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Finite sequences and integer partitions

Let A be a finite sequence (A1, ..., A¢) of non-negative integers.
e The parts: A1,..., At
e The weight: [A\| = A1 + -+ + A¢.
e The odd weight: |Alo = >; qq Mi-
e The even weight: |Ale = >

i even )""

Partition of n: X such that Ay > --- > X¢ > 1 and [A| = n.
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Introduction From Euler’s theorem to lecture-hall partitions

ure hall theorem

Theorem 1: Distinct-odd identity (Euler)

Let n be a non-negative integer. Then, the number of partitions of n into
distinct parts is equal to the number of partitions of n into odd parts. The
corresponding identity is

1
[Ta-a) =TI 2n—1"
n>1 n>1 L q"
Partitions of 6 into distinct parts: (6), (5,1),(4,2),(3,2,1).
Partitions of 6 into odd parts: (5,1),(3,3),(3,1,1,1),(1,1,1,1,1,1)
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Introduction From Euler’s theorem to lecture-hall partitions
ture hall theorem

Euler theorem

art and contribu

Lecture-hall partitions

Let n be a positive integer.

Set of lecture-hall partitions £,: sequences A = (A1, ..., \n) of non-negative integers,
n

such that (%) is non-decreasing. Example: (0,1,2,4,5,7,9) € L7 but

i=

1
(0,1,2,4,5,7,8) ¢ L7.
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Introduction

From Euler’s theorem to lecture-hall partitions

ure hall theorem

Bousquet-Mélou—Eriksson’s refinement of Euler’s theorem

Theorem 2: Lecture-hall theorem (Bousquet-Mélou and Eriksson 1997)

Let m be a non-negative integer. Then, the number of sequences in £, with
weight m is equal to the number of partitions of m into odd parts less than
2n. The corresponding identity is

n

1
> :Hﬁqﬂfl'

AELp i=1

We have
{\ partitions into distinct parts} = lim L,.
n— oo

By tending n to oo, the Lecture-hall theorem gives the distinct-odd theorem.
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From Euler's theorem to lecture-hall partitions
The (k, I)-lecture hall theorem

Eul orem
tributions

The (k, I)-sequence

Let k, | be positive integers such that kI > 4.
The (k, I)-sequence (af,k’/)> is such that
nez

(k) _ (kD) (k1)
3y, = lay, = a5y, 1)
RGN N B ()

2n+1 2n 2n—1>

for n € Z, with a*") = j for i € {0,1}.

Set uy = \/U% VKI=4 and for n € 7, set séﬂ)l = u,gz" and séﬁ‘l) =/I/k- u,;2”+1.
The sequence (s,(,k‘l)) satisfies (1).
n€EZ
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Introduction s [Eller's thesra o (eame el perdfifers

The (k, I)-lecture hall theorem

The

The (k, I)-lecture-hall partitions

Let n be a positive integer.
Set of (k, /)-lecture hall partitions EE,k’I) A= (A1,...,An) such that A; > 0 and
n

Ai B .
W) is non-decreasing.
i i=1
Set B {00020 The e B0 sequences A (B9, H2) sch h
1<i<--<ig<n

Bk = jim BN
n— oo

Write A = [];54 (bfk’/))mi where m; is the number of parts b5 in .

i
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From Euler's theorem to lecture-hall partitions
The (k, I)-lecture hall theorem

The (k, I)-Euler em
State of art and contributions

The (k, I)-lecture-hall theorem

Theorem 3: The (k,/)-lecture hall identity (Bousquet-Mélou and Eriksson

1997)

Let k, /, n be positive integers such that k/ > 4. Then,

2n

1
Moy, [Ae —
Z Xy - H 2K k) ?
/\E[:;/;,/) i=11— x%i—1 yi
2n—1 1
Moy IAle —
Z xRy - H (1) (ks1) "

N} 1y
This implies that, for a fixed weight m > 0, there are as many (k, /)-lecture hall

partitions in [él;,l) as sequences in Bg;”), and there are as many (k, /)-lecture

hall partitions in Lg;’i)l as sequences in Bgln’i)l.
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Introduction

From Euler's theorem to lecture-hall partitions

, I)-lecture hall theorem

The (k, /)-Euler theorem

The set of (k, /)-Euler partitions £k \ = (A1y.--,A2t) such that 0 = Aoy < Ape—1
and for 1 <i<t-—1,

1,k)

1
Sé s i1 < Ao < (Sék”)) < Aoj—1.

Theorem 4: The (k, /)-Euler identity (Bousquet-Mélou and Eriksson)

Let k, I be positive integers such that k/ > 4. Then,
= 1
Moy, [Ale — - -
Z oy = H (k1) S0K)
re (kD) i=11—x% "y%i-1

This implies that, for fixed weight m > 0, there are as many (k,/)-Euler
partitions in £(k/) as sequences in B,

We have
LD = jim £,
n—oo 2N

Hence, by tending n to oo, the (k, /)-Lecture-hall theorem gives the (k, /)-Euler
theorem.
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Introduction

From Euler's theorem to lecture-hall partitions

The I)-lecture hall theorem
The Euler theorem
State of art and contributions

What we had so far

What we had so far.
e Recursive analytic proof of the (k, /)-lecture hall theorem (BME), that induces a
recursive bijective proof.
e Proof of the (k, /)-Euler theorem from the limit of the (k, /)-lecture hall.

e In the case k = | > 2, bijective proof of /-lecture hall theorem and /-Euler theorem
(Savage and Yee 2008), and a conjectured bijection for the case k,/ > 2, and a
conjecture that the BME recursive bijection and the SY bijection are the same
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Introduction

From Euler's theorem to lecture-hall partitions

cture hall theoren
-Euler theorem
State of art and contributions

What we bring to the table

What we had so far.

e Recursive analytic proof of the (k, /)-lecture hall theorem (BME), that induces a
recursive bijective proof.

e Proof of the (k, /)-Euler theorem from the limit of the (k, /)-lecture hall.

e In the case k = | > 2, bijective proof of /-lecture hall theorem and /-Euler theorem
(Savage and Yee 2008), and a conjectured bijection for the case k,/ > 2, and a
conjecture that the BME recursive bijection and the SY bijection are the same

What we bring to the table.

e Proof of the conjectured bijection for k,/ > 2, and construction of the bijection
for the case k =1 and the case | = 1.

e Proof that the BME recursive bijection and our bijection are the same in all the
cases for the (k, /)-lecture hall theorem.

e Construction of a recursive bijection for the (k,/)-Euler theorem.
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Bijection for the case k, | > 2 of the (k, /)-Euler theorem

The map &) from Bk 1o £K1)

Let v = (bflk’l), R bfyk‘/)) € B*:) and set A = (Ai)i>1 an infinite sequence of terms
all equal to 0. Proceed by inserting the parts bfk’/)
from the smallest j and the greatest i.

into the pairs (Xoj—1, Agj), starting
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Bijection for the case k, | > 2 of the (k, /)-Euler theorem

The map &) from Bk 1o £K1)

Let v = (bflk’l), R bfyk‘/)) € B*:) and set A = (Ai)i>1 an infinite sequence of terms
all equal to 0. Proceed by inserting the parts bfk’/)
from the smallest j and the greatest i.

into the pairs (Xoj—1, Agj), starting

o Toinsert b with i > 1 into (Agj_1, Agj): if

i

Nojo1 — 550 gy > s — s,
then do
(Mojo1. Aag) = (Aot + 2 — &) g+ alhh) — &l (1)

(k1)

and store bi—{ for the insertion into the pair (Agj41, Xoj42). Else, do

(Agjm1s Az) = (Majo1 + a7, Mgy + a4y, (2)
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Bijection for the case k, | > 2 of the (k, /)-Euler theorem

The map &) from Bk 1o £K1)

Let v = (bflk’l), R bfyk‘/)) € B*:) and set A = (Ai)i>1 an infinite sequence of terms
all equal to 0. Proceed by inserting the parts bfk’/)
from the smallest j and the greatest i.

into the pairs (Xoj—1, Agj), starting

o Toinsert b with i > 1 into (Agj_1, Agj): if

i

Nojo1 — 550 gy > s — s,
then do
(Mojo1. Aag) = (Aot + 2 — &) g+ alhh) — &l (1)

and store bfi’{)

for the insertion into the pair (Agj41, Xoj42). Else, do
ki 1,k
(Agjm1, M) = Aoy + " gy + a9, (2)

o Toinsert b{*"): do (2) for i = 1.
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Bijection for the case k, | > 2 of the (k, /)-Euler theorem

The map &) from Bk 1o £K1)

Let v = (bflk’l), R bfyk‘/)) € B*:) and set A = (Ai)i>1 an infinite sequence of terms
all equal to 0. Proceed by inserting the parts bfk’/)
from the smallest j and the greatest i.

into the pairs (Xoj—1, Agj), starting

o Toinsert b with i > 1 into (Agj_1, Agj): if

i

Nojo1 — 550 gy > s — s,
then do
(Mojo1. Aag) = (Aot + 2 — &) g+ alhh) — &l (1)

and store bfi’{)

for the insertion into the pair (Agj41, Xoj42). Else, do
ki 1,k
(Agjm1, M) = Aoy + " gy + a9, (2)

o Toinsert b{*"): do (2) for i = 1.

After all the insertions, we set ®(k:)) (1) = (A Jzil where t is the smallest positive j
such that Ay; = 0.
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Combinatorics of (k, /)-admissible words

Definition of (k, /)-admissible words

ture-hall partitions and Euler partiti

The (k, /)-admissible words

Set oél N =/-2and ogk N =k —2fori > 1. A (k,l)-admissible word is a sequence

(ci)i>1 of non-negative integers such that :

e there are finitely many positive terms,
k!

o C 6{0,...,01( ’)+1},

e there is no pair 1 </ < j such that

cn=of" +x(helijy) for hefiji+l,....j}
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Combinatorics of (k, /)-admissible words imifdien of (% = [ wares

Relations between adr vords, lecture-hall partitions and Euler partitions

The (k, /)-admissible words

Set oél N =/-2and ogk N =k —2fori > 1. A (k,l)-admissible word is a sequence
(ci)i>1 of non-negative integers such that :

e there are finitely many positive terms,
k!

o C 6{0,...,01( ’)+1},

e there is no pair 1 </ < j such that

cn=of" +x(helijy) for hefiji+l,....j}

Let C(k:)) be the set of (k, /)-admissible words. Let n > 1.
The set ,C(k:)): (k, I)-admissible words with the (n — 1) first terms equal to 0.
n(ci)i>1: replace c1,...,¢cn—1 by O.
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Definition of (k, /)-a ble words
Relations between adr vords, lecture-hall partitions and Euler partitions

Combinatorics of (k, /)-admissible words

Order on (k, /)-admissible words

Let < be the lexicographic strict order on the set of integer sequences:

(¢i) < (d;) if and only if there exists n > 0 such that ¢, < d, and ¢; = d; for i > n.

Proposition 1: Fraenkel's numeration system

The function
I'(k,,): C(k’l) — ZZO
(c)i>1 Z G a,(-k’l)

i>1
describes a bijection from C(%:/) to Z>q and
(ci) < (di) <= Te,n((ci)) < Te,n((di))-

For all m € Zxg, we write [m](eD = r(_kll)(m)'
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Definition of (k, /)-admi: rds
Relations between admissible words, lecture-hall partitions and Euler partitions

Combinatorics of (k, /)-admissible words

The transformation 0-

For t € Z>q U {oo} and all integer sequence ¢ = (¢;)i_;, 0-c denotes the sequence

d = (d;)!f7 satisfying dy =0 and djy1 = ¢; for 1 < i <t.
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Definition of (k, /)-a vords
Relations between admissible words, lecture-hall partitions and Euler partitions

Combinatorics of (k, /)-admissible words

The transformation 0-

For t € Z>q U {oo} and all integer sequence ¢ = (¢;)i_;, 0-c denotes the sequence

d = (d;)!f7 satisfying dy =0 and djy1 = ¢; for 1 < i <t.

Proposition 4: The shifting

Let k,/ > 2. For positive integers n and n+ 1 > j > 1, 0- induces a bijection
from ,C"K) to ,,+1C(k”).

Isaac Konan The combinatorics of (k, /)-lecture hall partitions



. . . - Definition of (k, /)-admissible words
Combinatorics of (k, /)-admissible words hen © FEE IS T

Relations between admissible words, lecture-hall partitions and Euler partitions

The transformation 0-

For t € Z>q U {oo} and all integer sequence ¢ = (¢;)i_;, 0-c denotes the sequence
= (d;)] satisfying dy = 0 and dj1 = ¢; for 1 < i < t.

Proposition 6: The shifting

Let k,/ > 2. For positive integers n and n+ 1 > j > 1, 0- induces a bijection
from ,C"K) to ,,+1C(k”).

Proposition 7: Order in terms of (k, /)-admissible words

For a sequence A = (A1,...,A2t) suchthatt > 1,0 = X2 < Apr—1and A\; >0
for1 <i<2t—2,

Me £5D = ois1]%D = 0[] PR = 00 [Agia] ) forall 1 < i< t—1.
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Well-definedness of the bijection

The bijection in terms of (k, /)-admissible words

Let (S, <) be a countable and total ordered set. For m € Zxg, c is the m*h element
that precedes d in S or d is the m*" element that follows c in S, if the intervalle [c, d]
have m+ 1 elements in S, and we note

d=F(m,S,c)=F(m,S)-c.
We set the following notations.

. (A(i) A(i.)): the pairs (Agj_1, \oj) after the insertion of all the parts plen.

2j—1 1\2j i
j k,l) . . .
. mf."): the number of parts bf ) inserted into the pair (Azj—1, A2j)-
Hence, ml(.l) equals the number of occurrences of bfk’l) in v, and the image of v by

2t
oK) consists of ()\J(.l)) , where t is the smallest j such that )\S.) =
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Well-definedness of the bijection

The bijection in terms of (k, /)-admissible words

Fort>j>1,

e for i > 2, we have

[\ ]W) “o [A(f)]“vk) c k.

2j—1 2j
[)\g;tll)](?” > 00 [}\é)ﬂ}(k,/)
N\
’ F(m Hc(k/) ‘ ’ ]_—(m’ﬁll ; y+lc(k’1)) ‘ ]_—(m(ﬁ»l) " lc(k /))
B PO > 00- [xg70]“"
k,l . k,l
o Finally, A5 = 3% and [A5) 1]( e (mgn,c( 0, [ 1]( )

Equivalently, this means that mgj) = )\gj) ;—1- {sék’/)kgj)J if )\S) > 0 and
md =25 if A% = o.
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Road to a bijective proof of the little Géllnitz theorem

The little Gollnitz theorem

Little Gollnitz' identities 1963

Let n be a non-negative integer. Then,

* the number of partitions of n into parts differing by at least 2 and no
consecutive odd parts equals the number of partitions of n into parts
congruent to 1,5,6 mod 8,

* the number of partitions of n into parts differing by at least 2, no con-
secutive odd parts, and no ones equals the number of partitions of n into
parts congruent to 2,3,7 mod 8.

In terms of g-series, we have

2
S (=g~ 1 a%)ng™ " 1

= (9% 42)n (q,9° 9% ¢8)c’

(—q; %)ng™*" 1
2 (

 (@%d)n (62,963,097 %) oo’

where (a1,...,a::9)n =I5 jzl(l —ajq') for n € Z>o U {o0}.
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Road to a bijective proof of the little Géllnitz theorem

The (1,4) and (4, 1)-Euler theorems

Theorem 6: The Savage—Sills identities 2011

Let n be a non-negative integer. Then,

* the number of partitions of n into distinct parts such that the positive
parts at even positions are even equals the number of partitions of n into
parts congruent to 1,5,6 mod 8,

* the number of partitions of n into distinct parts such that the positive
parts at odd positions are even equals the number of partitions of n into
parts congruent to 2,3,7 mod 8.

In terms of g-series, we have

2
(_q3—4[n/2] : q4)[n/2"\ qn +n B 1
= (4% 6%)n (9.9% 4% %)’
2
(=q' =72 6% oy q” T 1

= (9% 9?)n (6%,6%,97; ¢80
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Road to a bijective proof of the little Géllnitz theorem

Open question

We have

2
> (=g~ 1 q?)ng™ " (—=g>=41n/21; %) 1o g™+
o (4% 9°)n =0 (% 42)n

2
Z ( g q ) qn +n 3 (7q174Ln/2J : q4)Ln/2J q" +n
= (%) = (% 42)n

Bijective proofs of the above identities induce bijective proofs of the little Gollnitz

identities. How do we build them?
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Road to a bijective proof of the little Gollnitz theorem

THANK YOuU!!!
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Road to a bijective proof of the little Gollnitz theorem

Example for &%) with (k, /) = (3,2)

3,2)\ 2 3,2)\ 4 3,2)) 2 3,2)\ 3 3,2 3,2)\ 3
= 6 () () () () ()
= (14 0)°(2+1)*(5 +3)%(8 4+ 5)°(19 + 12)(30 + 19)°.
For the insertion into the pair (A1, A2), we have the following.

e Insertions of bs’z): we successively apply (2), (2) and (1) to obtain (A1, A2) = (71, 45), and

store once bf‘z) for the pair (A3, As).

e Insertions of bé3‘2j: we apply (2) to obtain (A1, A2) = (90, 57).

e Insertions of b‘(‘3’2): we successively apply (2), (1) and (2) to obtain (A1, A2) = (109, 69),

and store once b§3’2) for the pair (A3, As).

e Insertions of b§3’2): we successively apply (1) and (2) to obtain (A1, A\2) = (117, 74), and
store once bf'z) for the pair (A3, A4).

e Insertions of bf’z): we successively apply (2), (1), (2) and (2) to obtain
(A1, A2) = (124, 78), and store once b§3’2) for the pair (A3, A4).

e Insertions of bf’z): we apply five times (2) to obtain (A1, X2) = (129, 78).

Hence, we store once bé3’2), bf’z), bf’z), b§3‘2) for the insertion into the pair (A3, A\4). We then do
(2) for i =5,3,2,1 to obtain (A3, A4) = (27, 16). As there is no part stored for the insertion in
(s, As), we have (s, Ag) = (0,0). Set & (v) = (129, 78, 27, 16,0,0) € L5
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