|
SIGMA 21 (2025), 036, 23 pages arXiv:2411.08406
https://doi.org/10.3842/SIGMA.2025.036
Contribution to the Special Issue on Recent Advances in Vertex Operator Algebras in honor of James Lepowsky
On Kazama-Suzuki Duality between $\mathcal W_k(\mathfrak{sl}_4, f_{\rm sub})$ and $N=2$ Superconformal Vertex Algebra
Dražen Adamović a and Ana Kontrec b
a) Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, Zagreb, Croatia
b) Research Institute for Mathematical Sciences (RIMS), Kyoto University, Kyoto 606-8502, Japan
Received December 31, 2024, in final form May 08, 2025; Published online May 17, 2025
Abstract
We classify all possible occurrences of Kazama-Suzuki duality between the ${N=2}$ superconformal algebra $L^{N=2}_c$ and the subregular $\mathcal{W}$-algebra $\mathcal{W}_{k}(\mathfrak{sl}_4, f_{\rm sub})$. We establish a new Kazama-Suzuki duality between the subregular $\mathcal{W}$-algebra $\mathcal{W}_k(\mathfrak{sl}_4, f_{\rm sub})$ and the $N = 2$ superconformal algebra $L^{N=2}_{c}$ for $c=-15$. As a consequence of the duality, we classify the irreducible $\mathcal{W}_{k=-1}(\mathfrak{sl}_4, f_{\rm sub})$-modules.
Key words: vertex algebra; subregular $W$-algebras; $N=2$ superconformal vertex algebra; Kazama-Suzuki duality.
pdf (579 kb)
tex (29 kb)
References
- Adamović D., Representations of the $N=2$ superconformal vertex algebra, Int. Math. Res. Not. 1999 (1999), 61-79, arXiv:math.QA/9809141.
- Adamović D., Vertex algebra approach to fusion rules for ${N=2}$ superconformal minimal models, J. Algebra 239 (2001), 549-572.
- Adamović D., A construction of admissible $A^{(1)}_1$-modules of level $-\frac 43$, J. Pure Appl. Algebra 196 (2005), 119-134, arXiv:math.QA/0401023.
- Adamović D., Realizations of simple affine vertex algebras and their modules: the cases $\widehat{\mathfrak{sl}(2)}$ and $\widehat{\mathfrak{osp}(1,2)}$, Comm. Math. Phys. 366 (2019), 1025-1067, arXiv:1711.11342.
- Adamović D., Kontrec A., Bershadsky-Polyakov vertex algebras at positive integer levels and duality, Transform. Groups 28 (2023), 1325-1355, arXiv:2011.10021.
- Adamović D., Milas A., Wang Q., On parafermion vertex algebras of $\mathfrak{sl}(2)$ and $\mathfrak{sl}(3)$ at level $-\frac32$, Commun. Contemp. Math. 24 (2022), 2050086, 23 paages, arXiv:2005.02631.
- Adamović D., Möseneder Frajria P., Papi P., New approaches for studying conformal embeddings and collapsing levels for $W$-algebras, Int. Math. Res. Not. 2023 (2023), 19431-19475, arXiv:2203.08497.
- Adamović D., Möseneder Frajria P., Papi P., Perše O., Conformal embeddings in affine vertex superalgebras, Adv. Math. 360 (2020), 106918, 50 pages, arXiv:1903.03794.
- Adamović D., Perše O., Vukorepa I., On the representation theory of the vertex algebra $L_{-5/2}(\mathfrak{sl}(4))$, Commun. Contemp. Math. 25 (2023), 2150104, 42 pages, arXiv:2103.02985.
- Blumenhagen R., Eholzer W., Honecker A., Hübel R., Hornfeck K., Coset realization of unifying $\mathcal W$ algebras, Internat. J. Modern Phys. A 10 (1995), 2367-2430, arXiv:hep-th/9406203.
- Creutzig T., Fasquel J., Linshaw A.R., Nakatsuka S., On the structure of $\mathcal W$-algebras in type $A$, Jpn. J. Math. 20 (2025), 1-111, arXiv:2403.08212.
- Creutzig T., Genra N., Nakatsuka S., Duality of subregular $\mathcal W$-algebras and principal $\mathcal W$-superalgebras, Adv. Math. 383 (2021), 107685, 52 pages, arXiv:2005.10713.
- Creutzig T., Linshaw A.R., Cosets of the $\mathcal{W}^k(\mathfrak{sl}_4, f_{\rm subreg})$-algebra, in Vertex Algebras and Geometry, Contemp. Math., Vol. 711, American Mathematical Society, Providence, RI, 2018, 105-117, arXiv:1711.11109.
- Creutzig T., Linshaw A.R., Trialities of $\mathcal W$-algebras, Camb. J. Math. 10 (2022), 69-194, arXiv:2005.10234.
- Dong C., Lam C.H., Yamada H., $\mathcal W$-algebras related to parafermion algebras, J. Algebra 322 (2009), 2366-2403, arXiv:0809.3630.
- Fehily Z., Subregular $\mathcal W$-algebras of type $A$, Commun. Contemp. Math. 25 (2023), 2250049, 44 pages, arXiv:2111.05536.
- Feigin B.L., Semikhatov A.M., $\mathcal W^{(2)}_n$ algebras, Nuclear Phys. B 698 (2004), 409-449, arXiv:math.QA/0401164.
- Feigin B.L., Semikhatov A.M., Tipunin I.Y., Equivalence between chain categories of representations of affine $\mathfrak{sl}(2)$ and $N=2$ superconformal algebras, J. Math. Phys. 39 (1998), 3865-3905, arXiv:hep-th/9701043.
- Genra N., Screening operators for $\mathcal{W}$-algebras, Selecta Math. (N.S.) 23 (2017), 2157-2202, arXiv:1606.0096.
- Goddard P., Kent A., Olive D., Virasoro algebras and coset space models, Phys. Lett. B 152 (1985), 88-92.
- Gorelik M., Kac V., On simplicity of vacuum modules, Adv. Math. 211 (2007), 621-677, arXiv:math-ph/0606002.
- Kac V., Vertex algebras for beginners, 2nd ed., Univ. Lecture Ser., Vol. 10, American Mathematical Society, Providence, RI, 1998.
- Kac V., Roan S.S., Wakimoto M., Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003), 307-342, arXiv:math-ph/0302015.
- Kazama Y., Suzuki H., New $N=2$ superconformal field theories and superstring compactification, Nuclear Phys. B 321 (1989), 232-268.
- Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progr. Math., Vol. 227, Birkhäuser, Boston, MA, 2004.
- Li H., Certain extensions of vertex operator algebras of affine type, Comm. Math. Phys. 217 (2001), 653-696, arXiv:math.QA/0003038.
- Linshaw A.R., Universal two-parameter $\mathcal W_\infty$-algebra and vertex algebras of type $\mathcal W(2, 3, \ldots, N)$, Compos. Math. 157 (2021), 12-82, arXiv:1710.02275.
- Ridout D., $\widehat{\mathfrak{sl}}(2)_{-1/2}$ and the triplet model, Nuclear Phys. B 835 (2010), 314-342, arXiv:1001.3960.
- Wang W., $\mathcal W_{1+\infty}$ algebra, $\mathcal W_3$ algebra, and Friedan-Martinec-Shenker bosonization, Comm. Math. Phys. 195 (1998), 95-111, arXiv:q-alg/9708008.
- Zhu Y., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.
|
|