

(G ◦ F )(H,mH ,ΦH) = G
((
H,H,ΦH

))
=
(
H,ΓΦH

H ,ΦH

)
= (H,mH ,ΦH),

and therefore, G ◦ F = idwt-Post-Hopf⋆ .

On the other side, let H = (H1, H2, σH) be an object in HTr⋆. We have the following:

(F ◦G)(H) = F
((
H1,Γ

σH
H1
, σH

))
=
(
H1, H1, σH

)
,

where, by (2.9), µH1 = µ2H . Therefore, we conclude that H1 = H2, and so F ◦G = idHTr⋆ . ■

Corollary 3.12. Categories coc-wt-Post-Hopf and coc-HTr are isomorphic.

Proof. By previous theorem, this corollary is direct taking into account that, under cocommu-
tativity, (3.7) and (3.14) always hold. ■

Having reached the fundamental outcome of this section, the following results will try to
generalize some additional properties that can be found in [29] to the monoidal context.

Lemma 3.13. Let (H,mH ,ΦH) be an object in wt-Post-Hopf satisfying that ΦH ◦ ηH = ηH .
Then, ΦH is idempotent.

Proof. The proof follows by

ΦH = µH ◦ (H ⊗ ηH) (by (3.8))

= µH ◦
(
H ⊗ (ΦH ◦ ηH)

)
(by ΦH ◦ ηH = ηH)

= ΦH ◦ µH ◦ (H ⊗ ηH) (by (iii) of Definition 3.1)

= ΦH ◦ ΦH (by (3.8)). ■

As a consequence, if (H,mH ,ΦH) is an object in t-Post-Hopf, then ΦH is idempotent.

Lemma 3.14. Let (H,mH ,ΦH) be an object in t-Post-Hopf. The equality

mH = mH ◦ (ΦH ⊗H). (3.16)

holds.

Proof. The proof follows by

mH = mH ◦ (H ⊗ (mH ◦ (ηH ⊗H))) (by (3.6))

= mH ◦ ((µH ◦ (H ⊗ ηH))⊗H) (by (iv) of Definition 3.1)

= mH ◦ (ΦH ⊗H) (by (3.8)). ■

Consider (H,mH ,ΦH) a twisted post-Hopf algebra and define the following morphism:

SH := (bH(K)⊗H) ◦ ((λH ◦ ΦH)⊗ βH) ◦ cH,H ◦ δH ,
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i.e.,

Note that, when H is cocommutative, the previous morphism becomes the following:

SH = (bH(K)⊗H) ◦ ((λH ◦ ΦH)⊗ βH) ◦ δH . (3.17)

So, next results are going to be devoted to studying under what conditions SH satisfies that

SH ∗ idH = εH ⊗ ηH = idH ∗ SH , (3.18)

where ∗ denotes the convolution product in Hom
(
H,H

)
.

Lemma 3.15. Let (H,mH ,ΦH) be an object in coc-t-Post-Hopf. Then,

λH ◦ ΦH = mH ◦ (H ⊗ SH) ◦ δH . (3.19)

Proof. By (3.5) and the fact that βH is the inverse of αH for the convolution in Hom(H,H∗⊗H),
then

mH ◦ (H ⊗ SH) ◦ δH
= mH ◦ (H ⊗ ((bH(K)⊗H) ◦ ((λH ◦ ΦH)⊗ βH) ◦ δH)) ◦ δH (by (3.17))

= (bH(K)⊗H) ◦ (H ⊗ αH) ◦ cH,H ◦ (H ⊗ ((bH(K)⊗H) ◦ ((λH ◦ ΦH)⊗ βH) ◦ δH))

◦ δH (by (3.5))

= ((bH(K) ◦ ((λH ◦ ΦH)⊗H∗))⊗ (bH(K) ◦ cH∗,H)⊗H) ◦ (H ⊗ cH∗,H∗ ⊗ cH,H)

◦ (H ⊗H∗ ⊗ cH,H∗ ⊗H) ◦ (((cH∗,H ⊗H) ◦ (H∗ ⊗ cH,H) ◦ (αH ⊗H))⊗ βH)

◦ (H ⊗ δH) ◦ δH (by naturality of c)

= ((bH(K) ◦ ((λH ◦ ΦH)⊗H∗))⊗H) ◦ (H ⊗ ((H∗ ⊗ bH(K)⊗H) ◦ (βH ⊗ αH)))

◦ (H ⊗ cH,H) ◦ (cH,H ⊗H) ◦ (H ⊗ δH) ◦ δH (by naturality of c)

= ((bH(K) ◦ ((λH ◦ ΦH)⊗H∗))⊗H) ◦ (H ⊗ ((H∗ ⊗ bH(K)⊗H) ◦ (βH ⊗ αH) ◦ δH))

◦ δH (by naturality of c and cocommutativity and coassociativity of δH)

= ((bH(K) ◦ ((λH ◦ ΦH)⊗H∗))⊗H) ◦ (H ⊗ (εH ⊗ aH(K)))

◦ δH (by (vii) of Definition 3.1)

= λH ◦ ΦH (by counit property and the adjunction properties). ■

Theorem 3.16. If (H,mH ,ΦH) is an object in coc-t-Post-Hopf, then

idH ∗ SH = εH ⊗ ηH . (3.20)

Proof. We have that

idH ∗ SH = µH ◦ (ΦH ⊗ (mH ◦ (H ⊗ SH) ◦ δH)) ◦ δH (by coassociativity of δH)

= µH ◦ (H ⊗ λH) ◦ (ΦH ⊗ ΦH) ◦ δH (by (3.19))

= (idH ∗ λH) ◦ ΦH (by (ii.1) of Definition 3.1)

= εH ⊗ ηH (by (2.3) and (ii.2) of Definition 3.1). ■
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Lemma 3.17. Let (H,mH ,ΦH) be an object in coc-t-Post-Hopf. The morphism

α̃H :=
(
bH(K)⊗H

)
◦ (H ⊗ αH)

is a coalgebra morphism.

Proof. On the one side, by (3.4) and (2.7), α̃H = mH ◦ cH,H . On the other side, according
to (i.1) of Definition 3.1, (2.7) and naturality of c, both mH and cH,H are coalgebra morphisms.
Then, mH ◦ cH,H is a coalgebra morphism and, as a result, α̃H is a coalgebra morphism. ■

Let us define β̃H :=
(
bH(K)⊗H

)
◦(H⊗βH), where βH is the inverse of αH for the convolution

product in Hom(H,H∗ ⊗H). For usual post-Hopf algebras (in other words, when ΦH = idH)
it was necessary to require β̃H to be a morphism of coalgebras to conclude that SH is the
inverse of idH for the convolution ∗

(
when ΦH = idH note that H is unital with unit ηH

and, as a consequence, Hom
(
H,H

)
is also unital with unit ηH ◦ εH for the convolution ∗ ,

see [8, Lemma 3.13 and Theorem 3.14]
)
. A natural question that arises at this point is whether

such a condition implies that SH satisfies (3.18) in general, not only when ΦH = idH . This
question will be solved in Theorem 3.20.

Theorem 3.18. Let (H,mH ,ΦH) be an object in coc-t-Post-Hopf. If β̃H is a coalgebra mor-
phism, then SH is a coalgebra morphism.

Proof. First of all, we will see that εH ◦ SH = εH ,

εH ◦ SH = εH ◦ β̃H ◦ ((λH ◦ ΦH)⊗H) ◦ δH
(
by (3.17) and definition of β̃H

)
= ((εH ◦ λH ◦ ΦH)⊗ εH) ◦ δH

(
by β̃H coalgebra morphism

)
= εH (by (2.6), (ii.2) of Definition 3.1 and counit property).

On the other hand, we have that

δH ◦ SH
= δH ◦ β̃H ◦ ((λH ◦ ΦH)⊗H) ◦ δH

(
by (3.17) and definition of β̃H

)
=
(
β̃H ⊗ β̃H

)
◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ λH ◦ ΦH)⊗ δH) ◦ δH

(
by β̃H coalgebra morphism

)
=
(
β̃H ⊗ β̃H

)
◦ (H ⊗ cH,H ⊗H) ◦ ((cH,H ◦ (λH ⊗ λH) ◦ (ΦH ⊗ ΦH) ◦ δH)⊗ δH) ◦ δH

(by (2.5) and (ii.1) of Definition 3.1)

=
((
β̃H ◦ ((λH ◦ ΦH)⊗H)

)
⊗
(
β̃H ◦ ((λH ◦ ΦH)⊗H)

))
◦ (((H ⊗ cH,H) ◦ (cH,H ⊗H) ◦ (H ⊗ δH) ◦ δH)⊗H) ◦ δH
(by naturality of c and coassociativity of δH)

=
(
SH ⊗

(
β̃H ◦ ((λH ◦ ΦH)⊗H)

))
◦ ((cH,H ◦ δH)⊗H) ◦ δH

(by naturality of c, definition of β̃H and (3.17))

= (SH ⊗ SH) ◦ δH
(
by cocommutativity and coassociativity of H, definition of β̃H and (3.17)

)
. ■

Corollary 3.19. Let (H,mH ,ΦH) be an object in coc-t-Post-Hopf. If β̃H is a coalgebra mor-
phism, then

SH ◦ SH = ΦH . (3.21)

Proof. The equality follows by

SH ◦ SH = µH ◦ ((ηH ◦ εH)⊗ (SH ◦ SH)) ◦ δH (by counit property and (3.9))

= µH ◦ ((µH ◦ (H ⊗ SH) ◦ δH)⊗ (SH ◦ SH)) ◦ δH (by (3.20))
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= µH ◦ (H ⊗ (µH ◦ (SH ⊗ (SH ◦ SH)) ◦ δH)) ◦ δH
(by associativity of µH and coassociativity of δH)

= µH ◦ (H ⊗ ((idH ∗ SH) ◦ SH)) ◦ δH (by the condition of coalgebra morphism for SH)

= ΦH (by (3.20), SH coalgebra morphism, counit property and (3.8)). ■

Note that, under the conditions of the previous corollary, thanks to (3.21) and the idempotent
character of ΦH , we can obtain that

ΦH ◦ SH ◦ SH ◦ ΦH = ΦH ◦ ΦH ◦ ΦH (by (3.21))

= ΦH (by the idempotent character of ΦH). (3.22)

Although it may seem that SH is going to satisfy (3.18) for the convolution in Hom
(
H,H

)
,

it doesn’t always happen. In fact, we will see in the following result that SH ∗ idH = εH ⊗ ηH
if and only if ΦH = idH , that is to say, taking into account Example 3.4, SH ∗ idH = εH ⊗ ηH
if and only if (H,mH) is a post-Hopf algebra.

Theorem 3.20. Let (H,mH ,ΦH) be an object in coc-t-Post-Hopf such that β̃H is a coalgebra
morphism. The following facts are equivalent:

(i) ΦH = idH .

(ii) SH ∗ idH = εH ⊗ ηH .

Proof. At first we will suppose that ΦH = idH . To prove (ii) it is enough to follow the same
arguments as in [8, Lemma 3.13] for post-Hopf algebras.

Assume now that SH ∗ idH = εH ⊗ ηH . This implies that

µH ◦ (H ⊗ (SH ∗ idH)) ◦ δH = µH ◦ (H ⊗ (ηH ◦ εH)) ◦ δH
= ΦH (by (3.8)). (3.23)

So we conclude the following:

ΦH = µH ◦ (H ⊗ (SH ∗ idH)) ◦ δH (by (3.23))

= µH ◦ ((idH ∗ SH)⊗H) ◦ δH (by coassociativity of δH and associativity of µH)

= µH ◦ ((ηH ◦ εH)⊗H) ◦ δH (by (3.20))

= idH (by counit property and (3.9)). ■

So, is it possible to get a Hopf algebra structure from a twisted post-Hopf algebra? To solve
this question we are going to assume that our base category C admits split idempotents, that is
to say, if qX : X → X is an idempotent morphism in C, then there exists an object I(qX) ∈ C,
an epimorphism pX : X → I(qX) and a monomorphism iX : I(qX) → X such that iX ◦ pX = qX
and pX ◦ iX = idI(qX). The categories satisfying this property constitute a broad class that in-
cludes, among others, the categories with epi-monic decomposition for morphisms and categories
with equalizers or coequalizers.

Then, when (H,mH ,ΦH) is an object in wt-Post-Hopf satisfying that ΦH ◦ηH = ηH , we have
proved in Lemma 3.13 that ΦH is idempotent, therefore, there exists an object I(ΦH) ∈ C, an
epimorphism pH : H → I(ΦH) and a monomorphism iH : I(ΦH) → H verifying that

iH ◦ pH = ΦH (3.24)

and

pH ◦ iH = idI(ΦH). (3.25)

Note that (3.24) and (3.25) imply that

ΦH ◦ iH = iH , pH ◦ ΦH = pH . (3.26)
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Theorem 3.21. If (H,mH ,ΦH) is an object in t-Post-Hopf satisfying (3.7), then

I(ΦH) =
(
I(ΦH), ηI(ΦH), µI(ΦH), εI(ΦH), δI(ΦH)

)
is a bialgebra in C with

µI(ΦH) := pH ◦ µH ◦ (iH ⊗ iH), ηI(ΦH) := pH ◦ ηH ,
δI(ΦH) := (pH ⊗ pH) ◦ δH ◦ iH , εI(ΦH) := εH ◦ iH .

Proof. Let us start proving that
(
I(ΦH), ηI(ΦH), µI(ΦH)

)
is an algebra in C. The unit property

follows by

µI(ΦH) ◦
(
ηI(ΦH) ⊗ I(ΦH)

)
= pH ◦ µH ◦ ((ΦH ◦ ηH)⊗ iH) (by (3.24))

= pH ◦ µH ◦ (ηH ⊗ iH) (by (vi) of Definition 3.1)

= pH ◦ iH (by (3.9))

= idI(ΦH) (by (3.25)),

and, on the other hand,

µI(ΦH) ◦
(
I(ΦH)⊗ ηI(ΦH)

)
= pH ◦ µH ◦ (iH ⊗ (ΦH ◦ ηH)) (by (3.24))

= pH ◦ µH ◦ (iH ⊗ ηH) (by (vi) of Definition 3.1)

= pH ◦ ΦH ◦ iH (by (3.8))

= (pH ◦ iH) ◦ (pH ◦ iH) (by (3.24))

= idI(ΦH) (by (3.25)).

Now, let us see that µI(ΦH) is associative,

µI(ΦH) ◦
(
µI(ΦH) ⊗ I(ΦH)

)
= pH ◦ µH ◦ ((ΦH ◦ µH ◦ (iH ⊗ iH))⊗ iH) (by (3.24))

= pH ◦ µH ◦ ((µH ◦ (iH ⊗ iH))⊗ iH) (by (iii) of Definition 3.1 and (3.26))

= pH ◦ µH ◦ (iH ⊗ (µH ◦ (iH ⊗ iH))) (by associativity of µH)

= pH ◦ µH ◦ (iH ⊗ (µH ◦ (iH ⊗ (ΦH ◦ iH)))) (by (3.26))

= pH ◦ µH ◦ (iH ⊗ (ΦH ◦ µH ◦ (iH ⊗ iH))) (by (iii) of Definition 3.1)

= µI(ΦH) ◦
(
I(ΦH)⊗ µI(ΦH)

)
(by (3.24) and definition of µI(ΦH )).

In order to prove that
(
I(ΦH), εI(ΦH), δI(ΦH)

)
is a coalgebra in C, note that the counit prop-

erty is straightforward thanks to (ii.2) of Definition 3.1. So, we will only detail that δI(ΦH) is
coassociative. Indeed,(

δI(ΦH) ⊗ I(ΦH)
)
◦ δI(ΦH)

= (((pH ⊗ pH) ◦ δH ◦ ΦH)⊗ pH) ◦ δH ◦ iH (by (3.24))

= ((pH ◦ ΦH)⊗ (pH ◦ ΦH)⊗ pH) ◦ (δH ⊗H) ◦ δH ◦ iH (by (ii.1) of Definition 3.1)

= ((pH ◦ ΦH)⊗ (pH ◦ ΦH)⊗ pH) ◦ (H ⊗ δH) ◦ δH ◦ iH (by coassociativity of δH)

= (pH ⊗ (pH ◦ ΦH)⊗ (pH ◦ ΦH)) ◦ (H ⊗ δH) ◦ δH ◦ iH (by (3.26))

= (pH ⊗ ((pH ⊗ pH) ◦ δH ◦ ΦH)) ◦ δH ◦ iH (by (ii.1) of Definition 3.1)

=
(
I(ΦH)⊗ δI(ΦH)

)
◦ δI(ΦH) (by (3.24)).
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Moreover, note that µI(ΦH) and ηI(ΦH) are coalgebra morphisms. On the one hand, it is
straightforward to compute that

εI(ΦH) ◦ µI(ΦH) = µK ◦ (εI(ΦH) ⊗ εI(ΦH))
(⋆)
= εI(ΦH) ⊗ εI(ΦH),

δI(ΦH) ◦ ηI(ΦH) = (ηI(ΦH) ⊗ ηI(ΦH)) ◦ δK
(⋆)
= ηI(ΦH) ⊗ ηI(ΦH),

where the equalities indicated with (⋆) follow by the fact that δK = µK = idK in a strict braided
monoidal setting, i.e., the algebra and coalgebra structure over K is the trivial one, and also

εI(ΦH) ◦ ηI(ΦH) = εH ◦ iH ◦ pH ◦ ηH = εH ◦ ΦH ◦ ηH = εH ◦ ηH = idK

by (3.24) and the condition of coalgebra morphism for ΦH .
On the other hand,

δI(ΦH) ◦ µI(ΦH)

= (pH ⊗ pH) ◦ δH ◦ ΦH ◦ µH ◦ (iH ⊗ iH) (by (3.24))

= (pH ⊗ pH) ◦ δH ◦ µH ◦ (iH ⊗ iH) (by (ii.1) of Definition 3.1 and (3.26))

= ((pH ◦ µH)⊗ (pH ◦ µH)) ◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ iH)⊗ (δH ◦ iH))

(by the condition of coalgebra morphism for µH)

= ((pH ◦ µH)⊗ (pH ◦ µH)) ◦ (ΦH ⊗ (cH,H ◦ (ΦH ⊗ ΦH))⊗ ΦH)

◦ ((δH ◦ iH)⊗ (δH ◦ iH)) (by (3.26) and (ii.1) of Definition 3.1)

= (µI(ΦH) ⊗ µI(ΦH)) ◦
(
I(ΦH)⊗ cI(ΦH),I(ΦH) ⊗ I(ΦH)

)
◦
(
δI(ΦH) ⊗ δI(ΦH)

)
(by naturality of c and (3.24)). ■

Remark 3.22. Note that

I(ΦH) =
(
I(ΦH), εI(ΦH), δI(ΦH)

)
is always a coalgebra in C when (H,mH ,ΦH) is an object in wt-Post-Hopf such that ΦH◦ηH = ηH ,
which is a weaker condition than the one imposed in the previous theorem.

Corollary 3.23. Let (H,mH ,ΦH) be an object in coc-t-Post-Hopf such that β̃H is a coalgebra
morphism. I(ΦH) is a cocommutative Hopf algebra in C with antipode

λI(ΦH) := pH ◦ SH ◦ iH , (3.27)

where SH is defined as in (3.17).

Proof. We have to prove that λI(ΦH) satisfies (2.3). On the one side,

idI(ΦH) ∗ λI(ΦH) = pH ◦ µH ◦ (ΦH ⊗ (ΦH ◦ SH ◦ ΦH)) ◦ δH ◦ iH (by (3.27) and (3.24))

= pH ◦ µH ◦ (H ⊗ SH) ◦ δH ◦ iH (by (ii.1) and (iii) of Definition 3.1 and (3.26))

= ηI(ΦH) ◦ εI(ΦH) (by (3.20)).

Note that

µH ◦ (ΦH ⊗H)

= µH ◦ ((ΦH ◦ ΦH)⊗ (mH ◦ (ΦH ⊗H))) ◦ (δH ⊗H) (by (ii.1) of Definition 3.1)

= µH ◦ (ΦH ⊗mH) ◦ (δH ⊗H) (by the idempotent character of ΦH and (3.16))

= µH (by definition of µH). (3.28)
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Therefore, on the other side,

λI(ΦH) ∗ idI(ΦH)

= pH ◦ µH ◦ ((ΦH ◦ SH ◦ ΦH)⊗ ΦH) ◦ δH ◦ iH (by (3.27) and (3.24))

= pH ◦ µH ◦ ((ΦH ◦ SH ◦ ΦH)⊗ (ΦH ◦ SH ◦ SH ◦ ΦH)) ◦ δH ◦ iH (by (3.22))

= pH ◦ µH ◦ ((ΦH ◦ SH)⊗ (SH ◦ SH)) ◦ δH ◦ iH (by (ii.1) and (iii) of Definition 3.1 and (3.26))

= pH ◦ µH ◦ (SH ⊗ (SH ◦ SH)) ◦ δH ◦ iH (by (3.28))

= pH ◦ µH ◦ (H ⊗ SH) ◦ δH ◦ SH ◦ iH (by the condition of coalgebra morphism for SH)

= pH ◦ ηH ◦ εH ◦ SH ◦ iH (by (3.20))

= ηI(ΦH) ◦ εI(ΦH) (by the condition of coalgebra morphism for SH). ■

4 Twisted relative Rota–Baxter operators and Hopf trusses

In [16], Y. Li, Y. Sheng and R. Tang introduce the notion of relative Rota–Baxter operators
for Hopf algebras as a generalisation of Rota–Baxter operators introduced by M. Goncharov
in [11] for cocommutative Hopf algebras. Despite both notions were introduced in the category
of vector spaces over a field F, the same definitions can be used when we work in a braided
monoidal framework because there is no influence of the braiding used. So, if H and B are Hopf
algebras in C such that (H,ϕH) is a left B-module algebra-coalgebra, a relative Rota–Baxter
operator is a coalgebra morphism T : H → B satisfying the equality:

µB ◦ (T ⊗ T ) = T ◦ µH ◦ (H ⊗ (ϕH ◦ (T ⊗H))) ◦ (δH ⊗H), (4.1)

i.e.,

Note that every Rota–Baxter operator B : H → H in Goncharov’s sense is a relative Rota–
Baxter operator considering ϕH = φad

H , the adjoint action, in the cocommutative setting. In [16],
relative Rota–Baxter operators are used as a tool for finding new examples of post-Hopf algebras
(and, as a consequence, of Hopf braces) and Y. Li et al. also construct a correspondence between
the categories of relative Rota–Baxter operators and post-Hopf algebras that give rise to an
adjoint pair between the respective functors (see [16, Theorem 3.3]).

In this section, we are going to introduce the notion of weak twisted relative Rota–Baxter
operators, whose main difference from the usual ones is that condition (4.1) is modified through
an endomorphism ΨH of H. In what follows we are going to prove that, while relative Rota–
Baxter operators are in correspondence with post-Hopf algebras and Hopf braces, these new
objects give rise to a correspondence with Hopf trusses, obtaining generalisations to this new
context of the results above-mentioned. Moreover, if we consider the subcategory of weak
twisted relative Rota–Baxter operators such that T is an isomorphism, we will also prove that
this subcategory is equivalent to the category of Hopf trusses.

Definition 4.1. Let H = (H, ηH , µH , εH , δH , λH) be a Hopf algebra and let B = (B,µB, εB, δB)
be a non-unital bialgebra in C. Suppose that there exists a morphism φH : B ⊗ H → H such
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that (H,φH) is a non-unital left B-module algebra-coalgebra. We will say that a coalgebra mor-
phism T : H → B is a weak twisted relative Rota–Baxter operator if there exists ΨH : H → H
a coalgebra morphism, called the cocycle of T , such that the following conditions hold:

(i) µB ◦ (T ⊗ T ) = T ◦ µH ◦ (ΨH ⊗ (φH ◦ (T ⊗H))) ◦ (δH ⊗H),

(ii) ΨH ◦ µH ◦ (ΨH ⊗ (φH ◦ (T ⊗H))) ◦ (δH ⊗H) = µH ◦ (ΨH ⊗ (φH ◦ (T ⊗H))) ◦ (δH ⊗ΨH).

If it also holds that

(iii) ΨH ◦ ηH = ηH , i.e., the cocycle ΨH preserves the unit,

then T : H → B is said to be a twisted relative Rota–Baxter operator.
In what follows we will denote (weak) twisted relative Rota–Baxter operators by(

T
H
↓
B

,φH ,ΨH

)
.

We are going to define by mH := φH ◦ (T ⊗H), i.e.,

Therefore, conditions (i) and (ii) of previous definition are equivalent to

(i) µB ◦ (T ⊗ T ) = T ◦ µH ◦ (ΨH ⊗mH) ◦ (δH ⊗H), i.e.,

(ii) ΨH ◦ µH ◦ (ΨH ⊗mH) ◦ (δH ⊗H) = µH ◦ (ΨH ⊗mH) ◦ (δH ⊗ΨH), i.e.,

Definition 4.2. Let(
T
H
↓
B

,φH ,ΨH

)
and

(
T ′

H ′

↓
B′

, φH′ ,ΨH′

)

be weak twisted relative Rota–Baxter operators. We will say that a pair

(f, g) :

(
T
H
↓
B

,φH ,ΨH

)
→

(
T ′

H ′

↓
B′

, φH′ ,ΨH′

)
,
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where f : H → H ′ is a Hopf algebra morphism and g : B → B′ is a morphism of non-unital bial-
gebras, is a morphism of weak twisted relative Rota–Baxter operators if the following conditions
hold:

T ′ ◦ f = g ◦ T, (4.2)

f ◦ΨH = ΨH′ ◦ f, (4.3)

f ◦ φH = φH′ ◦ (g ⊗ f). (4.4)

So, weak twisted relative Rota–Baxter operators give rise to a category that we will de-
note by wtr-RB, for which twisted relative Rota–Baxter operators constitute a full subcategory
denoted by tr-RB.

Remark 4.3. Consider(
T
H
↓
B

,φH ,ΨH

)

a weak twisted relative Rota–Baxter operator. Due to T being a coalgebra morphism and
(H,φH) a non-unital left B-module algebra-coalgebra, it is straightforward to prove that the
following equalities hold:

mH ◦ (H ⊗ ηH) = εH ⊗ ηH , (4.5)

mH ◦ (H ⊗ µH) = µH ◦ (mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H), (4.6)

εH ◦mH = εH ⊗ εH ,

δH ◦mH = (mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH). (4.7)

Moreover, the equality

mH ◦ ((µH ◦ (ΨH ⊗mH) ◦ (δH ⊗H))⊗H) = mH ◦ (H ⊗mH), (4.8)

i.e.,

also holds. Indeed,

mH ◦ ((µH ◦ (ΨH ⊗mH) ◦ (δH ⊗H))⊗H)

= φH ◦ ((µB ◦ (T ⊗ T ))⊗H) (by (i) of Definition 4.1)

= mH ◦ (H ⊗mH) (by the B-module conditions).

Remark 4.4. Note that if (f, g) is a morphism between the weak twisted relative Rota–Baxter
operators(

T
H
↓
B

,φH ,ΨH

)
and

(
T ′

H ′

↓
B′

, φH′ ,ΨH′

)
,
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then

f ◦mH = mH′ ◦ (f ⊗ f). (4.9)

Indeed, by (4.4) and (4.2), we have

f ◦mH = φH′ ◦ ((g ◦ T )⊗ f) = φH′ ◦
((
T ′ ◦ f

)
⊗ f

)
= mH′ ◦ (f ⊗ f).

Theorem 4.5. Let(
T
H
↓
B

,φH ,ΨH

)

be a twisted relative Rota–Baxter operator such that B is a bialgebra in C. It is satisfied that

T ◦ ηH = ηB. (4.10)

Proof. By (i) of Definition 4.1, we obtain that

µB ◦ ((T ◦ ηH)⊗ (T ◦ ηH))

= T ◦ µH ◦ (ΨH ⊗mH) ◦ ((δH ◦ ηH)⊗ ηH) (by (i) of Definition 4.1)

= T ◦ µH ◦ (ΨH ⊗ (ηH ◦ εH)) ◦ δH ◦ ηH (by (4.5))

= T ◦ ηH (by the (co)unit properties and (iii) of Definition 4.1). (4.11)

Therefore,

ηB = ηB ◦ εB ◦ T ◦ ηH (by (co)unit properties and the condition of coalgebra morphism for T )

= µB ◦ (λB ⊗B) ◦ δB ◦ T ◦ ηH (by (2.3))

= µB ◦ ((λB ◦ T ◦ ηH)⊗ (T ◦ ηH)) (by the condition of coalgebra morphism for T and ηH)

= µB ◦ ((λB ◦ T ◦ ηH)⊗ (µB ◦ ((T ◦ ηH)⊗ (T ◦ ηH)))) (by (4.11))

= µB ◦ ((µB ◦ (λB ⊗B) ◦ δB ◦ T ◦ ηH)⊗ (T ◦ ηH))

(by associativity of µB and the condition of coalgebra morphism for T and ηH)

= µB ◦ ((ηB ◦ εB ◦ T ◦ ηH)⊗ (T ◦ ηH)) (by (2.3))

= T ◦ ηH (by the condition of coalgebra morphism for T and (co)unit properties). ■

Corollary 4.6. Let(
T
H
↓
B

,φH ,ΨH

)

be a twisted relative Rota–Baxter operator such that B is a bialgebra in C and (H,φH) is a left
B-module algebra-coalgebra. The equality

mH ◦ (ηH ⊗H) = idH (4.12)

holds.

Proof. Using (4.10) and the condition of left B-module, we have that

mH ◦ (ηH ⊗H) = φH ◦ (ηB ⊗H) = idH . ■



Twisted Post-Hopf Algebras, Twisted Relative Rota–Baxter Operators and Hopf Trusses 27

Theorem 4.7. Let(
T
H
↓
B

,φH ,ΨH

)

be a weak twisted relative Rota–Baxter operator such that

(mH ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H) = (mH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H), (4.13)

i.e.,

holds. Then, H̃ = (H, µ̃H , εH , δH), where

µ̃H := µH ◦ (ΨH ⊗mH) ◦ (δH ⊗H),

i.e.,

is a non-unital bialgebra in C that satisfies

µ̃H ◦ (H ⊗ ηH) = ΨH . (4.14)

Moreover, if(
T
H
↓
B

,φH ,ΨH

)

is a twisted relative Rota–Baxter operator such that B is a bialgebra and (H,φH) is a left B-
module algebra-coalgebra, then

µ̃H ◦ (ηH ⊗H) = idH . (4.15)

Proof. Let us start computing the associativity of µ̃H :

µ̃H ◦ (µ̃H ⊗H)

= µH ◦ (ΨH ⊗mH) ◦ (((µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ΨH)⊗ (δH ◦mH)))⊗H)

◦ (δH ⊗H ⊗H) (by the condition of coalgebra morphism for µH)

= µH ◦ (ΨH ⊗mH) ◦ (((µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H))⊗H)

◦ (((ΨH ⊗ΨH) ◦ δH)⊗ ((mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))⊗H)

◦ (δH ⊗H ⊗H) (by the condition of coalgebra morphism for ΨH and (4.7))
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= µH ◦ ((ΨH ◦ µH ◦ (ΨH ⊗H))⊗ (mH ◦ ((µH ◦ (ΨH ⊗mH))⊗H)))

◦ (H ⊗ ((mH ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H))⊗H ⊗H ⊗H)

◦ (H ⊗ ((H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))⊗H) ◦ (δH ⊗H ⊗H)

(by naturality of c and coassociativity of δH)

= µH

◦ ((ΨH ◦ µH ◦ (ΨH ⊗mH) ◦ (δH ⊗H))⊗ (mH ◦ ((µH ◦ (ΨH ⊗mH) ◦ (δH ⊗H))⊗H)))

◦ (((H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))⊗H) (by (4.13), coassociativity of δH and naturality of c)

= µH ◦ ((µH ◦ (ΨH ⊗mH) ◦ (δH ⊗ΨH))⊗ (mH ◦ (H ⊗mH)))

◦ (((H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))⊗H) (by (ii) of Definition 4.1 and (4.8))

= µH ◦ (ΨH ⊗ (µH ◦ (mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)))

◦ (δH ⊗ ((ΨH ⊗mH) ◦ (δH ⊗H)))

(by naturality of c, coassociativity of δH and associativity of µH)

= µ̃H ◦ (H ⊗ µ̃H) (by (4.6)).

Moreover, note that µ̃H is a coalgebra morphism. On the one hand, it is straightforward to
prove that εH ◦ µ̃H = εH ⊗ εH and, on the other hand,

δH ◦ µ̃H
= (µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ΨH)⊗ (δH ◦mH)) ◦ (δH ⊗H)

(by the condition of coalgebra morphism for µH)

= (µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H)

◦ (((ΨH ⊗ΨH) ◦ δH)⊗ ((mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH))) ◦ (δH ⊗H)

(by the condition of coalgebra morphism for ΨH and (4.7))

= ((µH ◦ (ΨH ⊗H))⊗ (µH ◦ (ΨH ⊗mH)))

◦ (H ⊗ ((mH ⊗H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗H))⊗H ⊗H)

◦ (H ⊗H ⊗ cH,H ⊗H) ◦ (((H ⊗ δH) ◦ δH)⊗ δH)

(by naturality of c and coassociativity of δH)

= ((µH ◦ (ΨH ⊗H))⊗ (µH ◦ (ΨH ⊗mH)))

◦ (H ⊗ ((mH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗H ⊗H)

◦ (H ⊗H ⊗ cH,H ⊗H) ◦ (((H ⊗ δH) ◦ δH)⊗ δH) (by (3.7))

= (µ̃H ⊗ µ̃H) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH) (by coassociativity of δH and naturality of c).

To finish, let us see that the unit properties (4.14) and (4.15) hold. Indeed, on the one hand,

µ̃H ◦ (H ⊗ ηH) = ΨH

by (4.5) and, on the other hand, (4.15) follows by

µ̃H ◦ (ηH ⊗H)

= µH ◦ ((ΨH ◦ ηH)⊗ (mH ◦ (ηH ⊗H))) (by the condition of coalgebra morphism for ηH)

= µH ◦ (ηH ⊗H) (by (iii) of Definition 4.1 and (4.12))

= idH (by the unit property). ■

Remark 4.8. Note that, thanks to (4.8) and previous theorem, (H,mH) is a non-unital left
H̃-module. Then, if C is symmetric, we can say that (H,mH) is in the cocommutativity class
of H̃ when (4.13) holds.
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Theorem 4.9. Let(
T
H
↓
B

,φH ,ΨH

)

be a weak twisted relative Rota–Baxter operator such that (4.13) holds. Then, the triple H̃ =(
H, H̃,ΨH

)
is an object in HTr⋆.

Proof. At first, note that

ΓΨH
H = mH . (4.16)

Indeed,

ΓΨH
H = µH ◦ ((µH ◦ ((λH ◦ΨH)⊗ΨH) ◦ δH)⊗mH) ◦ (δH ⊗H)

(by associativity of µH and coassociativity of δH)

= µH ◦ ((µH ◦ (λH ⊗H) ◦ δH ◦ΨH)⊗mH) ◦ (δH ⊗H)

(by the condition of coalgebra morphism for ΨH)

= µH ◦ ((ηH ◦ εH ◦ΨH)⊗mH) ◦ (δH ⊗H) (by (2.3))

= mH (by the condition of coalgebra morphism for ΨH and (co)unit properties).

Thus, to conclude that H̃ is an object in HTr⋆ it is enough to compute (iii) of Definition 2.11.
Indeed,

µH ◦
(
µ̃H ⊗ ΓΨH

H

)
◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)

= µH ◦ ((µH ◦ (ΨH ⊗mH) ◦ (δH ⊗H))⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H)

(by (4.16))

= µH ◦ (ΨH ⊗ (µH ◦ (mH ⊗mH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗H ⊗H))) ◦ (δH ⊗H ⊗H)

(by associativity of µH and coassociativity of δH)

= µ̃H ◦ (H ⊗ µH) (by (4.6)). ■

The previous result can be interpreted as follows: If we denote by wtr-RB⋆ to the full sub-
category of wtr-RB satisfying the condition (4.13), there exists a functor Ω: wtr-RB⋆ −→ HTr⋆

defined on objects by

Ω

((
T
H
↓
B

,φH ,ΨH

))
= H̃

and on morphisms by Ω((f, g)) = f . Note that Ω is well defined on morphisms because

f ◦ µ̃H
= µH′ ◦ ((f ◦ΨH)⊗ (f ◦mH)) ◦ (δH ⊗H) (by the condition of algebra morphism for f)

= µH′ ◦ ((ΨH′ ◦ f)⊗ (mH′ ◦ (f ⊗ f))) ◦ (δH ⊗H) (by (4.3) and (4.9))

= µH′ ◦ (ΨH′ ⊗mH′) ◦ ((δH′ ◦ f)⊗ f) (by the condition of coalgebra morphism for f)

= µ̃H′ ◦ (f ⊗ f).

Theorem 4.10. Let H = (H1, H2, σH) be an object in HTr⋆. Then, the triple(
idH

H1

↓
H2

,ΓσH
H1
, σH

)
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is an object in wtr-RB⋆. As a consequence, there exists a functor Λ: HTr⋆ −→ wtr-RB⋆ acting
on objects by

Λ(H) =

(
idH

H1

↓
H2

,ΓσH
H1
, σH

)

and on morphisms by Λ(f) = (f, f).

Proof. Firstly, it is already known that
(
H1,Γ

σH
H1

)
is a non-unital left H2-module algebra.

Moreover, thanks to (3.14), ΓσH
H1

is a coalgebra morphism as we have just proved in Theorem 3.9.
As a consequence,

(
H1,Γ

σH
H1

)
is a non-unital left H2-module algebra-coalgebra.

Moreover, idH : H1 → H2 is a coalgebra morphism because both have the same underlying
coalgebra structure, and also σH due to Hopf truss’ axioms.

So, to show that Λ is well defined on objects it is enough to see that conditions (i) and (ii)
of Definition 4.1 hold. In this context, equation (i) of Definition 4.1 becomes

µ2H = µ1H ◦
(
σH ⊗ ΓσH

H1

)
◦ (δH ⊗H)

that holds due to (2.9). On the other hand, (ii) of Definition 4.1 follows by

σH ◦ µ1H ◦
(
σH ⊗ ΓσH

H1

)
◦ (δH ⊗H) = σH ◦ µ2H (by (2.9))

= µ2H ◦ (H ⊗ σH) (by (2.10))

= µ1H ◦
(
σH ⊗ ΓσH

H1

)
◦ (δH ⊗ σH) (by (2.9)).

In addition, by (2.8) and (3.15), Λ is well defined on morphisms too, what concludes the
proof. ■

Example 4.11. Following [18, Definition 3.5], given a Hopf algebra D = (D, ηD, µD, εD, δD, λD)
and a Hopf algebra endomorphism ϕ : D → D, a ϕ-twisted operator is a coalgebra morphism
Υ: D → D such that the equation

µD ◦ (Υ⊗Υ) = Υ ◦ µD ◦ ((µD ◦ (Υ⊗D))⊗ (λD ◦ ϕ ◦Υ)) ◦ (D ⊗ cD,D) ◦ (δD ⊗D),

i.e.,

holds.
If q : D → D is a coalgebra morphism satisfying

µD ◦ (q ⊗ q) = q ◦ µD ◦ (q ⊗D), (4.17)

we have that q is a ϕq-twisted operator, where ϕq = ηD ◦ εD, and Dq =
(
D,Dq, σ

q
D

)
is a Hopf

truss where Dq is the non-unital bialgebra

Dq =
(
D,µqD = µD ◦ (q ⊗D), εD, δD

)
,
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and σqD = q. Note that in this case Γq
D = εD ⊗D. As a consequence Dq is an object in HTr⋆.

Then, by Theorem 4.9, the triple(
idD

D
↓
Dq

,Γq
D = εD ⊗D,σqD = q

)

is a weak twisted relative Rota–Baxter operator satisfying condition (4.13).
In this setting, a family of morphisms q : D → D satisfying (4.17) is made up of idempotent

Hopf algebra endomorphisms of D. So, we can construct examples of Hopf trusses in HTr⋆ and
weak twisted relative Rota–Baxter operators satisfying (4.13), working with idempotent Hopf
algebra endomorphisms of D. For example, if D is Hopf algebra that factorizes by the semidirect
product of two Hopf algebras A, H and ωD : A ⋉H → D is the corresponding isomorphism of
Hopf algebras, then

q = ωD ◦
(
ηA ⊗

(
(εA ⊗H) ◦ ω−1

D

))
: D → D

is an idempotent morphism of Hopf algebras. Remember that, in the particular case of groups
(cocommutative Hopf algebras in Set), it is well known that the set of idempotent endomor-
phisms q of a group D are in one-to-one correspondence with the semidirect-product decompo-
sitions A⋉H of D where A = Ker(f), H = q(D) and φA : H×A→ A is the adjoint action of H
on A, i.e., φA(h, a) = hah−1. The operation on A⋉H is defined by (a, h)(b, l) = (aφA(h, b), hl).

On the other hand, if D is cocommutative and Υ: D → D is a ϕ-twisted operator, then,
by [18, Proposition 3.6], the triple (D,Υ, ϕ ◦Υ) is a Rota–Baxter system and, as a consequence,
applying [18, Proposition 3.8] it is obtained that DΥ =

(
D,DΥ, σ

Υ
D

)
is a cocommutative Hopf

truss, where

σΥD := µD ◦ (Υ⊗ (λD ◦ ϕ ◦Υ)) ◦ δD = Υ ∗ (λD ◦ ϕ ◦Υ)

and HΥ is the non-unital bialgebra

HΥ = (H,µΥ, εD, δD),

being

µΥ := µD ◦ ((µD ◦ (Υ⊗D))⊗ (λD ◦ ϕ ◦Υ)) ◦ (D ⊗ cD,D) ◦ (δD ⊗D),

i.e.,

Thus, by Theorem 4.10, the triple(
idD

D
↓
DΥ

,Γ
σΥ
D

D , σΥD

)
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is a weak twisted relative Rota–Baxter operator, where it is straightforward to compute that
under these conditions

Γ
σΥ
D

D = φad
D ◦ ((ϕ ◦Υ)⊗D).

The main results of this section are presented below. The first one is the following.

Theorem 4.12. The functor Λ is left adjoint to the functor Ω.

Proof. Let us construct a bijection

HΣT : HomHTr⋆

(
H,Ω

((
T
B
↓
C
,φB,ΨB

)))
−→ Homwtr-RB⋆

(
Λ(H),

(
T
B
↓
C
,φB,ΨB

))
,

where

H = (H1, H2, σH) and

(
T
B
↓
C
,φB,ΨB

)

are arbitrary objects in HTr⋆ and wtr-RB⋆, respectively.
On the one hand, take

f : H → Ω

(
(T

B
↓
C
,φB,ΨB)

)
= B̃ =

(
B, B̃,ΨB

)
a morphism in HTr⋆. Let us see that (f, T ◦ f) is a morphism in wtr-RB⋆ between the weak
twisted relative Rota–Baxter operators

Λ(H) =

(
idH

H1

↓
H2

,ΓσH
H1
, σH

)
and

(
T
B
↓
C
,φB,ΨB

)
.

First of all note that f : H1 → B is a Hopf algebra morphism and T ◦ f : H2 → C is a morphism
of non-unital bialgebras because

T ◦ f ◦ µ2H
= T ◦ µ̃B ◦ (f ⊗ f)

(
by the condition of morphism of non-unital bialgebras for f : H2 → B̃

)
= µC ◦ ((T ◦ f)⊗ (T ◦ f)) (by (i) of Definition 4.1).

Moreover, it is direct to compute that (4.2) holds in this case and (4.3) follows by (2.8).
Finally, we still have to check (4.4). Indeed,

f ◦ ΓσH
H1

= µB ◦
(
(f ◦ λH ◦ σH)⊗

(
f ◦ µ2H

))
◦ (δH ⊗H)

(by the condition of algebra morphism for f : H1 → B)

= µB ◦ ((λB ◦ΨB ◦ f)⊗ (µ̃B ◦ (f ⊗ f))) ◦ (δH ⊗H)(
by (2.4), (2.8) and the condition of morphism of non-unital bialgebras for f : H2 → B̃

)
= ΓΨB

B ◦ (f ⊗ f)(
by the condition of coalgebra morphism for f and definition of ΓΨB

B for the Hopf truss B̃
)

= mB ◦ (f ⊗ f) (by (4.16))

= φB ◦ ((T ◦ f)⊗ f).
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So, we define

HΣT (f) = (f, T ◦ f).

On the other hand, consider (x, y) a morphism in wtr-RB⋆ between the weak twisted relative
Rota–Baxter

Λ(H) =

(
idH

H1

↓
H2

,ΓσH
H1
, σH

)
and

(
T
B
↓
C
,φB,ΨB

)
.

We will prove that x is a morphism between the Hopf trusses H and B̃. To do this, it is sufficient
to compute that x : H2 → B̃ is a morphism of non-unital bialgebras, what follows by

µ̃B ◦ (x⊗ x) = µB ◦ ((ΨB ◦ x)⊗ (φB ◦ ((T ◦ x)⊗ x))) ◦ (δH ⊗H)

(by the condition of coalgebra morphism for x)

= µB ◦ ((x ◦ σH)⊗ (φB ◦ (y ⊗ x))) ◦ (δH ⊗H) (by (4.2) and (4.3))

= µB ◦ (x⊗ x) ◦
(
σH ⊗ ΓσH

H1

)
◦ (δH ⊗H) (by (4.4))

= x ◦ µ1H ◦
(
σH ⊗ ΓσH

H1

)
◦ (δH ⊗H)

(by the condition of algebra morphism for x : H1 → B)

= x ◦ µ2H (by (2.9)).

Thus, let us define

HΘT : Homwtr-RB⋆

(
Λ(H),

(
T
B
↓
C
,φB,ΨB

))
−→ HomHTr⋆

(
H,Ω

((
T
B
↓
C
,φB,ΨB

)))

by HΘT ((x, y)) = x.
To conclude we have to prove that HΘT is the inverse of HΣT . Indeed,(HΘT ◦ HΣT

)
(f) = HΘT ((f, T ◦ f)) = f,

and (HΣT ◦ HΘT

)
(x, y) = HΣT (x) = (x, T ◦ x) = (x, y) (by (4.2) for the morphism (x, y)). ■

Consider the full subcategory of wtr-RB⋆ consisting of all weak twisted relative Rota–Baxter
operators satisfying (4.13),(

T
H
↓
B

,φH ,ΨH

)
,

such that T is an isomorphism in C. As a first consequence, when we work with this subcategory,
note that, by (i) of Definition 4.1, µB admits an expression in terms of µ̃H given by

µB = T ◦ µ̃H ◦
(
T−1 ⊗ T−1

)
.

We will denote this subcategory by wtr-RB⋆
iso. Moreover, take into account that the image

of the functor Λ always lives in this subcategory because, for any H ∈ HTr⋆, idH : H1 → H2 is
always an isomorphism in C. As a result, Λ: HTr⋆ −→ wtr-RB⋆

iso.
Thus, if we denote by Ω′ the restriction of functor Ω to the subcategory wtr-RB⋆

iso, the
following result states that Λ and Ω′ give rise to a categorical equivalence between wtr-RB⋆

iso

and HTr⋆.
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Theorem 4.13. The categories HTr⋆ and wtr-RB⋆
iso are equivalent.

Proof. On the one hand, let H = (H1, H2, σH) be an object in HTr⋆. Then,

Ω′ ◦ Λ = idHTr⋆ .

Indeed,

(
Ω′ ◦ Λ

)
(H) = Ω′

((
idH

H1

↓
H2

,ΓσH
H1
, σH

))
=
(
H1, H̃1, σH

)
,

where µ̃H1 = µ2H by (2.9). This implies that H̃1 = H2 and thus
(
Ω′ ◦ Λ

)
(H) = H.

On the other hand, we have that

Λ ◦ Ω′ ≃ idwtr-RB⋆
iso

because, if(
T
H
↓
B

,φH ,ΨH

)

is an object in wtr-RB⋆
iso, by (4.16),

(Λ ◦ Ω′)

((
T
H
↓
B

,φH ,ΨH

))
= Λ

((
H, H̃,ΨH

))

=

(
idH

H
↓
H̃

,ΓΨH
H ,ΨH

)
=

(
idH

H
↓
H̃

,mH ,ΨH

)
,

which is isomorphic to(
T
H
↓
B

,φH ,ΨH

)

in the category wtr-RB⋆
iso via the isomorphism (idH , T ). ■

If we denote by coc-wtr-RBiso to the full subcategory of wtr-RB whose objects are weak twisted
relative Rota–Baxter operators,(

T
H
↓
B

,φH ,ΨH

)
,

such that T is an isomorphism and H is cocommutative, then the following result is direct as
a consequence of the previous one.

Corollary 4.14. The categories HTr⋆, wtr-RB⋆
iso and wt-Post-Hopf⋆ are equivalent.

Proof. The proof follows by Theorem 3.11 and previous theorem. ■

Corollary 4.15. The categories coc-HTr and coc-wtr-RBiso are equivalent.

Proof. It is enough to note that, under cocommutativity assumption, (3.14) and (4.13) always
hold. ■

Corollary 4.16. The categories coc-HTr, coc-wtr-RBiso and coc-wt-Post-Hopf are equivalent.

Proof. The proof follows by Corollary 3.12 and previous corollary. ■
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