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Plan of the mini-course

1 Basics on crystals
2 Crystals and Kostka polynomials
3 Crystals and random processes

C. Lecouvey (University of Tours) Crystal graphs and beyond Saint-Paul en Jarez 2022 2 / 26



Some classical problems in representation theory

Let g be a simple Lie algebra of rank n over C.
The following questions are classical.

1 How to compute the character of a representation ?
2 How to decompose the tensor product of two representations into
irreducible components ?

3 How to de�ne and compute a �canonical�basis of representations ?

Problem
Find a general frame to answer problems 1,2,3
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The prototype of a Lie algebra

We have

sl2 = C

�
0 1
0 0

�
�C

�
1 0
0 �1

�
�C

�
0 0
1 0

�
= Ce �Ch�Cf .

It can be embedded in its universal envelopping algebra U(sl2), the
associative C-algebra generated by e, f,h with the relations

[h, e] = he� eh = 2e
[h, f ] = hf � fh = �2f
[e, f ] = ef � fe = h
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Linear algebras and their root systems

Example

sln+1 = fM 2 gln+1 j tr(M) = 0g sati�es

sln+1 = t+ � h� t�

with root system in

E = h�R = f(x1, . . . , xn+1) 2 Rn+1 j x1 + � � �+ xn+1 = 0g

such that

S = fεi � εi+1 j i = 1, . . . , ng R+ = fεi � εj j 1 � i < j � n+ 1g
W ' Sn+1 = hsεi�εi+1 j 1, . . . , ng.

Its Chevalley generators are

ei = Ei ,i+1, hi = Ei ,i � Ei+1,i+1, fi = Ei+1,i
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Root system

Each simple Lie algebra over C has a triangular decomposition

g = g+ � h� g�

where h is the cartan subalgebra of g.
Its root system (S ,R,Q,P,W ) is realized in the Euclidean space E = h�R:

S = fα1, . . . , αng is the set of simple roots
R = R+ t�R+ is the set of positive roots of g
Q = �ni=1Zαi is the root lattice

P = �ni=1Zωi is the weight lattice such that (ωi , α
_
j ) = δi ,j where

α_j =
2αj
(αj ,αj )

.

W = hsi = sα?i j i = 1, . . . , ng is the Weyl group
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To each α 2 R+ corresponds a triple (eα, hα, fα) in g such that

Ceα �Chα �Cfα ' sl2(C).

We have

g+ =
L

α2R+
Ceα h =

L
α2R+

Chα g� =
L

α2R+
Cfα.

g has a presentation in terms of its Chevalley generators

fei = eαi , fi = fαi , hi = hαi j i 2 Ig

and relations depending of the Cartan matrix

A = (ai ,j )(1�i ,j�n where ai ,j =
2(αi , αj )
(αi , αi )

.

Also fωi , i = 1, . . . , ng � h�R is the dual basis of fhi , i = 1, . . . , ng � hR.
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Representation theory

Since (ωi , α
_
j ) = δi ,j for any (i , j) 2 f1, . . . , ng2, we have

P+ = fλ 2 P j (λ, α_i ) � 0, i = 1, . . . , ng = �ni=1Z�0ωi .

This is the cone of dominant weights.

The f.d. irreducible representations of g are parametrized by P+ .

Let V (λ) be the f.d. irr. rep associated to λ 2 P+. Then for any β 2 P

V (λ)β = fv 2 V (λ) j h(v) = β(h)v for any h 2 hg

is the subspace of weight β in V (λ). We have

V (λ) =
L

β2P
V (λ)β
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By writing Z[P ] = feβ j β 2 Pg and setting dimV (λ)β = Kλ,β, we get
the character of V (λ)

sλ = ∑
β2P

Kλ,βe
β 2 Z[P ]

In fact, Kλ,w (β) = Kλ,β for any w 2 W so that sλ 2 ZW [P ].

The Weyl character formula gives

sλ =
∑w2W ε(w)ew (λ+ρ)

∑w2W ε(w)ew (ρ)
where ρ =

1
2 ∑

α2R+
α.
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The type A case

One identi�es the weight lattice with

P = fβ 2 Zn j β1 + � � �+ βn = 0g

and the dominant weights of sln with the partitions
λ = (λ1 � � � � � λn�1 � λn = 0)

λ =
n�1
∑
i=1
(λi � λi+1)ωi

and by setting

x1 = eω1 , xi = eωi�ωi�1 , i = 2, . . . , n� 1, xn = e�ωn�1

the character sλ is the image of the Schur function sλ(x1, . . . , xn) in
Sym[x1, . . . , xn ]/(x1 � � � xn = 1).
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Semisimplicity

Each f.d. representation of g (or g-module) M decomposes on the form

M ' L
λ2P+

V (λ)�mλ .

The module M is irreducible (or simple) and isomorphic to V (λ) when its
highest weight vectors space

Mh := fv 2 M j weight vectors v s.t. ei � v = 0 for any i = 1, . . . , ng

has dimension 1 and coincides with the weight space

Mλ = fv 2 M j hi � v = λ(hi )v for any i = 1, . . . , ng
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Quantum groups

Each simple Lie algebra g = g+ � h� g� is embedded in its universal
envelopping algebra U(g).
The quantum group Uq(g) is obtained by deforming U(g) with a formal
parameter q.

Example

Uq(sl2) is the associative algebra over C(q) generated by E ,F ,T et T�1

and the relations8>>><>>>:
T = qh

TET�1 = q2E
TFT�1 = q�2F

[E ,F ] = EF � FE = T�T �1
q�q�1

versus

8<:
[h, e] = he� eh = 2e
[h, f ] = hf � fh = �2f
[e, f ] = ef � fe = h

The Cartan subalgebra is now Uq(g) = fqh j h 2 hg.
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F.d. Uq(g)-modules are just q-deformations of U(g)-modules. Their
weights yet belong to P
A weight vector of Mq of weight µ 2 h� is a vector v s.t.qh.v = qµ(h)v for
any qh 2 Uq(h).
The highest weight vectors of Mq is a weight vector v s.t. Ei � v = 0 for
any i = 1, . . . , n. Its weight is dominant.

Theorem
The irreducible f.d. Uq(g)-modules are indexed by the dominant
weights λ.

Vq(λ) = Uq(g) � vλ where vλ is of h.w. λ.

�limq!1 Vq(λ) = V (λ).�

Mq is irreducible i.i.f it admits up to a constant only one h.w.v.
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An example

The irreducible f.d. rep. of Uq(sln) are indexed by the partitions

λ = (λ1 � � � � � λn�1 � 0) 2 Zn�1
�0 .

The Chevalley generators Ei ,Hi ,Fi , i = 1, ..., n� 1 of Uq(sln) act on

Vq(�) =
nM
j=1

C(q)vj

by

Ei (vj+1) = δi ,jvi Hi (vj ) = q(δi ,j�δi ,i+1)vj Fi (vj ) = δi ,jvi+1.

This can be encoded by the graph:

v1
F1! v2

F2! v3
F3! � � � Fn�2! vn�1

Fn�1! vn.
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Tensor product of two modules

Given Mq and Nq two Uq(g)-modules, the Chevalley generators act on
Mq 
Nq by

Hi (u 
 v) = Hi (u)
Hi (v)
Ei (u 
 v) = Ei (u)
H�1i (v) + u 
 Ei (v)
Fi (u 
 v) = Fi (u)
 v +Hi (u)
 Fi (v)
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Example

The Uq(sl3)-module Vq(�)
3 has four irreducible components of h.w. v.
1 v1 
 v1 
 v1 of weight (3, 0)
2 v1 
 (v1 
 v2 � qv2 
 v1) and (v1 
 v2 � qv2 
 v1)
 v1 of weight
(2, 1)

3 ∑σ2S3(�q)l(σ)vσ(1) 
 vσ(2) 
 vσ(3)of weight (0, 0).

So
Vq(�)
3 ' V (3, 0)� V (2, 1)�2 � V (0, 0).
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Crystals in rank 1

For Uq(sl2), we have P+ = Z�0ω1.
Set

[a]q =
qa � q�a
q � q�1

Given k 2 Z�0, the irr. rep. Vq(k) is

Vq(k) =
kL
a=0

C(q)va

where

F (va) = [a+ 1]qva+1, E (va+1) = [k � a]qva and H(va) = qk�2avi

This suggests to introduce the graph

B(k) : v0 ! v1 ! � � � ! vk

by "renormalizing" the actions of F and E .
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Crystal graph of a simple module

The crystal graph B(λ) of Vq(λ) is a colored oriented graph: an arrow

b
i! b0 means

b0 = eFi (b) i.e. �b0 = Fi (b) at q = 0�
Each b 2 B(λ) belongs to an i-chain starting at s(b) and ending at e(b).
Set

εi (b) = d(b, bs ) and ϕi (b) = d(b, be ).

bs
i! � � � i!| {z }

εi (b)

b
i! � � � i!| {z }

ϕi (b)

be

Example

The crystal of V (1) for Uq(sln) is simply

B(1) : 1 1! 2
2! 3

3! � � � n�2! n� 1 n�1! n.
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Theorem (Kashiwara-Littelmann 1992)

For any dominant weight λ

charV (λ) = ∑
b2B (λ)

ewt(b) where wt(b) =
n

∑
i=1
(ϕi (b)� εi (b))ωi .

This answers to Problem 1.

Example

With B(1) for Uq(sln), we get wt(i) = ωi �ωi�1 and with xi = eωi�ωi�1

charV (1) = x1 + � � �+ xn.

The Weyl group W also acts on B(λ) by symmetrizing each i-chain:

si (be )
i! � � � i!| {z }

εi (si (b))=ϕi (b)

si (b)
i! � � � i!| {z }

ϕi (si (b))=εi (b)

si (bs ).
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Crystal of a tensor product

The crystal graph B(λ)
 B(µ) of Vq(λ)
 Vq(µ) has vertices

b
 b0 s.t. b 2 B(λ), b0 2 B(µ)

and the action of the eFi is
eFi (b
 b0) = � eFi (b)
 b0 if ϕi (b) > εi (b0)

b
 eFi (b0) otherwise .

Theorem (Kashiwara 1992)

The decomposition of B(λ)
 B(µ) into its connected components gives
that of Vq(λ)
 Vq(µ) into its irreducible components.

This answers to Problem 2.
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An example

Crystal of the de�ning rep. of Uq(sl3).

1
1! 2

2! 3

and its tensor square

1
1! 2

2! 3

1 1
1 1! 2
1 2! 3
1
1# 1# 1#
2 1
2 2
2 2! 3
2
2# 2# 2#
3 1
3 1! 2
3 3
3

We get

V
2 ' V (2, 0)LV (1, 1)
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The crystal structure on words

Each vertex b 2 B(1)
` can identi�ed with the word w = x1 � � � x` on the
alphabet f1 < � � � < ng.
For each i = 1, . . . , n� 1, form wi the subword of w containing only the
letters i and i + 1.
w red
i = (i + 1)εi (w )i ϕi (w ) is obtained by recursive deletion of factors
i(i + 1) in wi .
Example: w = 212111322313 with n = 3

1 w1 = 2(12)1[1(12)2]1 and w red
1 = 211. Thus ε1(w) = 1 and

ϕ1(w) = 2
2 w2 = 2(23)[2(23)3] and w red

2 = 2. Thus ε2(w) = 0 and ϕ3(w) = 1.

Fact

f̃i (resp. ẽi ) is obtained by modifying the leftmost surviving i (resp.
rightmost i + 1) into i + 1 (resp. i).

Example: f̃1(w) = 212211322313
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Tableaux and crystals

By identifying each tableau with its row reading, B(λ) can be labelled by
semistandard tableaux of shape λ.

1 1
2

1! 1 2
2

2! 1 3
2

# 2 # 2
1 1
3

1! 1 2
3

1 3
3

# 1 # 1
2 2
3

2! 2 3
3

where
1 2
3

= 2
 1
 3.

The crystal B(2, 1, 0) for Uq(sl3) is labelled by the tableaux of shape
λ = (2, 1, 0).

charVq(λ) = x21 x2 + x
2
1 x3 + x1x

2
2 + x1x

2
3 + x

2
2 x3 + x2x

2
3 + 2x1x2x3.
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Littelmann path model

Littelmann de�ned operators f̃i , ẽi , i = 1, . . . , n on paths π : [0, 1]! P.

Each vertex b 2 B(λ) is now regared as a path s.t. π(1) = wt(b).
There are many realizations of B(λ) by

1 �rst choosing a h.w path πλ such that Im πλ � P+,

2 next appying to πλ the Littelmann operators f̃i , i = 1, . . . , n� 1

Example
By identifying each word w = x1 � � � x` with the piecewise paths
π[0, 1]! Zn s.t.

π

�
k
`

�
= ε1 + � � �+ εk

and projecting on P = fx 2 Zn j x1 + � � �+ xn = 0g, we get a Littelmann
path model in which the h.w.v are the reverse lattice words.
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e2

e1

C

Z

A trajectory and its projection on the line

0
1

3

­1
­2

2

4
5

6

Figure: A path corresponding to a word on letters 1, 2 and its projection in P for
sl2.
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Canonical bases

Theorem (Kashiwara-Luszig)

The canonical basis is the unique basis fG (b) j b 2 B(λ)g of Vq(λ) such
that

1 G (b) = b when q = 0,

2 G (b) = G (b) where is a simple involution de�ned on Vq(λ).

This answers to Problem 3.

C. Lecouvey (University of Tours) Crystal graphs and beyond Saint-Paul en Jarez 2022 26 / 26


	Representation theory of Lie algebras
	Kashiwara-Lusztig crystal basis via quantum groups

