|
SIGMA 21 (2025), 028, 21 pages arXiv:2410.02286
https://doi.org/10.3842/SIGMA.2025.028
Note on Exponents Associated with Y-Systems
Ryo Takenaka
Department of Mathematics, Osaka Metropolitan University, Osaka 558-8585, Japan
Received October 14, 2024, in final form April 16, 2025; Published online April 24, 2025
Abstract
Let $(X_n,\ell)$ be the pair consisting of the Dynkin diagram of finite type $X_n$ and a positive integer $\ell\geq2$, called the level. Then we obtain the Y-system, which is the set of algebraic relations associated with this pair. Related to the Y-system, a sequence of integers called exponents is defined through a quiver derived from the pair $(X_n,\ell)$. Mizuno provided conjectured formulas for the exponents associated with Y-systems in [Mizuno Y., SIGMA 16 (2020), 028, 42 pages, arXiv:1812.05863]. In this paper, we study the exponents associated with level 2 Y-systems for classical Dynkin types. As a result, we present proofs of Mizuno's conjecture for $(B_n,2)$ and $(D_n,2)$, and give a reformulation for $(C_n,2)$.
Key words: cluster algebras; Y-systems; root systems.
pdf (469 kb)
tex (23 kb)
References
- Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
- Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121, arXiv:math.RA/0208229.
- Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: Type $B_r$, Publ. Res. Inst. Math. Sci. 49 (2013), 1-42, arXiv:1001.1880.
- Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras II: Types $C_r$, $F_4$, and $G_2$, Publ. Res. Inst. Math. Sci. 49 (2013), 43-85, arXiv:1001.1881.
- Kac V.G., Peterson D.H., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984), 125-264.
- Kato A., Terashima Y., Quiver mutation loops and partition $q$-series, Comm. Math. Phys. 336 (2015), 811-830, arXiv:1403.6569.
- Keller B., The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. 177 (2013), 111-170, arXiv:1001.1531.
- Kuniba A., Nakanishi T., Suzuki J., Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), 5215-5266, arXiv:hep-th/9309137.
- Kuniba A., Nakanishi T., Suzuki J., $T$-systems and $Y$-systems in integrable systems, J. Phys. A 44 (2011), 103001, 146 pages, arXiv:1010.1344.
- Lee C.-H., A proof of the KNS conjecture: $D_r$ case, J. Phys. A 46 (2013), 165201, 12 pages, arXiv:1210.1669.
- Lee C.-H., Positivity and periodicity of $Q$-systems in the WZW fusion ring, Adv. Math. 311 (2017), 532-568, arXiv:1302.1467.
- Mizuno Y., Exponents associated with $Y$-systems and their relationship with $q$-series, SIGMA 16 (2020), 028, 42 pages, arXiv:1812.05863.
- Nahm W., Keegan S., Integrable deformations of CFTs and the discrete Hirota equations, arXiv:0905.3776.
- Ravanini F., Valleriani A., Tateo R., Dynkin TBAs, Internat. J. Modern Phys. A 8 (1993), 1707-1727, arXiv:hep-th/9207040.
- Zamolodchikov A.B., On the thermodynamic Bethe ansatz equations for reflectionless $ADE$ scattering theories, Phys. Lett. B 253 (1991), 391-394.
|
|