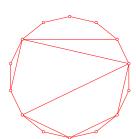
The serpent nest conjecture on accordion complexes

Thibault Manneville (LIX, Polytechnique)

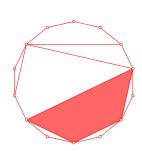
78^{ème} Séminaire lotharingien de combinatoire March 29th, 2017

 $\textbf{Dissection} = \mathsf{set} \ \mathsf{of} \ \mathsf{pairwise} \ \mathsf{noncrossing} \ \mathsf{diagonals}$



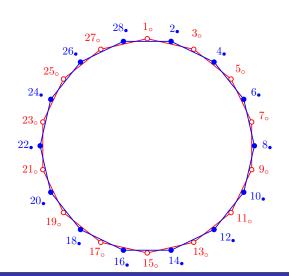
Triangulation = inclusion maximal dissection

Cell = bounded conn. comp. of the complement

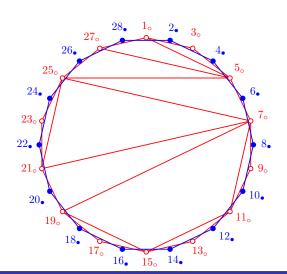


Triangulation = all cells are triangles

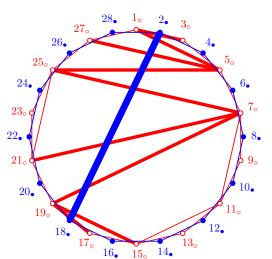
Consider interlaced red and blue polygons



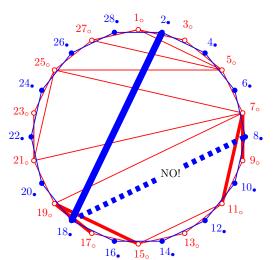
Fix a reference red dissection Do



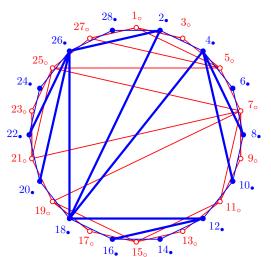
D_o-accordion diagonal = blue diagonal crossing a "blue diagonal" connected set of red diagonals



D_o-accordion diagonal = blue diagonal crossing a "blue diagonal" connected set of red diagonals

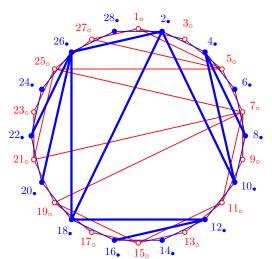


Maximal Do-accordion dissection = inclusion max. dissection "blue dissection" containing blue diagonals

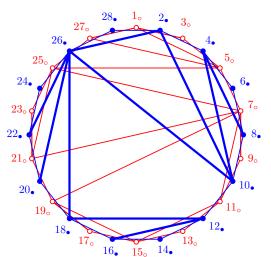


Maximal D₀-accordion dissection = inclusion max. dissection "blue dissection"

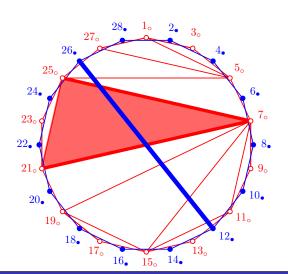
containing blue diagonals



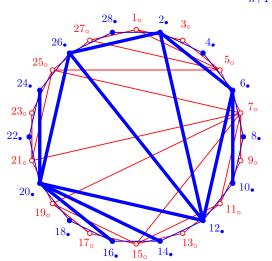
Maximal Do-accordion dissection = inclusion max. dissection "blue dissection" containing blue diagonals



D_o is a triangulation



 D_o is a triangulation \Longrightarrow blue dissection = blue triangulations $C_n := \frac{1}{n+1} \binom{2n}{n}$



Baryshnikov, On Stokes sets (2001)

Baryshnikov, On Stokes sets (2001)

Chapoton, Stokes posets and serpent nests (2016)

Are Stokes posets lattices?

Are Stokes complexes realizable as polytopes?

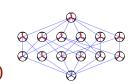
#(elements of Stokes posets) = #(serpent nests)?

Baryshnikov, On Stokes sets (2001)

Chapoton, Stokes posets and serpent nests (2016)

Are Stokes posets lattices?

YES: Garver and McConville, *Oriented Flip Graphs and Noncrossing Tree Partitions* (2016)



Are Stokes complexes realizable as polytopes?

#(elements of Stokes posets) = #(serpent nests)?

Baryshnikov, On Stokes sets (2001)

Chapoton, Stokes posets and serpent nests (2016)

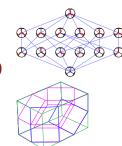
Are Stokes posets lattices?

YES: Garver and McConville, *Oriented Flip*Graphs and Noncrossing Tree Partitions (2016)

Are Stokes complexes realizable as polytopes?

YES: M. and Pilaud, Geometric realizations of accordion complexes (2017⁺)

#(elements of Stokes posets) = #(serpent nests)?

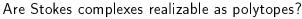


Baryshnikov, On Stokes sets (2001)

Chapoton, Stokes posets and serpent nests (2016)

Are Stokes posets lattices?

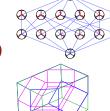
YES: Garver and McConville, *Oriented Flip*Graphs and Noncrossing Tree Partitions (2016)



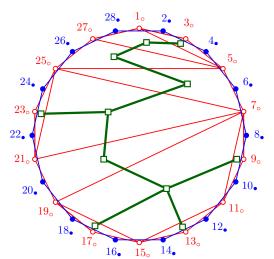
YES: M. and Pilaud, Geometric realizations of accordion complexes (2017⁺)

#(elements of Stokes posets) = #(serpent nests)?

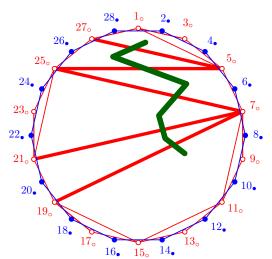
YES: M., The serpent nest conjecture on accordion complexes (2017⁺)



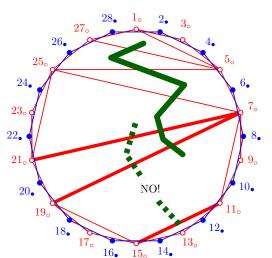
Dual tree D_{\circ}^{\star} of D_{\circ} = vertices: cells of D_{\circ} edges: internal diagonals of D_{\circ}



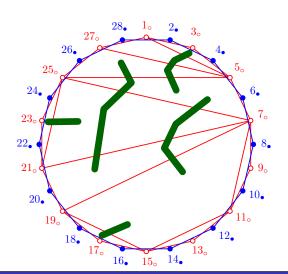
Serpent of D $_{\circ}$ = nonempty undirected dual path in D_{\circ}^{\star} crossing a connected set of diagonals



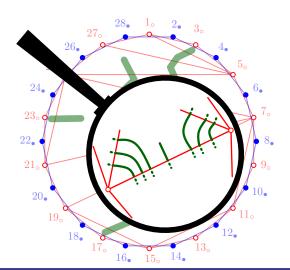
Serpent of D $_{\circ}$ = nonempty undirected dual path in D_{\circ}^{\star} crossing a connected set of diagonals



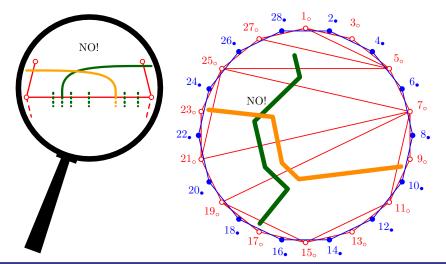
Serpent nest of D_{\circ} = set of serpents of D_{\circ} with some conditions:



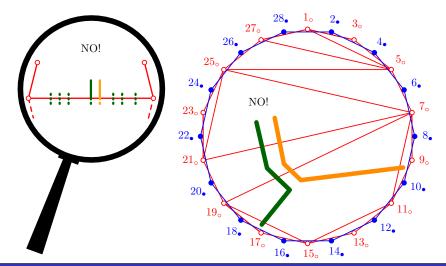
Serpent nest of D_{\circ} = set of serpents of D_{\circ} with some conditions:



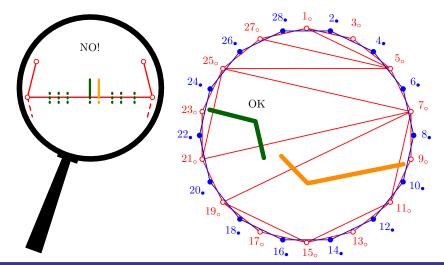
Serpent nest of D_o = set of serpents of D_o with three conditions: no crossing



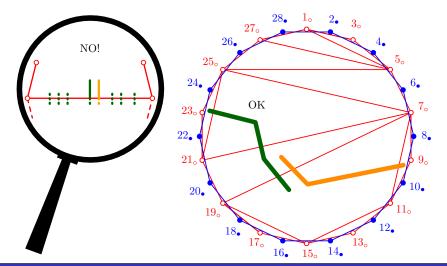
Serpent nest of D_o = set of serpents of D_o with three conditions: no crossing, no common arrival



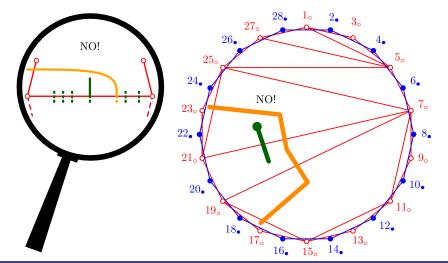
Serpent nest of D_o = set of serpents of D_o with three conditions: no crossing, no common arrival



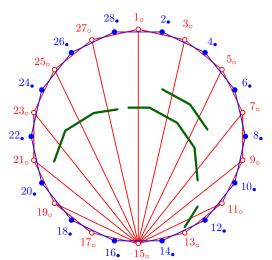
Serpent nest of D_o = set of serpents of D_o with three conditions: no crossing, no common arrival



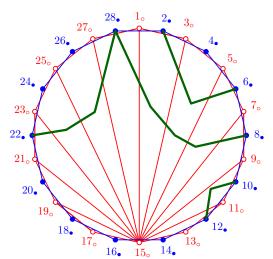
Serpent nest of D_o = set of serpents of D_o with three conditions: no crossing, no common arrival, no over heading



 D_o is a comb triangulation \Longrightarrow serpent nests = noncrossing partitions (C_n)

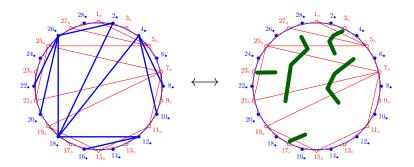


 D_o is a comb triangulation \Longrightarrow serpent nests = noncrossing partitions (C_n)

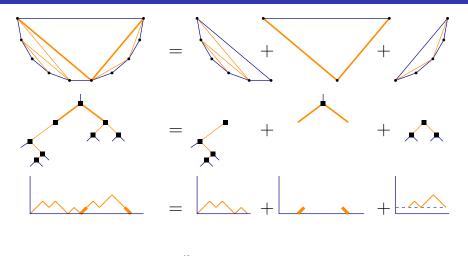


Theorem (M. 2017+)

For any dissection D_{\circ} , $\#(maximal\ D_{\circ}\text{-accordion dissections}) = \#(serpent\ nests\ of\ D_{\circ})$

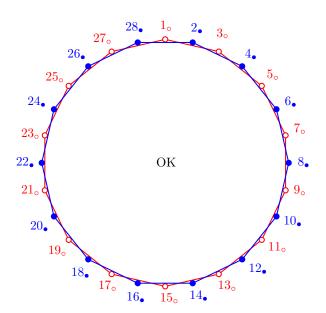


Catalan-like bijection

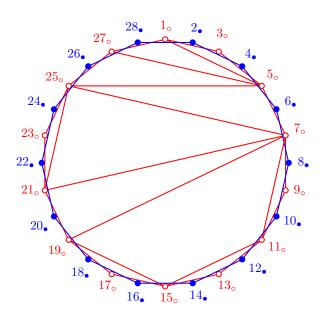


$$C_{n+1} = \sum_{k=0}^{\infty} C_k \times 1 \times C_{n-k}$$

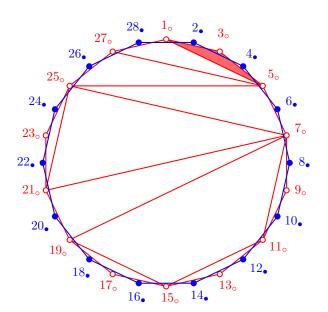
Proof: induction on #(diagonals of D_o)



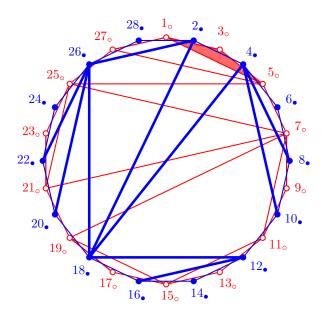
Proof: induction on #(diagonals of D_o)



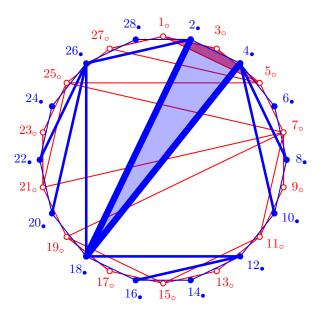
Proof: induction on #(diagonals of D_o)



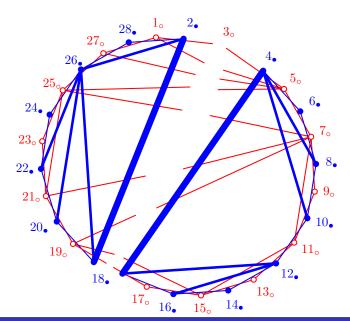
Proof: $\{\text{maximal } D_{\circ}\text{-accordion dissections}\} \rightarrow \{\text{serpent nests of } D_{\circ}\}$



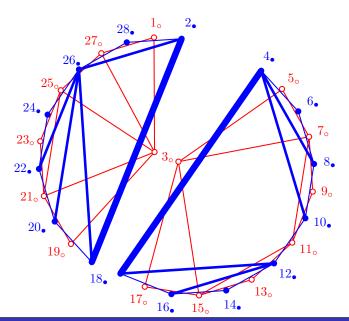
Proof: there exists $x_{\bullet} \in [6_{\bullet}, 28_{\bullet}]$ such that $\{(2_{\bullet}, x_{\bullet}), (4_{\bullet}, x_{\bullet})\} \subseteq D_{\bullet}$



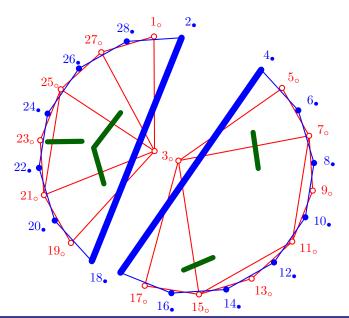
Proof: separate D_{\bullet} according to x_{\bullet}



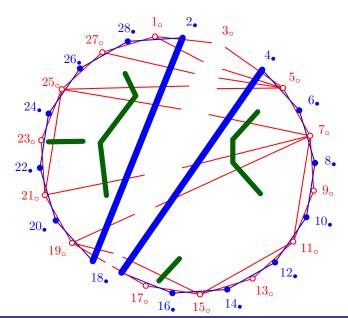
Proof: separate D_{\bullet} according to x_{\bullet}



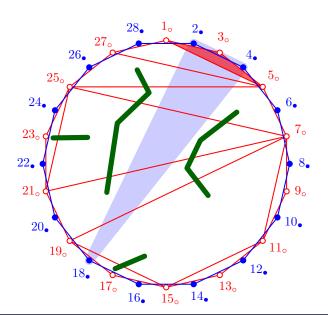
Proof: apply the bijections obtained inductively on each side



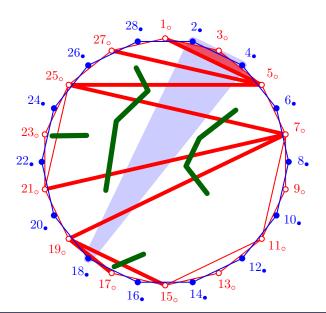
Proof: unfold the serpents



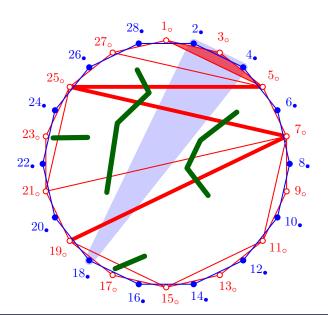
Proof: unfold the serpents

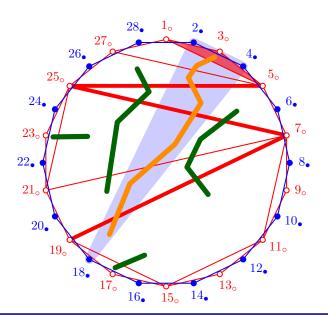


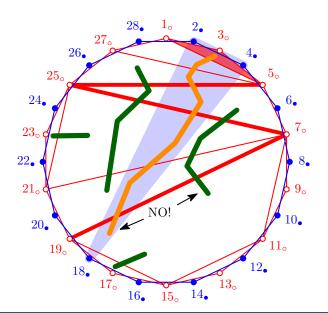
Proof: consider red diagonals crossed by both $(2_{\bullet}, x_{\bullet})$ and $(4_{\bullet}, x_{\bullet})$

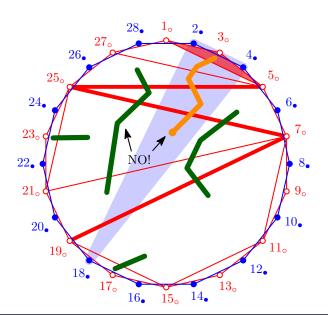


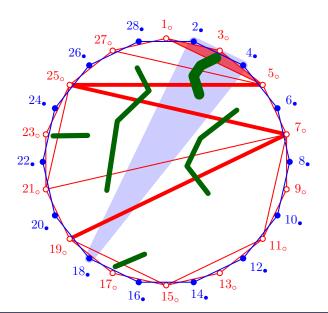
Proof: keep only disconnecting diagonals (zigzag)



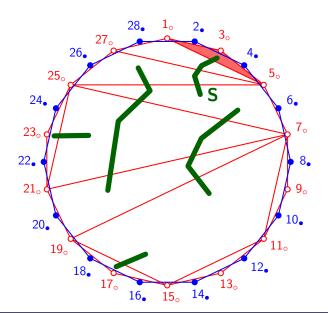


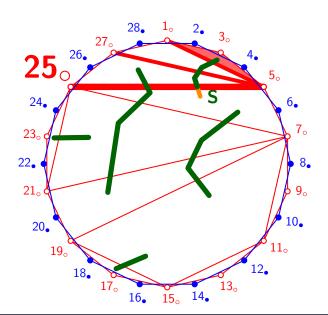


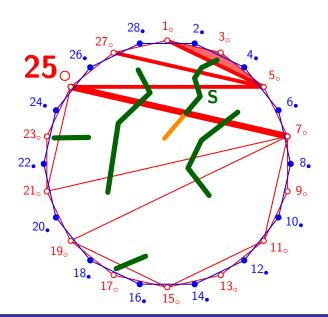




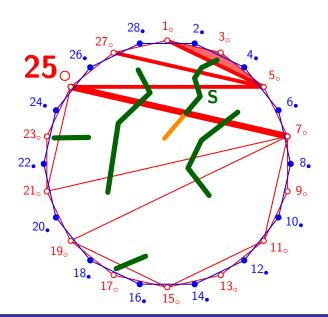
Proof: {serpent nests of D_o } \rightarrow {maximal D_o -accordion dissections}

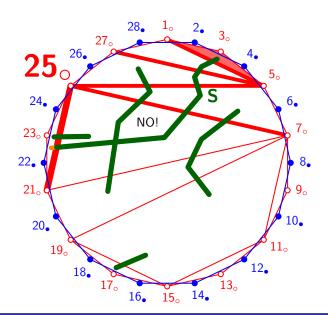


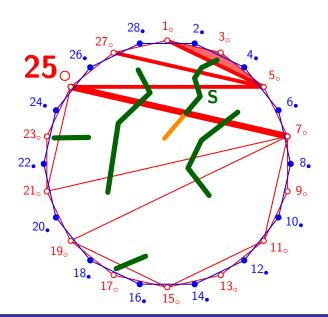


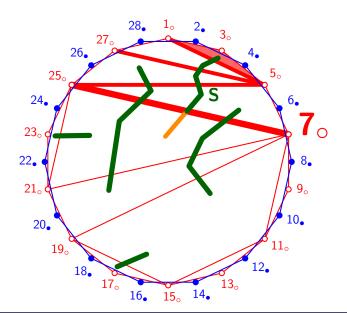


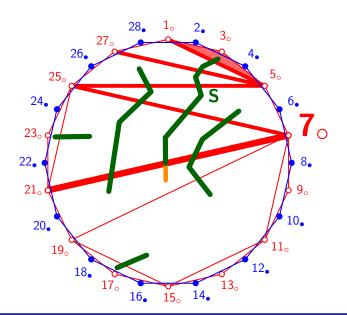


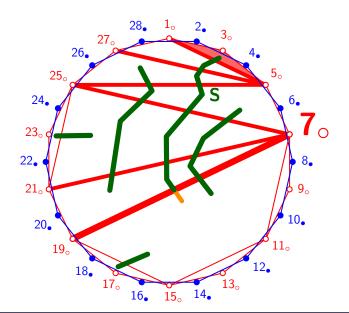


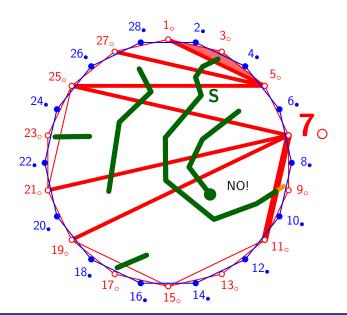


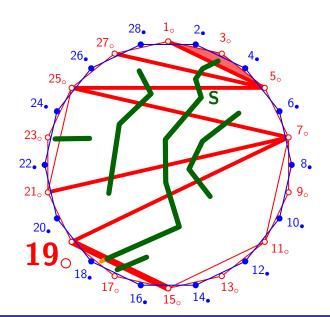


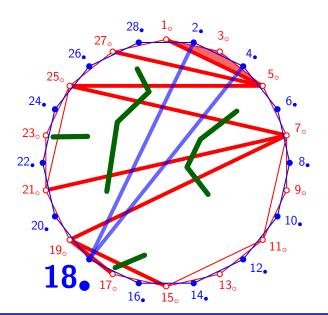




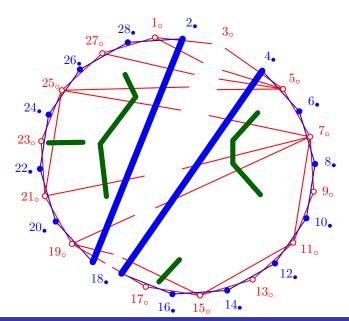




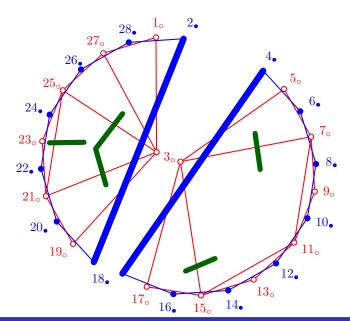




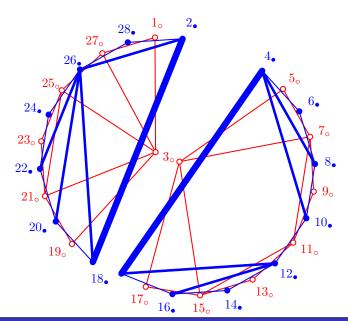
Proof: separate according to x_{\bullet}



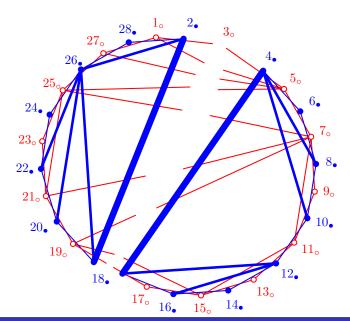
Proof: apply reverse bijections inductively obtained



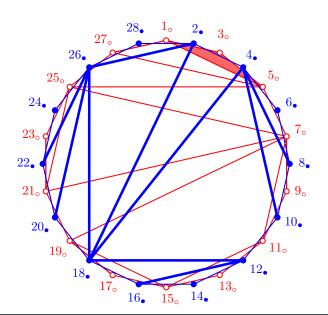
Proof: apply reverse bijections inductively obtained



Proof: glue back together

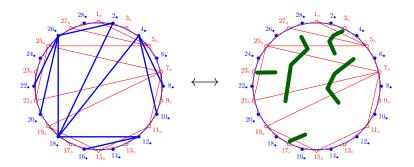


Proof: glue back together



Theorem (M. 2017+)

For any dissection D_{\circ} , $\#(maximal\ D_{\circ}\text{-accordion dissections}) = \#(serpent\ nests\ of\ D_{\circ})$



THANK YOU FOR YOUR KIND LISTENING!

