Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 055, 18 pages      arXiv:2412.03000      https://doi.org/10.3842/SIGMA.2025.055
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne

Hyperdeterminantal Total Positivity

Kenneth W. Johnson a and Donald St. P. Richards b
a) Department of Mathematics, Pennsylvania State University, Abington, Pennsylvania 19001, USA
b) Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA

Received December 04, 2024, in final form July 03, 2025; Published online July 11, 2025

Abstract
For a given positive integer $m$, the concept of hyperdeterminantal total positivity is defined for a kernel $K\colon {\mathbb R}^{2m} \to {\mathbb R}$, thereby generalizing the classical concept of total positivity. Extending the fundamental example, $K(x,y) = \exp(xy)$, $x, y \in \mathbb{R}$, of a classical totally positive kernel, the hyperdeterminantal total positivity property of the kernel $K(x_1,\dots,x_{2m}) = \exp(x_1\cdots x_{2m})$, $x_1,\dots,x_{2m} \in \mathbb{R}$ is established. By applying Matsumoto's hyperdeterminantal Binet-Cauchy formula, we derive a generalization of Karlin's basic composition formula; then we use the generalized composition formula to construct several examples of hyperdeterminantal totally positive kernels. Further generalizations of hyperdeterminantal total positivity by means of the theory of finite reflection groups are described and some open problems are posed.

Key words: Binet-Cauchy formula; determinant; generalized hypergeometric functions of matrix argument; Haar measure; hyperdeterminant; Schur function; unitary group; zonal polynomials.

pdf (453 kb)   tex (25 kb)  

References

  1. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia Math. Appl., Vol. 71, Cambridge University Press, Cambridge, 1999.
  2. Barvinok A.I., New algorithms for linear $k$-matroid intersection and matroid $k$-parity problems, Math. Programming 69 (1995), 449-470.
  3. Boussicault A., Luque J.G., Tollu C., Hyperdeterminantal computation for the Laughlin wavefunction, J. Phys. A 42 (2009), 145301, 13 pages, arXiv:0810.1012.
  4. Cayley M.A., Mémoire sur les Hyperdéterminants, J. Reine Angew. Math. 30 (1846), 1-37.
  5. Cayley M.A., On the theory of determinants, in The Collected Mathematical Papers, Cambridge University Press, Cambridge, 1889, 63-80.
  6. Cayley M.A., On the theory of linear transformations, in The Collected Mathematical Papers, Cambridge University Press, Cambridge, 1889, 80-94.
  7. Dionisi C., Ottaviani G., The Binet-Cauchy theorem for the hyperdeterminant of boundary format multi-dimensional matrices, J. Algebra 259 (2003), 87-94, arXiv:math/0104281.
  8. Evans S.N., Gottlieb A., Hyperdeterminantal point processes, Metrika 69 (2009), 85-99, arXiv:0804.0450.
  9. Gantmacher F.P., Krein M.G., Oscillation matrices and kernels and small vibrations of mechanical systems, AMS Chelsea Publishing, Providence, RI, 2002.
  10. Gasca M., Micchelli C.A. (Editors), Total positivity and its applications, Math. Appl., Vol. 359, Kluwer, Dordrecht, 1996.
  11. Gasparyan A.S., Analogue of the Binet-Cauchy formula for multidimensional matrices, Soviet Math. Dokl. 28 (1983), 605-610.
  12. Gelfand I.M., Kapranov M.M., Zelevinsky A.V., Hyperdeterminants, Adv. Math. 96 (1992), 226-263.
  13. Gelfand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and multidimensional determinants, Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 1994.
  14. Gross K.I., Richards D.St.P., Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc. 301 (1987), 781-811.
  15. Gross K.I., Richards D.St.P., Total positivity, spherical series, and hypergeometric functions of matrix argument, J. Approx. Theory 59 (1989), 224-246.
  16. Gross K.I., Richards D.St.P., Total positivity, finite reflection groups, and a formula of Harish-Chandra, J. Approx. Theory 82 (1995), 60-87.
  17. Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87-120.
  18. Hibi T., Harmony of Gröbner bases and modern industrial society, Sūgaku 65 (2013), 303-308.
  19. Hval V., The determinant of a space matrix, Glasnik Mat. Ser. III 3 (1968), 11-18.
  20. Johnson K.W., Richards D.St.P., Multidimensional total positivity, in Harmony of Gröbner Bases and the Modern Industrial Society: The Second CREST-SBM International Conference (Osaka, Japan, 2010), available at https://citeseerx.ist.psu.edu/document?doi=36528d8967ae21f14a628b083109bc2b6c2f1481.
  21. Karlin S., Total positivity, Stanford University Press, Palo Alto, CA, 1968.
  22. Karlin S., Interdisciplinary meandering in science, Oper. Res. 50 (2002), 114-121.
  23. Karlin S., Rinott Y., Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions, J. Multivariate Anal. 10 (1980), 467-498.
  24. Karlin S., Rinott Y., A generalized Cauchy-Binet formula and applications to total positivity and majorization, J. Multivariate Anal. 27 (1988), 284-299.
  25. Krein M.G., On the nodes of harmonic oscillations of mechanical systems of a special form, Mat. Sbornik 40 (1934), 455-466.
  26. Lecat M., Sur une généralisation des déterminants, Ann. Soc. Sci. Bruxelles 89 (1919), 10-20.
  27. Luque J.-G., Thibon J.-Y., Hankel hyperdeterminants and Selberg integrals, J. Phys. A 36 (2003), 5267-5292, arXiv:math-ph/0211044.
  28. Luque J.-G., Thibon J.-Y., Hyperdeterminantal calculations of Selberg's and Aomoto's integrals, Mol. Phys. 102 (2004), 1351-1359, arXiv:math/0607410.
  29. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, New York, 1995.
  30. Matsumoto S., Hyperdeterminantal expressions for Jack functions of rectangular shapes, J. Algebra 320 (2008), 612-632, arXiv:math/0603033.
  31. Oldenburger R., Higher dimensional determinants, Amer. Math. Monthly 47 (1940), 25-33.
  32. Pinkus A., Totally positive matrices, Cambridge Tracts in Math., Vol. 181, Cambridge University Press, Cambridge, 2010.
  33. Pólya G., SzegHo G., Problems and theorems in analysis. Vol. II. Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry, Class. Math., Springer, New York, 1976.
  34. Rice L.H., Introduction to higher determinants, J. Math. Phys. 9 (1930), 47-70.
  35. Schoenberg I., Über variationsvermindernde lineare Transformationen, Math. Z. 32 (1930), 321-328.
  36. Sokolov N.P., Spatial matrices and their applications, Gosudarstv. Izdat. Fiz. Mat. Lit., Moscow, 1960.
  37. Sokolov N.P., Introduction to the theory of multidimensional matrices, Naukova Dumka, Kiev, 1972.
  38. Wang M., Li X., Xu C., Positivities of Vandermonde tensors, Linear Multilinear Algebra 64 (2016), 767-779.
  39. Xu C., Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra Appl. 491 (2016), 56-72.

Previous article  Next article  Contents of Volume 21 (2025)