Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 027, 32 pages      arXiv:2401.05734      https://doi.org/10.3842/SIGMA.2025.027

The Morse-Smale Property of the Thurston Spine

Ingrid Irmer
International Center for Mathematics, Department of Mathematics, Southern University of Science and Technology, Shenzhen, P.R. China

Received February 07, 2024, in final form April 10, 2025; Published online April 23, 2025

Abstract
The Thurston spine consists of the subset of Teichmüller space at which the set of shortest curves, the systoles, cuts the surface into polygons. The systole function is a topological Morse function on Teichmüller space. This paper studies the local properties of the Thurston spine, and the smooth pieces out of which it is constructed. Some of these local properties are shown to have global consequences, for example that the Thurston spine satisfies properties defined in terms of the systole function analogous to that of Morse-Smale complexes of (smooth) Morse functions on compact manifolds with boundary.

Key words: Thurson spine; moduli space; handle decomposition; systole; topological Morse function; unstable manifold; mapping class group.

pdf (772 kb)   tex (379 kb)  

References

  1. Akrout H., Singularités topologiques des systoles généralisées, Topology 42 (2003), 291-308.
  2. Barvinok A., Lattice points, polyhedra, and complexity, in Geometric Combinatorics, IAS/Park City Math. Ser., Vol. 13, American Mathematical Society, Providence, RI, 2007, 19-62.
  3. Bers L., Nielsen extensions of Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 29-34.
  4. Bers L., An inequality for Riemann surfaces, in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 87-93.
  5. Bestvina M., Bromberg K., Fujiwara K., Souto J., Shearing coordinates and convexity of length functions on Teichmüller space, Amer. J. Math. 135 (2013), 1449-1476, arXiv:2013.0049.
  6. Brion M., Vergne M., Lattice points in simple polytopes, J. Amer. Math. Soc. 10 (1997), 371-392.
  7. Foote R.L., Regularity of the distance function, Proc. Amer. Math. Soc. 92 (1984), 153-155.
  8. Irmer I., Explicit generators of the Steinberg module of the mapping class group, arXiv:2312.08721.
  9. Irmer I., Schmutz-Thurston duality, in preparation.
  10. Kerckhoff S.P., The Nielsen realization problem, Ann. of Math. 117 (1983), 235-265.
  11. Lee J.M., Introduction to smooth manifolds, 2nd ed., Grad. Texts in Math., Vol. 218, Springer, New York, 2013.
  12. Lojasiewicz S., Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964), 449-474.
  13. Mathieu O., Estimating the dimension of the Thurston spine, arXiv:2310.15618.
  14. Mirzakhani M., Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. of Math. 168 (2008), 97-125.
  15. Morse M., Topologically non-degenerate functions on a compact $n$-manifold $M$, J. Anal. Math. 7 (1959), 189-208.
  16. Papadopoulos A., Théret G., Shortening all the simple closed geodesics on surfaces with boundary, Proc. Amer. Math. Soc. 138 (2010), 1775-1784, arXiv:0905.4661.
  17. Ratcliffe J., Foundations of hyperbolic manifolds, 2nd ed., Grad. Texts in Math., Vol. 149, Springer, New York, 2006.
  18. Riera G., A formula for the Weil-Petersson product of quadratic differentials, J. Anal. Math. 95 (2005), 105-120.
  19. Schmutz Schaller P., Systoles and topological Morse functions for Riemann surfaces, J. Differential Geom. 52 (1999), 407-452.
  20. Schmutz Schaller P., Riemann surfaces with longest systole and an improved Voronoi algorithm, Arch. Math. (Basel) 76 (2001), 231-240.
  21. Thurston W., A spine for Teichmüller space, Preprint, 1985.
  22. Wolpert S.A., An elementary formula for the Fenchel-Nielsen twist, Comment. Math. Helv. 56 (1981), 132-135.
  23. Wolpert S.A., Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987), 275-296.
  24. Wolpert S.A., Geometry of the Weil-Petersson completion of Teichmüller space, in Surveys in Differential Geometry, Surv. Differ. Geom., Vol. 8, International Press, Somerville, MA, 2003, 357-393, arXiv:math.DG/0502528.

Previous article  Next article  Contents of Volume 21 (2025)