Crystal graph theory and some of its generalizations II: Kostka polynomials

Cédric Lecouvey

University of Tours

Saint-Paul en Jarez 2022

C. Lecouvey (University of Tours)

Crystal graphs and beyond

Saint-Paul en Jarez 2022 1 / 23

I. Kostka-Foulkes polynomials in type A

 $\mathbb{Z}^n = \bigoplus_{i=1}^n \mathbb{Z}\varepsilon_i.$

Remind that the root lattice Q of \mathfrak{sl}_n is the sublattice of \mathbb{Z}^n generated by the vectors $\varepsilon_i - \varepsilon_{i+1}$, $1 \leq i < n$.

For $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}^n$, set $x^{\beta} = x_1^{\beta_1} \cdots x_n^{\beta_n}$. The *q*-Kostant partition function of type A_{n-1} is defined by

$$\prod_{1 \leq i < j \leq n} \frac{1}{1 - q^{\frac{\chi_i}{\chi_j}}} = \sum_{\beta \in \mathbb{Z}^n} \mathcal{P}_q(\beta) x^{\beta}.$$

• $\mathcal{P}_q(\beta) \in \mathbb{Z}_{\geq 0}[q]$

I. Kostka-Foulkes polynomials in type A

 $\mathbb{Z}^n = \bigoplus_{i=1}^n \mathbb{Z}\varepsilon_i.$

Remind that the root lattice Q of \mathfrak{sl}_n is the sublattice of \mathbb{Z}^n generated by the vectors $\varepsilon_i - \varepsilon_{i+1}$, $1 \leq i < n$.

For $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}^n$, set $x^{\beta} = x_1^{\beta_1} \cdots x_n^{\beta_n}$. The *q*-Kostant partition function of type A_{n-1} is defined by

$$\prod_{1\leq i< j\leq n}\frac{1}{1-q^{\underline{x}_i}_{x_j}}=\sum_{\beta\in\mathbb{Z}^n}\mathcal{P}_q(\beta)x^{\beta}.$$

- $\mathcal{P}_q(\beta) \in \mathbb{Z}_{\geq 0}[q]$
- P₁(β) gives the number of nonnegative decompositions of β as a sum of ε_i − ε_j, 1 ≤ i < j ≤ n.

I. Kostka-Foulkes polynomials in type A

 $\mathbb{Z}^n = \bigoplus_{i=1}^n \mathbb{Z}\varepsilon_i.$

Remind that the root lattice Q of \mathfrak{sl}_n is the sublattice of \mathbb{Z}^n generated by the vectors $\varepsilon_i - \varepsilon_{i+1}$, $1 \leq i < n$.

For $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}^n$, set $x^{\beta} = x_1^{\beta_1} \cdots x_n^{\beta_n}$. The *q*-Kostant partition function of type A_{n-1} is defined by

$$\prod_{1\leq i< j\leq n}\frac{1}{1-q^{\frac{x_i}{x_j}}}=\sum_{\beta\in\mathbb{Z}^n}\mathcal{P}_q(\beta)x^{\beta}.$$

- $\mathcal{P}_q(\beta) \in \mathbb{Z}_{\geq 0}[q]$
- P₁(β) gives the number of nonnegative decompositions of β as a sum of ε_i − ε_j, 1 ≤ i < j ≤ n.
- $\mathcal{P}_q(\beta) = 0$ when $\beta \notin Q$.

A partition is a sequence $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n \ge 0) \in \mathbb{Z}^n$. Each partition is encoded by its Young diagram. For example

Let \mathfrak{S}_n be the symmetric group of rank n.

The group \mathfrak{S}_n acts on \mathbb{Z}^n by permutation $\sigma \cdot (\beta_1, \ldots, \beta_n) = (\beta_{\sigma(1)}, \ldots, \beta_{\sigma(n)}).$

Consider λ and μ two partitions with at most *n* parts.

They can be identified with dominant weights of \mathfrak{sl}_n

$$\lambda = \sum_{i=1}^{n-1} (\lambda_i - \lambda_{i+1}) \omega_i$$
 and $\mu = \sum_{i=1}^{n-1} (\mu_i - \mu_{i+1}) \omega_i$

C. Lecouvey (University of Tours)

Definition

The Kostka polynomial $K_{\lambda,\mu}(q)$ is the polynomial of $\mathbb{Z}[q]$ s.t.

$$\mathcal{K}_{\lambda,\mu}(q) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \mathcal{P}_q(\sigma(\lambda + \rho) - \rho - \mu)$$

where $ho = (n-1,\ldots,1,0) \in \mathbb{Z} = \mathbb{N}^n$.

By the Weyl character formula

$$K_{\lambda,\mu}(1) = \dim V(\lambda)_{\mu}$$

where $V(\lambda)_{\mu}$ is the space of weight μ in the f.d. representation $V(\lambda)$.

A semistandard tableau T of shape λ is a filling of λ by letters in $\{1, \ldots, n\}$ with

- strictly increasing columns from top to bottom
- weakly increasing rows from left to right.

Its weight is $wt(T) = (\mu_1, \dots, \mu_n)$ with $\mu_i = \#$ letters *i* in T

Example

with weight wt(T) = (2, 2, 2, 2, 2) and row reading

$$w(T) = 4211532435$$

Theorem

• $\mathcal{K}_{\lambda,\mu}(1)$ is equal to the number of SST of shape λ and weight μ . • $\mathcal{K}_{\lambda,\mu}(q) \in \mathbb{Z}_{\geq 0}[q]$ and $\mathcal{K}_{\lambda,\mu}(q) \neq 0$ only if $\lambda - \mu \in Q_+ = \bigoplus_{i=1}^{n-1} \mathbb{N}\alpha_i$.

For Assertion 2 :

• sophisticated geometric or algebraic proofs (affine Kazhdan-Lusztig polynomials, Brilinsky-Kostant filtration 1989).

Theorem

• $\mathcal{K}_{\lambda,\mu}(1)$ is equal to the number of SST of shape λ and weight μ . • $\mathcal{K}_{\lambda,\mu}(q) \in \mathbb{Z}_{\geq 0}[q]$ and $\mathcal{K}_{\lambda,\mu}(q) \neq 0$ only if $\lambda - \mu \in Q_+ = \bigoplus_{i=1}^{n-1} \mathbb{N}\alpha_i$.

For Assertion 2 :

- sophisticated geometric or algebraic proofs (affine Kazhdan-Lusztig polynomials, Brilinsky-Kostant filtration 1989).
- a combinatorial proof and description by Lascoux & Schützenberger based on the charge statistics on SST.

Hall-Littlewood polynomials

For any $P \in \mathbb{Z}[x_1, \ldots, x_n]$ set

$$J(P) = \sum_{w \in W} \varepsilon(w) w \cdot P$$

The HL-polynomial associated to μ is defined by

$$P_{\mu}=rac{1}{W_{\mu}(q)}rac{J\left(\prod_{lpha\in R_{+}}(1-qe^{-lpha})e^{\mu+
ho}
ight)}{J(e^{
ho})}$$

where $W_{\mu}(q) = \sum_{\sigma \in \mathfrak{S}_n \mid \sigma(\mu) = \mu} q^{\ell(\sigma)}$.

Theorem

The HL polynomials are symmetric polynomials and for any partition λ

$$s_{\lambda} = \sum_{\mu} \mathit{K}_{\lambda,\mu}(q) \mathit{P}_{\mu}.$$

This permits to prove that $K_{\lambda,\mu}(q)$ is an affine KL-polynomial (Kato 1982).

C. Lecouvey (University of Tours)

Row insertions of letters in a SST.

э

Cyclage from T of weight μ :

Remove the southwest entry and insert it in the remaining tableau.

Theorem

Cocyclage operations eventually ends at the unique row R_{μ} of weight μ

C. Lecouvey (University of Tours)

Definition

For T of weight μ , set

$$ch_n(T) = \sum_{i=1}^n (i-1)\mu_i - I = ch_n(R_\mu) - I$$

where I the number of cyclage operations needed to get R_{μ} .

Theorem (LS 1980)

We have

$$\mathcal{K}_{\lambda,\mu}(q) = \sum_{T\in \mathcal{SST}_{\mu}(\lambda)} q^{\operatorname{ch}_n(T)}$$

where $SST_{\mu}(\lambda)$ is the set of SST of shape λ and weight μ .

11 / 23

Image: Image:

Example

For $\lambda = (2, 1, 0)$ we have

$$\begin{array}{c|c}1&3\\2&\end{array}\rightarrow \begin{array}{c}1&2\\3&\end{array}\rightarrow \begin{array}{c}1&2\\3&\end{array}\rightarrow \begin{array}{c}1&2&3\\\end{array}$$

Thus

$$\begin{array}{rcl} \operatorname{ch}_n \left(\begin{array}{c|c} 1 & 2 & 3 \end{array} \right) & = & 0 \times 1 + 1 \times 1 + 2 \times 1 = 3, \\ \operatorname{ch}_n \left(\begin{array}{c|c} 1 & 3 \\ \hline 2 \end{array} \right) & = & 1 \text{ and } \operatorname{ch}_n \left(\begin{array}{c|c} 1 & 2 \\ \hline 3 \end{array} \right) = 2. \end{array}$$

We get

$$K_{(2,1,0)}(q) = q + q^2.$$

æ

Charge and crystals

Problem

Interpret the charge in crystal theory.

Let $w = x_1 \cdots x_\ell$ be a word on $\{1 < \cdots < n\}$. For each $i = 1, \ldots, n-1$, form w_i the subword of w contained only the letters i and i + 1.

Remind the definition of ε_i and φ_i (Part I).

Example: w = 241153243131 with $n = 5 w_1 = 21(12)11$ and $w_1^{\text{red}} = 2111$. Thus $\varepsilon_1(w) = 1$ and $\varphi_1(w) = 3$.

Remind also the action of the Weyl group: s_i acts by symmetrizing each *i*-chain :

$$s_i(w) = 242153243231.$$

Let O(T) be the orbit of the tableau T under the \mathfrak{S}_n -crystal action.

Theorem (LLT 1995)

For any tableau T of dominant weight

$$\operatorname{ch}_n(T) = \frac{1}{|O(T)|} \sum_{T' \in O(T)} \chi(T')$$

where

$$\chi(T') = \sum_{i=1}^{n-1} (n-i)\varepsilon_i(\mathbf{w}(T)).$$

Fact

This gives an interpretation of ch_n independent of the tableau model.

 $U_q(\widehat{\mathfrak{sl}}_n)$ is the quantum group associated to the affine Lie algebra

$$\widehat{\mathfrak{sl}}_n = \mathfrak{sl}_n \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}d \oplus \mathbb{C}K.$$

It admits

In highest weight representations but infinite dimensional (quite simple)

 $U_q(\widehat{\mathfrak{sl}}_n)$ is the quantum group associated to the affine Lie algebra

$$\widehat{\mathfrak{sl}}_n = \mathfrak{sl}_n \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}d \oplus \mathbb{C}K.$$

It admits

- highest weight representations but infinite dimensional (quite simple)
- Inite dimensional representations but without h.w. vectors (more complicated).

K-R modules and crystals

For
$$\mu = (\mu_1, ..., \mu_m) \in \mathbb{Z}_{\geq 0}^m$$
, consider
 $B_\mu = B(\mu_1 \omega_1) \otimes \cdots \otimes B(\mu_m \omega_1)$

the crystal of the $U_q(\mathfrak{sl}_n)$ -module $V_{q,\mu}$

$$V_{q,\mu} = V_q(\mu_1 \omega_1) \otimes \cdots \otimes V_q(\mu_m \omega_1).$$

Theorem

• $V_{q,\mu}$ has also the structure of an irreducible affine $U_q(\widehat{\mathfrak{sl}}_n)$ -module $\widehat{V}_{q,\mu}$.

2 $\hat{V}_{q,\mu}$ has a crystal \hat{B}_{μ} obtained by adding arrows of color 0 in B_{μ} .

An example

Figure: The affine $U_q(\widehat{\mathfrak{sl}}_3)$ -crystal $\widehat{B}_{(1^2)}$

We have

$$\tilde{f}_0 = \mathrm{pr}^{-1} \circ \tilde{f}_1 \circ \mathrm{pr}$$

where the promotion operator pr changes each i = 1, ..., n in $i + 1 \mod n$.

 \hat{B}_{μ} is graded by the "energy" *D* defined from the graph structure. *D* is constant on the classical connected components.

D is given on $\widehat{B}_{1^{\ell}}$ by

$$D(b) = \sum_{k=1}^{\ell-1} (\ell-k) H(x_k \otimes x_{k+1}) \text{ where } H(x_k \otimes x_{k+1}) = \begin{cases} 1 \text{ if } x_k \leq x_{k+1} \\ 0 \text{ if } x_k > x_{k+1} \end{cases}$$

for any
$$b = x_1 \otimes \cdots \otimes x_\ell$$
.

Example

On
$$\widehat{B}_{(1^2)}$$
, we have $D=1$ on $\widehat{B}(1\otimes 1)$ and $D=0$ on $\widehat{B}(1\otimes 2).$

The definition is more complicated for a general μ .

For any partition λ , set

$$\mathcal{E}_{\lambda,\mu} = \{ b \in \widehat{B}_{\mu} \mid b ext{ is of highest weight } \lambda \}.$$

Definition

The one-dimensional sum $X_{\lambda,\mu}$ is defined by

$$X_{\lambda,\mu}(q) = \sum_{b \in E_{\lambda,\mu}} q^{D(b)}.$$

It is related to particle theory in mathematical physics.

Theorem (Nakayashiki-Yamada 1996)

The 1-d sums coincide with the Kostka polynomials.

Idea of the proof

Key ingredient: "Schur duality":

$$\mathcal{K}_{\lambda,\mu} = \dim V_q(\lambda)_\mu = [V_{q,\mu} : V_q(\lambda)]$$

SST T of weight $\mu \stackrel{1:1}{\leftrightarrow} b \in \widehat{B}_\mu$ of h.w. λ

Example

with
$$\lambda = (5, 4, 1)$$
 and $\mu = (2, 2, 3, 3)$

$$T = \begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 4 \\ 4 \end{bmatrix} \xrightarrow{1:1} \longleftrightarrow$$

$$1 \quad 1 \quad \otimes \quad 1 \quad 2 \quad \otimes \quad 1 \quad 2 \quad \otimes \quad 1 \quad 2 \quad 3 = b$$

where *b* is indeed of highest weight λ in \widehat{B}_{μ} for

$$w(b) = 1121221321.$$

It remains to prove that

$$\mathrm{ch}_n(T)=D(b).$$

This can be done

either by using another expression of ch_n in terms of indices of T (NY 1995)

It remains to prove that

$$\mathrm{ch}_n(T)=D(b).$$

This can be done

- either by using another expression of ch_n in terms of indices of T (NY 1995)
- or directly by proving that cyclage on *T* corresponds to promotion on *b* (Gerber-L 2021).

Beyond type A

The Kostka polynomial $K_{\lambda,\mu}(q)$ with $\lambda, \mu \in P_+$ is defined similarly as a q-analogue of dim $V(\lambda)_{\mu}$.

Problem

Find a description of $K_{\lambda,\mu}(q)$.

This is a elementary but difficult question and only partial answers are known.

Theorem (L-Okado-Shimozono 2011)

One-dimensional sums defined from classical types KR crystals of row or column shapes are Kostka polynomials.

Unfortunately, the converse is false, for example

 $K_{\lambda,0}(q)$ i.e. for $\mu = 0$

is not a 1-d sum in general.

イロト 人間ト イヨト イヨト

 A conjectural description of the K_{λ,μ}(q) in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).

All these results seems to indicate that the crystal structure does not suffice to capture the combinatorial complexity of the KF-polynomials.

- A conjectural description of the K_{λ,μ}(q) in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).
- A description of K_{λ,0}(q) in type C based on King tableaux and a proof of 1 for columns tableaux (L-Lenart 2018).

- A conjectural description of the K_{λ,μ}(q) in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).
- **a** A description of $K_{\lambda,0}(q)$ in type C based on King tableaux and a proof of 1 for columns tableaux (L-Lenart 2018).
- A description of $K_{\lambda,0}(q)$ in type *B*, *D* (Jang-Known 2019)

- A conjectural description of the K_{λ,μ}(q) in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).
- **a** A description of $K_{\lambda,0}(q)$ in type C based on King tableaux and a proof of 1 for columns tableaux (L-Lenart 2018).
- A description of $K_{\lambda,0}(q)$ in type *B*, *D* (Jang-Known 2019)
- A proof of 1 for λ row partition (Gerber-Dolega-Torres 2020).

- A conjectural description of the K_{λ,μ}(q) in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).
- **a** A description of $K_{\lambda,0}(q)$ in type C based on King tableaux and a proof of 1 for columns tableaux (L-Lenart 2018).
- A description of $K_{\lambda,0}(q)$ in type *B*, *D* (Jang-Known 2019)
- A proof of 1 for λ row partition (Gerber-Dolega-Torres 2020).
- A new approach based on atomic decomposition of characters (L-Lenart 2020).