The serpent nest conjecture on accordion complexes Thibault Manneville (LIX, Polytechnique) 78^{ème} Séminaire lotharingien de combinatoire March 29th, 2017 $\textbf{Dissection} = \mathsf{set} \ \mathsf{of} \ \mathsf{pairwise} \ \mathsf{noncrossing} \ \mathsf{diagonals}$ **Triangulation** = inclusion maximal dissection Cell = bounded conn. comp. of the complement **Triangulation** = all cells are triangles #### Consider interlaced red and blue polygons Fix a reference red dissection Do D_o-accordion diagonal = blue diagonal crossing a "blue diagonal" connected set of red diagonals D_o-accordion diagonal = blue diagonal crossing a "blue diagonal" connected set of red diagonals Maximal Do-accordion dissection = inclusion max. dissection "blue dissection" containing blue diagonals Maximal D₀-accordion dissection = inclusion max. dissection "blue dissection" containing blue diagonals Maximal Do-accordion dissection = inclusion max. dissection "blue dissection" containing blue diagonals #### D_o is a triangulation D_o is a triangulation \Longrightarrow blue dissection = blue triangulations $C_n := \frac{1}{n+1} \binom{2n}{n}$ Baryshnikov, On Stokes sets (2001) Baryshnikov, On Stokes sets (2001) Chapoton, Stokes posets and serpent nests (2016) Are Stokes posets lattices? Are Stokes complexes realizable as polytopes? #(elements of Stokes posets) = #(serpent nests)? Baryshnikov, On Stokes sets (2001) Chapoton, Stokes posets and serpent nests (2016) Are Stokes posets lattices? YES: Garver and McConville, *Oriented Flip Graphs and Noncrossing Tree Partitions* (2016) Are Stokes complexes realizable as polytopes? #(elements of Stokes posets) = #(serpent nests)? Baryshnikov, On Stokes sets (2001) Chapoton, Stokes posets and serpent nests (2016) Are Stokes posets lattices? YES: Garver and McConville, *Oriented Flip*Graphs and Noncrossing Tree Partitions (2016) Are Stokes complexes realizable as polytopes? YES: M. and Pilaud, Geometric realizations of accordion complexes (2017⁺) #(elements of Stokes posets) = #(serpent nests)? Baryshnikov, On Stokes sets (2001) Chapoton, Stokes posets and serpent nests (2016) Are Stokes posets lattices? YES: Garver and McConville, *Oriented Flip*Graphs and Noncrossing Tree Partitions (2016) YES: M. and Pilaud, Geometric realizations of accordion complexes (2017⁺) #(elements of Stokes posets) = #(serpent nests)? YES: M., The serpent nest conjecture on accordion complexes (2017⁺) Dual tree D_{\circ}^{\star} of D_{\circ} = vertices: cells of D_{\circ} edges: internal diagonals of D_{\circ} **Serpent of D** $_{\circ}$ = nonempty undirected dual path in D_{\circ}^{\star} crossing a connected set of diagonals **Serpent of D** $_{\circ}$ = nonempty undirected dual path in D_{\circ}^{\star} crossing a connected set of diagonals **Serpent nest of** D_{\circ} = set of serpents of D_{\circ} with some conditions: **Serpent nest of** D_{\circ} = set of serpents of D_{\circ} with some conditions: **Serpent nest of D_o** = set of serpents of D_o with three conditions: no crossing **Serpent nest of D_o** = set of serpents of D_o with three conditions: no crossing, no common arrival **Serpent nest of D_o** = set of serpents of D_o with three conditions: no crossing, no common arrival **Serpent nest of D_o** = set of serpents of D_o with three conditions: no crossing, no common arrival Serpent nest of D_o = set of serpents of D_o with three conditions: no crossing, no common arrival, no over heading D_o is a comb triangulation \Longrightarrow serpent nests = noncrossing partitions (C_n) D_o is a comb triangulation \Longrightarrow serpent nests = noncrossing partitions (C_n) #### Theorem (M. 2017+) For any dissection D_{\circ} , $\#(maximal\ D_{\circ}\text{-accordion dissections}) = \#(serpent\ nests\ of\ D_{\circ})$ ## Catalan-like bijection $$C_{n+1} = \sum_{k=0}^{\infty} C_k \times 1 \times C_{n-k}$$ #### **Proof**: induction on #(diagonals of D_o) #### **Proof**: induction on #(diagonals of D_o) #### **Proof**: induction on #(diagonals of D_o) **Proof**: $\{\text{maximal } D_{\circ}\text{-accordion dissections}\} \rightarrow \{\text{serpent nests of } D_{\circ}\}$ **Proof**: there exists $x_{\bullet} \in [6_{\bullet}, 28_{\bullet}]$ such that $\{(2_{\bullet}, x_{\bullet}), (4_{\bullet}, x_{\bullet})\} \subseteq D_{\bullet}$ #### **Proof**: separate D_{\bullet} according to x_{\bullet} ## **Proof**: separate D_{\bullet} according to x_{\bullet} #### **Proof**: apply the bijections obtained inductively on each side # **Proof**: unfold the serpents #### **Proof**: unfold the serpents #### **Proof**: consider red diagonals crossed by both $(2_{\bullet}, x_{\bullet})$ and $(4_{\bullet}, x_{\bullet})$ # Proof: keep only disconnecting diagonals (zigzag) # **Proof**: {serpent nests of D_o } \rightarrow {maximal D_o -accordion dissections} #### **Proof**: separate according to x_{\bullet} #### Proof: apply reverse bijections inductively obtained #### Proof: apply reverse bijections inductively obtained #### **Proof**: glue back together #### **Proof**: glue back together # Theorem (M. 2017+) For any dissection D_{\circ} , $\#(maximal\ D_{\circ}\text{-accordion dissections}) = \#(serpent\ nests\ of\ D_{\circ})$ # THANK YOU FOR YOUR KIND LISTENING!