|
SIGMA 21 (2025), 054, 72 pages
https://doi.org/10.3842/SIGMA.2025.054
On Axially Symmetric Perturbations of Kerr Black Hole Spacetimes
Nishanth Gudapati
Department of Mathematics, College of the Holy Cross, 1 College Street, Worcester, MA-01610, USA
Received February 13, 2024, in final form June 17, 2025; Published online July 11, 2025
Abstract
The lack of a positive-definite and conserved energy is a serious obstacle in the black hole stability problem. In this work, we will show that there exists a positive-definite and conserved Hamiltonian energy for axially symmetric linear perturbations of the exterior of Kerr black hole spacetimes. In the first part, based on the Hamiltonian dimensional reduction of $3+1$ axially symmetric, Ricci-flat Lorentzian spacetimes to a ${2+1}$ Einstein-wave map system with the negatively curved hyperbolic 2-plane target, we construct a positive-definite, spacetime gauge-invariant energy functional for linear axially symmetric perturbations in the exterior of Kerr black holes, in a manner that is also gauge-independent on the target manifold. In the construction of the positive-definite energy, various dynamical terms at the boundary of the orbit space occur critically. In the second part, after setting up the initial value problem in harmonic coordinates, we prove that the positive energy for the axially symmetric linear perturbative theory of Kerr black holes is strictly conserved in time, by establishing that all the boundary terms dynamically vanish for all times. This result implies a form of dynamical linear stability of the exterior of Kerr black hole spacetimes.
Key words: Kerr black holes; black hole stability problem; ergo-region; Hamiltonian mechanics; wave maps; Poisson equation.
pdf (827 kb)
tex (78 kb)
References
- Andersson L., Bäckdahl T., Blue P., Ma S., Stability for linearized gravity on the Kerr spacetime, Ann. PDE 11 (2025), 11, 161 pages, arXiv:1903.03859.
- Andersson L., Blue P., Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. of Math. 182 (2015), 787-853, arXiv:0908.2265.
- Andersson L., Blue P., Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, J. Hyperbolic Differ. Equ. 12 (2015), 689-743, arXiv:1310.2664.
- Andersson L., Gudapati N., Szeftel J., Global regularity for the $2+1$ dimensional equivariant Einstein-wave map system, Ann. PDE 3 (2017), 13, 142 pages, arXiv:1501.00616.
- Arnowitt R., Deser S., Misner C.W., The dynamics of general relativity, in Gravitation: An Introduction to Current Research, Wiley, New York, 1962, 227-265, arXiv:gr-qc/0405109.
- Ashtekar A., Varadarajan M., Striking property of the gravitational Hamiltonian, Phys. Rev. D 50 (1994), 4944-4956, arXiv:gr-qc/9406040.
- Blue P., Decay of the Maxwell field on the Schwarzschild manifold, J. Hyperbolic Differ. Equ. 5 (2008), 807-856, arXiv:0710.4102.
- Brill D.R., On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves, Ann. Physics 7 (1959), 466-483.
- Bunting G., Proof of the uniqueness conjecture for black holes, Ph.D. Thesis, University of New England, 1983.
- Carter B., Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26 (1971), 331-333.
- Chandrasekhar S., The mathematical theory of black holes, Internat. Ser. Monogr. Phys., Vol. 69, The Clarendon Press, New York, 1983.
- Choquet-Bruhat Y., Geroch R., Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys. 14 (1969), 329-335.
- Choquet-Bruhat Y., Moncrief V., Existence theorem for solutions of Einstein's equations with $1$ parameter spacelike isometry groups, in Quantization, Nonlinear Partial Differential Equations, and Operator Algebra (Cambridge, MA, 1994), Proc. Sympos. Pure Math., Vol. 59, American Mathematical Society, Providence, RI, 1996, 67-80.
- Choquet-Bruhat Y., Moncrief V., Future global in time Einsteinian spacetimes with ${\rm U}(1)$ isometry group, Ann. Henri Poincaré 2 (2001), 1007-1064, arXiv:gr-qc/0112049.
- Christodoulou D., Tahvildar-Zadeh A.S., On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46 (1993), 1041-1091.
- Dafermos M., Holzegel G., Rodnianski I., Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case $|a|\ll M$, Ann. PDE 5 (2019), 2, 118 pages, arXiv:1711.07944.
- Dafermos M., Holzegel G., Rodnianski I., The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math. 222 (2019), 1-214, arXiv:1601.06467.
- Dafermos M., Holzegel G., Rodnianski I., Taylor M., The non-linear stability of the Schwarzschild family of black holes, arXiv:2104.08222.
- Dafermos M., Rodnianski I., A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. Math. 185 (2011), 467-559, arXiv:0805.4309.
- Dafermos M., Rodnianski I., Shlapentokh-Rothman Y., Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case $|a|Ann. of Math. 183 (2016), 787-913, arXiv:1402.7034.
- Dain S., Axisymmetric evolution of Einstein equations and mass conservation, Classical Quantum Gravity 25 (2008), 145021, 18 pages, arXiv:0804.2679.
- Dain S., de Austria I.G., On the linear stability of the extreme Kerr black hole under axially symmetric perturbations, Classical Quantum Gravity 31 (2014), 195009, 30 pages.
- Emparan R., Reall H.S., Black holes in higher dimensions, Living Rev. Relativ. 11 (2008), 6, 87 pages, arXiv:0801.3471.
- Finster F., Kamran N., Smoller J., Yau S.T., An integral spectral representation of the propagator for the wave equation in the Kerr geometry, Comm. Math. Phys. 260 (2005), 257-298, arXiv:gr-qc/0310024.
- Finster F., Kamran N., Smoller J., Yau S.T., Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys. 264 (2006), 465-503, arXiv:gr-qc/0504047.
- Finster F., Kamran N., Smoller J., Yau S.T., Erratum to ''Decay of solutions of the wave equation in the Kerr geometry'', Comm. Math. Phys. 280 (2008), 563-573.
- Finster F., Kamran N., Smoller J., Yau S.T., A rigorous treatment of energy extraction from a rotating black hole, Comm. Math. Phys. 287 (2009), 829-847, arXiv:gr-qc/0701018.
- Fischer A.E., Marsden J.E., Deformations of the scalar curvature, Duke Math. J. 42 (1975), 519-547.
- Fischer A.E., Marsden J.E., Moncrief V., The structure of the space of solutions of Einstein's equations. I. One Killing field, Ann. Inst. H. Poincaré Sect. A (N.S.) 33 (1980), 147-194.
- Geroch R., A method for generating solutions of Einstein's equations, J. Math. Phys. 12 (1971), 918-924.
- Giorgi E., Klainerman S., Szeftel J., A general formalism for the stability of Kerr, arXiv:2002.02740.
- Giorgi E., Klainerman S., Szeftel J., Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, Pure Appl. Math. Q. 20 (2024), 2865-3849, arXiv:2205.14808.
- Gudapati N., The Cauchy problem for energy critical self-gravitating wave maps, Ph.D. Thesis, Freie Universität Berlin, 2013, arXiv:1311.4495.
- Gudapati N., A note on the dimensional reduction of axisymmetric spacetimes, arXiv:1702.07950.
- Gudapati N., Axially symmetric perturbations of Kerr black holes I: A gauge-invariant construction of ADM energy, arXiv:1904.09670.
- Gudapati N., Axially symmetric perturbations of Kerr black holes II: Boundary behaviour of the dynamics in the orbit space, arXiv:2109.02131.
- Gudapati N., A positive-definite energy functional for axially symmetric Maxwell's equations on Kerr-de Sitter black hole spacetimes, C. R. Math. Acad. Sci. Soc. R. Can. 40 (2018), 39-54, arXiv:1710.11294.
- Gudapati N., On $3+1$ Lorentzian Einstein manifolds with one rotational isometry, Gen. Relativity Gravitation 50 (2018), 93, 25 pages, arXiv:1703.06331.
- Gudapati N., A conserved energy for axially symmetric Newman-Penrose-Maxwell scalars on Kerr black holes, Proc. A. 475 (2019), 20180686, 18 pages, arXiv:1806.09162.
- Häfner D., Hintz P., Vasy A., Linear stability of slowly rotating Kerr black holes, Invent. Math. 223 (2021), 1227-1406, arXiv:1906.00860.
- Hollands S., Ishibashi A., Black hole uniqueness theorems in higher dimensional spacetimes, Classical Quantum Gravity 29 (2012), 163001, 47 pages, arXiv:1206.1164.
- Hollands S., Wald R.M., Stability of black holes and black branes, Comm. Math. Phys. 321 (2013), 629-680, arXiv:1201.0463.
- Holzegel G., Conservation laws and flux bounds for gravitational perturbations of the Schwarzschild metric, Classical Quantum Gravity 33 (2016), 205004, 28 pages.
- Hung P.-K., Keller J., Wang M.-T., Linear stability of Schwarzschild spacetime: Decay of metric coefficients, J. Differential Geom. 116 (2020), 481-541, arXiv:1702.02843.
- Ionescu A.D., Klainerman S., On the global stability of the wave-map equation in Kerr spaces with small angular momentum, Ann. PDE 1 (2015), 1, 78 pages, arXiv:1412.5679.
- Klainerman S., Szeftel J., Kerr stability for small angular momentum, Pure Appl. Math. Q. 19 (2023), 791-1678, arXiv:2104.11857.
- Krieger J., Schlag W., Concentration compactness for critical wave maps, EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2012.
- Ma S., Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole I: Maxwell field, Ann. Henri Poincaré 21 (2020), 815-863, arXiv:1705.06621.
- Ma S., Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: Linearized gravity, Comm. Math. Phys. 377 (2020), 2489-2551, arXiv:1708.07385.
- Mazur P.O., Black hole uniqueness theorems, arXiv:hep-th/0101012.
- Misner C.W., Harmonic maps as models for physical theories, Phys. Rev. D 18 (1978), 4510-4524.
- Misner C.W., Thorne K.S., Wheeler J.A., Gravitation, W. H. Freeman and Company, San Francisco, CA, 1973.
- Moncrief V., Gravitational perturbations of spherically symmetric systems. I. The exterior problem, Ann. Physics 88 (1974), 323-342.
- Moncrief V., Odd-parity stability of a Reissner-Nordström black hole, Phys. Rev. D. 9 (1974), 2707-2709.
- Moncrief V., Stability of Reissner-Nordström black holes, Phys. Rev. D. 10 (1974), 1057-1059.
- Moncrief V., Gauge invariant perturbations of Reissner-Nordström black holes, Phys. Rev. D. 12 (1975), 1526-1537.
- Moncrief V., Spacetime symmetries and linearization stability of the Einstein equations. I, J. Math. Phys. 16 (1975), 493-498.
- Moncrief V., Reduction of Einstein's equations for vacuum space-times with spacelike ${\rm U}(1)$ isometry groups, Ann. Physics 167 (1986), 118-142.
- Moncrief V., Reduction of the Einstein-Maxwell and Einstein-Maxwell-Higgs equations for cosmological spacetimes with spacelike ${\rm U}(1)$ isometry groups, Classical Quantum Gravity 7 (1990), 329-352.
- Moncrief V., Relativistic Teichmüller theory: a Hamilton-Jacobi approach to $2+1$-dimensional Einstein gravity, in Surveys in Differential Geometry. Vol. XII. Geometric Flows, Surv. Differ. Geom., Vol. 12, International Press, Somerville, MA, 2008, 203-249.
- Moncrief V., Gudapati N., A positive-definite energy functional for the axisymmetric perturbations of Kerr-Newman black holes, arXiv:2105.12632.
- Prabhu K., Wald R.M., Black hole instabilities and exponential growth, Comm. Math. Phys. 340 (2015), 253-290, arXiv:1501.02522.
- Regge T., Wheeler J.A., Stability of a Schwarzschild singularity, Phys. Rev. 108 (1957), 1063-1069.
- Rinne O., Stewart J.M., A strongly hyperbolic and regular reduction of Einstein's equations for axisymmetric spacetimes, Classical Quantum Gravity 22 (2005), 1143-1166, arXiv:gr-qc/0502037.
- Robinson D.C., Classification of black holes with electromagnetic fields, Phys. Rev. D 10 (1974), 458-460.
- Schoen R., Yau S.T., On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), 45-76.
- Schoen R., Yau S.T., Proof of the positive mass theorem. II, Comm. Math. Phys. 79 (1981), 231-260.
- Schoen R., Zhou X., Convexity of reduced energy and mass angular momentum inequalities, Ann. Henri Poincaré 14 (2013), 1747-1773, arXiv:1209.0019.
- Shatah J., Tahvildar-Zadeh A., Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds, Comm. Pure Appl. Math. 45 (1992), 947-971.
- Shatah J., Tahvildar-Zadeh A.S., On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math. 47 (1994), 719-754.
- Sterbenz J., Tataru D., Energy dispersed large data wave maps in $2+1$ dimensions, Comm. Math. Phys. 298 (2010), 139-230, arXiv:0906.3384.
- Sterbenz J., Tataru D., Regularity of wave-maps in dimension $2+1$, Comm. Math. Phys. 298 (2010), 231-264, arXiv:0907.3148.
- Struwe M., Radially symmetric wave maps from $(1+2)$-dimensional Minkowski space to the sphere, Math. Z. 242 (2002), 407-414.
- Struwe M., Equivariant wave maps in two space dimensions, Comm. Pure Appl. Math. 56 (2003), 815-823.
- Synge J.L., On the deviation of geodesics and null-geodesics, particularly in relation to the properties of spaces of constant curvature and indefinite line-element, Ann. of Math. 35 (1934), 705-713.
- Tao T., Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Int. Math. Res. Not. (2001), 299-328, arXiv:math.AP/0010068.
- Tao T., Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443-544, arXiv:math.AP/0011173.
- Tao T., Global regularity of wave maps. III. Large energy from $\mathbb{R}^{1+2}$ to hyperbolic spaces, arXiv:0805.4666.
- Tao T., Global regularity of wave maps. IV. Absence of stationary or self-similar solutions in the energy class, arXiv:0806.3592.
- Tao T., Global regularity of wave maps. V. Large data local wellposedness and perturbation theory in the energy class, arXiv:0806.3592.
- Tao T., Global regularity of wave maps. VI. Abstract theory of minimal-energy blowup solutions, arXiv:0906.2833.
- Tao T., Global regularity of wave maps. VII. Control of delocalised or dispersed solutions, arXiv:0908.0776.
- Tataru D., Tohaneanu M., A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not. 2011 (2011), 248-292, arXiv:0810.5766.
- Teukolsky S.A., The Kerr metric, Classical Quantum Gravity 32 (2015), 124006, 32 pages, arXiv:1410.2130.
- Thorne K.S., Energy of infinitely long, cylindrically symmetric systems in general relativity, Phys. Rev. 138 (1965), B251-B266.
- Witten E., A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), 381-402.
- Zerilli F.J., Effective potential for even parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett. 24 (1970), 737-738.
- Zerilli F.J., Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry, Phys. Rev. D. 9 (1974), 860-868.
|
|