#### The combinatorics of (k, l)-lecture hall partitions

#### Isaac Konan

ICJ, University Claude Bernard Lyon 1

SLC 87

Isaac Konan The combinatorics of (k, l)-lecture hall partitions

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ○ Q ○ 1/15

 $\begin{array}{l} \mbox{httroduction}\\ \mbox{Bijection for the case } k, \ l \geq 2 \ of the (k, l)-fueler theorem \\ \mbox{Combinatorics of } (k, l)-admissible words\\ \mbox{Well-definedness of the bijection}\\ \mbox{Road to a bijective proof of the little Gollmitz theorem} \end{array} \qquad \mbox{From Euler's theorem to \\ \mbox{The } (k, l)-leuter have the little l$ 

Road to a bijective proof of the little Göllnitz theorem Finite sequences and integer partitions

Let  $\lambda$  be a finite sequence  $(\lambda_1, \ldots, \lambda_t)$  of non-negative integers.

- The parts:  $\lambda_1, \ldots, \lambda_t$ .
- The weight:  $|\lambda| = \lambda_1 + \cdots + \lambda_t$ .
- The odd weight:  $|\lambda|_o = \sum_{i \text{ odd}} \lambda_i$ .
- The even weight:  $|\lambda|_e = \sum_{i \text{ even }} \lambda_i$ .

Partition of *n*:  $\lambda$  such that  $\lambda_1 \geq \cdots \geq \lambda_t \geq 1$  and  $|\lambda| = n$ .

# 

#### Theorem 1: Distinct-odd identity (Euler)

Let n be a non-negative integer. Then, the number of partitions of n into distinct parts is equal to the number of partitions of n into odd parts. The corresponding identity is

$$\prod_{n \ge 1} (1 - q^n) = \prod_{n \ge 1} \frac{1}{1 - q^{2n - 1}}$$

Partitions of 6 into distinct parts: (6), (5, 1), (4, 2), (3, 2, 1). Partitions of 6 into odd parts: (5, 1), (3, 3), (3, 1, 1, 1), (1, 1, 1, 1, 1, 1).

・ロト ・部ト ・ヨト ・ヨト 三日

# 

#### Lecture-hall partitions

Let *n* be a positive integer. Set of lecture-hall partitions  $\mathcal{L}_n$ : sequences  $\lambda = (\lambda_1, \dots, \lambda_n)$  of non-negative integers, such that  $\left(\frac{\lambda_i}{i}\right)_{i=1}^n$  is non-decreasing. Example:  $(0, 1, 2, 4, 5, 7, 9) \in \mathcal{L}_7$  but  $(0, 1, 2, 4, 5, 7, 8) \notin \mathcal{L}_7$ .



A B + A B +

훈

From Euler's theorem to lecture-hall partitions The (k, l)-lecture hall theorem The (k, l)-Euler theorem State of art and contributions

#### Bousquet-Mélou-Eriksson's refinement of Euler's theorem

#### Theorem 2: Lecture-hall theorem (Bousquet-Mélou and Eriksson 1997)

Let *m* be a non-negative integer. Then, the number of sequences in  $\mathcal{L}_n$  with weight *m* is equal to the number of partitions of *m* into odd parts less than 2n. The corresponding identity is

$$\sum_{\lambda \in \mathcal{L}_n} q^{|\lambda|} = \prod_{i=1}^n \frac{1}{1 - q^{2i-1}}$$

We have

$$\{\lambda \text{ partitions into distinct parts}\} \equiv \lim_{n \to \infty} \mathcal{L}_n.$$

By tending *n* to  $\infty$ , the Lecture-hall theorem gives the distinct-odd theorem.

臣

# $\begin{array}{l} \mbox{Introduction} \\ \mbox{Bijection for the case } k, l \geq 2 \mbox{ of the } (k, l)-Euler theorem \\ \mbox{Combinatorics of } (k, l)-admissible words \\ \mbox{Well-definedness of the bijection} \\ \mbox{Road to a bijective proof of the little Göllnitz theorem} \end{array} \right. \\ \mbox{From Euler's theorem to lecture-hall partitions} \\ \mbox{The } (k, l)-lecture hall theorem \\ \mbox{The } (k, l)-Euler theorem \\ \mbox{State of art and contributions} \end{array} \right. \\ \label{eq:state}$

# The (k, l)-sequence

Let k, l be positive integers such that  $kl \ge 4$ . The (k, l)-sequence  $\left(a_n^{(k,l)}\right)_{n \in \mathbb{Z}}$  is such that

$$\begin{cases} \mathbf{a}_{2n}^{(k,l)} = l \mathbf{a}_{2n-1}^{(k,l)} - \mathbf{a}_{2n-2}^{(k,l)}, \\ \mathbf{a}_{2n+1}^{(k,l)} = \mathbf{k} \mathbf{a}_{2n}^{(k,l)} - \mathbf{a}_{2n-1}^{(k,l)}, \end{cases}$$
(1)

for 
$$n \in \mathbb{Z}$$
, with  $a_i^{(k,l)} = i$  for  $i \in \{0, 1\}$ .  
Set  $u_{kl} = \frac{\sqrt{kl} + \sqrt{kl-4}}{2}$ , and for  $n \in \mathbb{Z}$ , set  $s_{2n+1}^{(k,l)} = u_{kl}^{-2n}$  and  $s_{2n}^{(k,l)} = \sqrt{l/k} \cdot u_{kl}^{-2n+1}$ .  
The sequence  $\left(s_n^{(k,l)}\right)_{n \in \mathbb{Z}}$  satisfies (1).

∽ < C 4/15

#### Introduction

Bijection for the case  $k, l \ge 2$  of the (k, l)-Euler theorem Combinatorics of (k, l)-admissible words Well-definedness of the bijection Road to a bijective proof of the little Göllnitz theorem From Euler's theorem to lecture-hall partition The (k, l)-lecture hall theorem The (k, l)-Euler theorem State of art and contributions

### The (k, l)-lecture-hall partitions

Let *n* be a positive integer. Set of (k, l)-lecture hall partitions  $\mathcal{L}_n^{(k,l)} : \lambda = (\lambda_1, \dots, \lambda_n)$  such that  $\lambda_1 \ge 0$  and  $\left(\frac{\lambda_i}{a_i^{(k,l)}}\right)_{i=1}^n$  is non-decreasing. Set  $b_n^{(k,l)} = a_n^{(k,l)} + a_{n-1}^{(l,k)}$ . The set  $\mathcal{B}_n^{(k,l)}$ : sequences  $\lambda = \left(b_{i_1}^{(k,l)}, \dots, b_{i_t}^{(k,l)}\right)$  such that  $1 \le i_1 \le \dots \le i_t \le n$ .  $\mathcal{B}^{(k,l)} = \lim_{n \to \infty} \mathcal{B}_n^{(k,l)}$ .

Write  $\lambda = \prod_{i \ge 1} \left( b_i^{(k,l)} \right)^{m_i}$  where  $m_i$  is the number of parts  $b_i^{(k,l)}$  in  $\lambda$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

From Euler's theorem to lecture-hall partitions **The** (k, l)-lecture hall theorem The (k, l)-Euler theorem State of art and contributions

### The (k, l)-lecture-hall theorem

Theorem 3: The (k, l)-lecture hall identity (Bousquet-Mélou and Eriksson 1997)

Let k, l, n be positive integers such that  $kl \ge 4$ . Then,

$$\sum_{\lambda \in \mathcal{L}_{2n}^{(k,l)}} \mathbf{x}^{|\lambda|_o} \mathbf{y}^{|\lambda|_e} = \prod_{i=1}^{2n} \frac{1}{1 - \mathbf{x}^{a_{i-1}^{(l,k)}} \mathbf{y}^{a_i^{(k,l)}}},$$
$$\sum_{\lambda \in \mathcal{L}_{2n-1}^{(k,l)}} \mathbf{x}^{|\lambda|_o} \mathbf{y}^{|\lambda|_e} = \prod_{i=1}^{2n-1} \frac{1}{1 - \mathbf{x}^{a_i^{(l,k)}} \mathbf{y}^{a_{i-1}^{(k,l)}}}$$

This implies that, for a fixed weight  $m \ge 0$ , there are as many (k, l)-lecture hall partitions in  $\mathcal{L}_{2n}^{(k,l)}$  as sequences in  $\mathcal{B}_{2n}^{(k,l)}$ , and there are as many (k, l)-lecture hall partitions in  $\mathcal{L}_{2n-1}^{(k,l)}$  as sequences in  $\mathcal{B}_{2n-1}^{(l,k)}$ .

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 … の Q ()

#### From Euler's theorem to lecture-hall partition The (k, l)-lecture hall theorem The (k, l)-Euler theorem State of art and contributions

# The (k, l)-Euler theorem

The set of (k, l)-Euler partitions  $\mathcal{L}^{(k,l)}$ :  $\lambda = (\lambda_1, \dots, \lambda_{2t})$  such that  $0 = \lambda_{2t} \le \lambda_{2t-1}$ and for  $1 \le i \le t - 1$ ,

$$s_0^{(l,k)} \cdot \lambda_{2i+1} < \lambda_{2i} < \left(s_0^{(k,l)}\right)^{-1} \cdot \lambda_{2i-1}.$$

Theorem 4: The (k, l)-Euler identity (Bousquet-Mélou and Eriksson)

Let k, l be positive integers such that  $kl \ge 4$ . Then,

λ

$$\sum_{e \in \mathcal{L}^{(k,l)}} x^{|\lambda|_o} y^{|\lambda|_e} = \prod_{i=1}^{\infty} \frac{1}{1 - x^{a_i^{(k,l)}} y^{a_{i-1}^{(l,k)}}}$$

This implies that, for fixed weight  $m \ge 0$ , there are as many (k, l)-Euler partitions in  $\mathcal{L}^{(k,l)}$  as sequences in  $\mathcal{B}^{(k,l)}$ .

We have

$$\mathcal{L}^{(k,l)} \equiv \lim_{n \to \infty} \mathcal{L}_{2n}^{(k,l)}.$$

Hence, by tending *n* to  $\infty$ , the (k, l)-Lecture-hall theorem gives the (k, l)-Euler theorem.

| Introduction<br>Bijection for the case $k, l \ge 2$ of the $(k, l)$ -Euler theorem<br>Combinatorics of $(k, l)$ -admissible words<br>Well-definedness of the bijection<br>Road to a bijective proof of the little Gollintz theorem | From Euler's theorem to lecture-hall partitions<br>The $(k, l)$ -lecture hall theorem<br>The $(k, l)$ -Euler theorem<br>State of art and contributions |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|

#### What we had so far

#### What we had so far.

- Recursive analytic proof of the (k, l)-lecture hall theorem (BME), that induces a recursive bijective proof.
- Proof of the (k, l)-Euler theorem from the limit of the (k, l)-lecture hall.
- In the case k = l ≥ 2, bijective proof of *l*-lecture hall theorem and *l*-Euler theorem (Savage and Yee 2008), and a conjectured bijection for the case k, l ≥ 2, and a conjecture that the BME recursive bijection and the SY bijection are the same

| Well-definedness of the bijection<br>Road to a bijective proof of the little Göllnitz theorem |
|-----------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------|

#### What we bring to the table

#### What we had so far.

- Recursive analytic proof of the (k, l)-lecture hall theorem (BME), that induces a recursive bijective proof.
- Proof of the (k, l)-Euler theorem from the limit of the (k, l)-lecture hall.
- In the case k = l ≥ 2, bijective proof of *l*-lecture hall theorem and *l*-Euler theorem (Savage and Yee 2008), and a conjectured bijection for the case k, l ≥ 2, and a conjecture that the BME recursive bijection and the SY bijection are the same

#### What we bring to the table.

- Proof of the conjectured bijection for k, l ≥ 2, and construction of the bijection for the case k = 1 and the case l = 1.
- Proof that the BME recursive bijection and our bijection are the same in all the cases for the (k, l)-lecture hall theorem.
- Construction of a recursive bijection for the (k, l)-Euler theorem.

(日) (部) (종) (종) (종) (종)

6/15

# The map $\Phi^{(k,l)}$ from $\mathcal{B}^{(k,l)}$ to $\mathcal{L}^{(k,l)}$

Let  $\nu = (b_{i_1}^{(k,l)}, \dots, b_{i_r}^{(k,l)}) \in \mathcal{B}^{(k,l)}$  and set  $\lambda = (\lambda_i)_{i \ge 1}$  an infinite sequence of terms all equal to 0. Proceed by inserting the parts  $b_i^{(k,l)}$  into the pairs  $(\lambda_{2j-1}, \lambda_{2j})$ , starting from the smallest j and the greatest i.

# The map $\Phi^{(k,l)}$ from $\mathcal{B}^{(k,l)}$ to $\mathcal{L}^{(k,l)}$

Let  $\nu = (b_{i_1}^{(k,l)}, \dots, b_{i_r}^{(k,l)}) \in \mathcal{B}^{(k,l)}$  and set  $\lambda = (\lambda_i)_{i \ge 1}$  an infinite sequence of terms all equal to 0. Proceed by inserting the parts  $b_i^{(k,l)}$  into the pairs  $(\lambda_{2j-1}, \lambda_{2j})$ , starting from the smallest j and the greatest i.

• To insert  $b_i^{(k,l)}$  with i > 1 into  $(\lambda_{2j-1}, \lambda_{2j})$ : if

$$\lambda_{2j-1} - \mathbf{s}_0^{(k,l)} \cdot \lambda_{2j} > \mathbf{s}_{i-1}^{(k,l)} - \mathbf{s}_i^{(k,l)},$$

then do

$$(\lambda_{2j-1},\lambda_{2j})\mapsto (\lambda_{2j-1}+a_i^{(k,l)}-a_{i-1}^{(k,l)},\lambda_{2j}+a_{i-1}^{(l,k)}-a_{i-2}^{(l,k)})$$
(1)

and store  $b_{i-1}^{(k,l)}$  for the insertion into the pair  $(\lambda_{2j+1},\lambda_{2j+2})$ . Else, do

$$(\lambda_{2j-1}, \lambda_{2j}) \mapsto (\lambda_{2j-1} + \mathbf{a}_i^{(k,l)}, \lambda_{2j} + \mathbf{a}_{i-1}^{(l,k)}).$$
 (2)

# The map $\Phi^{(k,l)}$ from $\mathcal{B}^{(k,l)}$ to $\mathcal{L}^{(k,l)}$

Let  $\nu = (b_{i_1}^{(k,l)}, \dots, b_{i_r}^{(k,l)}) \in \mathcal{B}^{(k,l)}$  and set  $\lambda = (\lambda_i)_{i \ge 1}$  an infinite sequence of terms all equal to 0. Proceed by inserting the parts  $b_i^{(k,l)}$  into the pairs  $(\lambda_{2j-1}, \lambda_{2j})$ , starting from the smallest j and the greatest i.

• To insert  $b_i^{(k,l)}$  with i > 1 into  $(\lambda_{2j-1}, \lambda_{2j})$ : if

$$\lambda_{2j-1} - \mathbf{s}_0^{(k,l)} \cdot \lambda_{2j} > \mathbf{s}_{i-1}^{(k,l)} - \mathbf{s}_i^{(k,l)},$$

then do

$$(\lambda_{2j-1},\lambda_{2j})\mapsto (\lambda_{2j-1}+a_i^{(k,l)}-a_{i-1}^{(k,l)},\,\lambda_{2j}+a_{i-1}^{(l,k)}-a_{i-2}^{(l,k)})$$
(1)

and store  $b_{i-1}^{(k,l)}$  for the insertion into the pair  $(\lambda_{2j+1},\lambda_{2j+2})$ . Else, do

$$(\lambda_{2j-1}, \lambda_{2j}) \mapsto (\lambda_{2j-1} + \mathbf{a}_i^{(k,l)}, \lambda_{2j} + \mathbf{a}_{i-1}^{(l,k)}).$$
 (2)

• To insert  $b_1^{(k,l)}$ : do (2) for i = 1.

# The map $\Phi^{(k,l)}$ from $\mathcal{B}^{(k,l)}$ to $\mathcal{L}^{(k,l)}$

Let  $\nu = (b_{i_1}^{(k,l)}, \dots, b_{i_r}^{(k,l)}) \in \mathcal{B}^{(k,l)}$  and set  $\lambda = (\lambda_i)_{i \ge 1}$  an infinite sequence of terms all equal to 0. Proceed by inserting the parts  $b_i^{(k,l)}$  into the pairs  $(\lambda_{2j-1}, \lambda_{2j})$ , starting from the smallest j and the greatest i.

• To insert  $b_i^{(k,l)}$  with i > 1 into  $(\lambda_{2j-1}, \lambda_{2j})$ : if

$$\lambda_{2j-1} - s_0^{(k,l)} \cdot \lambda_{2j} > s_{i-1}^{(k,l)} - s_i^{(k,l)},$$

then do

$$(\lambda_{2j-1},\lambda_{2j})\mapsto (\lambda_{2j-1}+a_i^{(k,l)}-a_{i-1}^{(k,l)},\,\lambda_{2j}+a_{i-1}^{(l,k)}-a_{i-2}^{(l,k)})$$
(1)

and store  $b_{i-1}^{(k,l)}$  for the insertion into the pair  $(\lambda_{2j+1},\lambda_{2j+2})$ . Else, do

$$(\lambda_{2j-1}, \lambda_{2j}) \mapsto (\lambda_{2j-1} + \mathbf{a}_i^{(k,l)}, \lambda_{2j} + \mathbf{a}_{i-1}^{(l,k)}).$$
 (2)

• To insert  $b_1^{(k,l)}$ : do (2) for i = 1.

After all the insertions, we set  $\Phi^{(k,l)}(\nu) = (\lambda_j)_{j=1}^{2t}$  where t is the smallest positive j such that  $\lambda_{2j} = 0$ .

イロト イポト イヨト イヨト ヨー のくで

# The (k, l)-admissible words

Set  $o_{2i-1}^{(k,l)} = l-2$  and  $o_{2i}^{(k,l)} = k-2$  for  $i \ge 1$ . A (k, l)-admissible word is a sequence  $(c_i)_{i\ge 1}$  of non-negative integers such that :

- there are finitely many positive terms,
- $c_i \in \{0, \ldots, o_i^{(k,l)} + 1\},$
- there is no pair  $1 \leq i < j$  such that

$$c_h = o_h^{(k,l)} + \chi(h \in \{i,j\})$$
 for  $h \in \{i,i+1,\ldots,j\}$ .

# The (k, l)-admissible words

Set  $o_{2i-1}^{(k,l)} = l-2$  and  $o_{2i}^{(k,l)} = k-2$  for  $i \ge 1$ . A (k, l)-admissible word is a sequence  $(c_i)_{i\ge 1}$  of non-negative integers such that :

- there are finitely many positive terms,
- $c_i \in \{0, \ldots, o_i^{(k,l)} + 1\},\$
- there is no pair  $1 \leq i < j$  such that

$$c_h = o_h^{(k,l)} + \chi(h \in \{i,j\})$$
 for  $h \in \{i,i+1,\ldots,j\}$ .

Let  $C^{(k,l)}$  be the set of (k, l)-admissible words. Let  $n \ge 1$ . The set  ${}_{n}C^{(k,l)}$ : (k, l)-admissible words with the (n - 1) first terms equal to 0.  ${}_{n}(c_{i})_{i\ge 1}$ : replace  $c_{1}, \ldots, c_{n-1}$  by 0.

# Order on (k, l)-admissible words

Let  $\prec$  be the lexicographic strict order on the set of integer sequences:

 $(c_i) \prec (d_i)$  if and only if there exists n > 0 such that  $c_n < d_n$  and  $c_i = d_i$  for i > n.

#### Proposition 1: Fraenkel's numeration system

The function

$$\mathcal{C}_{(k,l)} \colon \mathcal{C}^{(k,l)} \to \mathbb{Z}_{\geq 0}$$
  
 $(c_i)_{i\geq 1} \mapsto \sum_{i\geq 1} c_i \cdot a_i^{(k,l)}$ 

describes a bijection from  $\mathcal{C}^{(k,l)}$  to  $\mathbb{Z}_{\geq 0}$  and

$$(c_i) \prec (d_i) \Longleftrightarrow \Gamma_{(k,l)}((c_i)) < \Gamma_{(k,l)}((d_i)).$$

For all  $m \in \mathbb{Z}_{\geq 0}$ , we write  $[m]^{(k,l)} = \Gamma^{-1}_{(k,l)}(m)$ .

#### The transformation 0.

For  $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$  and all integer sequence  $c = (c_i)_{i=1}^t$ ,  $0 \cdot c$  denotes the sequence  $d = (d_i)_{i=1}^{t+1}$  satisfying  $d_1 = 0$  and  $d_{i+1} = c_i$  for  $1 \le i \le t$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

#### The transformation 0.

For  $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$  and all integer sequence  $c = (c_i)_{i=1}^t$ ,  $0 \cdot c$  denotes the sequence  $d = (d_i)_{i=1}^{t+1}$  satisfying  $d_1 = 0$  and  $d_{i+1} = c_i$  for  $1 \le i \le t$ .

Proposition 4: The shifting

Let  $k, l \ge 2$ . For positive integers n and  $n + 1 \ge j \ge 1$ , 0 induces a bijection from  ${}_{n}C^{(l,k)}$  to  ${}_{n+1}C^{(k,l)}$ .

#### The transformation 0.

For  $t \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$  and all integer sequence  $c = (c_i)_{i=1}^t$ ,  $0 \cdot c$  denotes the sequence  $d = (d_i)_{i=1}^{t+1}$  satisfying  $d_1 = 0$  and  $d_{i+1} = c_i$  for  $1 \le i \le t$ .

Proposition 6: The shifting

Let  $k, l \ge 2$ . For positive integers n and  $n + 1 \ge j \ge 1$ , 0 induces a bijection from  ${}_{n}C^{(l,k)}$  to  ${}_{n+1}C^{(k,l)}$ .

#### Proposition 7: Order in terms of (k, l)-admissible words

For a sequence  $\lambda = (\lambda_1, \dots, \lambda_{2t})$  such that  $t \ge 1, 0 = \lambda_{2t} \le \lambda_{2t-1}$  and  $\lambda_i > 0$ for  $1 \le i \le 2t - 2$ ,  $\lambda \in \mathcal{L}^{(k,l)} \iff [\lambda_{2i-1}]^{(k,l)} \succeq 0 \cdot [\lambda_{2i}]^{(l,k)} \succeq 00 \cdot [\lambda_{2i+1}]^{(k,l)}$  for all  $1 \le i \le t-1$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

9/15

### The bijection in terms of (k, l)-admissible words

Let  $(S, \leq)$  be a countable and total ordered set. For  $m \in \mathbb{Z}_{\geq 0}$ , c is the  $m^{th}$  element that precedes d in S or d is the  $m^{th}$  element that follows c in S, if the intervalle [c, d] have m + 1 elements in S, and we note

$$d = \mathcal{F}(m, S, c) = \mathcal{F}(m, S) \cdot c.$$

We set the following notations.

- $\left(\lambda_{2j-1}^{(i)}, \lambda_{2j}^{(i)}\right)$ : the pairs  $(\lambda_{2j-1}, \lambda_{2j})$  after the insertion of all the parts  $b_i^{(k,l)}$ .
- $m_i^{(j)}$ : the number of parts  $b_i^{(k,l)}$  inserted into the pair  $(\lambda_{2j-1}, \lambda_{2j})$ .

Hence,  $m_i^{(1)}$  equals the number of occurrences of  $b_i^{(k,l)}$  in  $\nu$ , and the image of  $\nu$  by  $\Phi^{(k,l)}$  consists of  $\left(\lambda_j^{(1)}\right)_{j=1}^{2t}$ , where t is the smallest j such that  $\lambda_{2j}^{(1)} = 0$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

### The bijection in terms of (k, l)-admissible words

For  $t \ge j \ge 1$ ,

• for  $i \ge 2$ , we have

$$\left[\lambda_{2j-1}^{(i)}\right]^{(k,l)} = \mathbf{0} \cdot \left[\lambda_{2j}^{(i)}\right]^{(l,k)} \in {}_{i}\mathcal{C}^{(k,l)} \cdot$$



• Finally,  $\lambda_{2j}^{(1)} = \lambda_{2j}^{(2)}$  and  $\left[\lambda_{2j-1}^{(1)}\right]^{(k,l)} = \mathcal{F}\left(m_1^{(j)}, \mathcal{C}^{(k,l)}, \left[\lambda_{2j-1}^{(2)}\right]^{(k,l)}\right)$ . Equivalently, this means that  $m_1^{(j)} = \lambda_{2j-1}^{(1)} - 1 - \left\lfloor s_0^{(k,l)} \lambda_{2j}^{(1)} \right\rfloor$  if  $\lambda_{2j}^{(1)} > 0$  and  $m_1^{(j)} = \lambda_{2j-1}^{(1)}$  if  $\lambda_{2j}^{(1)} = 0$ .

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 10/15

#### The little Göllnitz theorem

#### Theorem 5: Little Göllnitz' identities 1963

Let n be a non-negative integer. Then,

- \* the number of partitions of n into parts differing by at least 2 and no consecutive odd parts equals the number of partitions of n into parts congruent to 1,5,6 mod 8,
- \* the number of partitions of n into parts differing by at least 2, no consecutive odd parts, and no ones equals the number of partitions of n into parts congruent to 2, 3, 7 mod 8.

In terms of q-series, we have

$$\begin{split} \sum_{n\geq 0} \frac{(-q^{-1};q^2)_n q^{n^2+n}}{(q^2;q^2)_n} &= \frac{1}{(q,q^5,q^6;q^8)_{\infty}},\\ \sum_{n\geq 0} \frac{(-q;q^2)_n q^{n^2+n}}{(q^2;q^2)_n} &= \frac{1}{(q^2,q^3,q^7;q^8)_{\infty}}, \end{split}$$

where  $(a_1, \ldots, a_t; q)_n = \prod_{i \ge 0} \prod_{j=1}^t (1 - a_j q^i)$  for  $n \in \mathbb{Z}_{\ge 0} \cup \{\infty\}$ .

### The (1,4) and (4,1)-Euler theorems

#### Theorem 6: The Savage-Sills identities 2011

Let n be a non-negative integer. Then,

- the number of partitions of n into distinct parts such that the positive parts at even positions are even equals the number of partitions of n into parts congruent to 1,5,6 mod 8,
- the number of partitions of n into distinct parts such that the positive parts at odd positions are even equals the number of partitions of n into parts congruent to 2, 3, 7 mod 8.

In terms of q-series, we have

$$\sum_{n\geq 0} \frac{(-q^{3-4\lceil n/2\rceil};q^4)_{\lceil n/2\rceil}q^{n^2+n}}{(q^2;q^2)_n} = \frac{1}{(q,q^5,q^6;q^8)_{\infty}},$$
$$\sum_{n\geq 0} \frac{(-q^{1-4\lfloor n/2\rfloor};q^4)_{\lfloor n/2\rfloor}q^{n^2+n}}{(q^2;q^2)_n} = \frac{1}{(q^2,q^3,q^7;q^8)_{\infty}}.$$

イロト イポト イヨト ト

#### Open question



Bijective proofs of the above identities induce bijective proofs of the little Göllnitz identities. How do we build them?

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで 13/15

#### THANK YOU!!!

Isaac Konan The combinatorics of (k, l)-lecture hall partitions

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ▲ ■ ● ● ● ● 14/15

Example for  $\Phi^{(k,l)}$  with (k, l) = (3, 2)

$$\begin{split} \nu &= \left(b_1^{(3,2)}\right)^5 \left(b_2^{(3,2)}\right)^4 \left(b_3^{(3,2)}\right)^2 \left(b_4^{(3,2)}\right)^3 \left(b_5^{(3,2)}\right) \left(b_6^{(3,2)}\right)^3 \\ &= (1+0)^5 (2+1)^4 (5+3)^2 (8+5)^3 (19+12) (30+19)^3. \end{split}$$

For the insertion into the pair  $(\lambda_1, \lambda_2)$ , we have the following.

- Insertions of  $b_6^{(3,2)}$ : we successively apply (2), (2) and (1) to obtain  $(\lambda_1, \lambda_2) = (71, 45)$ , and store once  $b_5^{(3,2)}$  for the pair  $(\lambda_3, \lambda_4)$ .
- Insertions of  $b_5^{(3,2)}$ : we apply (2) to obtain  $(\lambda_1, \lambda_2) = (90, 57)$ .
- Insertions of  $b_4^{(3,2)}$ : we successively apply (2), (1) and (2) to obtain  $(\lambda_1, \lambda_2) = (109, 69)$ , and store once  $b_3^{(3,2)}$  for the pair  $(\lambda_3, \lambda_4)$ .
- Insertions of  $b_3^{(3,2)}$ : we successively apply (1) and (2) to obtain  $(\lambda_1, \lambda_2) = (117, 74)$ , and store once  $b_2^{(3,2)}$  for the pair  $(\lambda_3, \lambda_4)$ .
- Insertions of  $b_2^{(3,2)}$ : we successively apply (2), (1), (2) and (2) to obtain  $(\lambda_1, \lambda_2) = (124, 78)$ , and store once  $b_1^{(3,2)}$  for the pair  $(\lambda_3, \lambda_4)$ .
- Insertions of  $b_1^{(3,2)}$ : we apply five times (2) to obtain  $(\lambda_1, \lambda_2) = (129, 78)$ .

Hence, we store once  $b_5^{(3,2)}, b_3^{(3,2)}, b_2^{(3,2)}, b_4^{(3,2)}$  for the insertion into the pair  $(\lambda_3, \lambda_4)$ . We then do (2) for i = 5, 3, 2, 1 to obtain  $(\lambda_3, \lambda_4) = (27, 16)$ . As there is no part stored for the insertion in  $(\lambda_5, \lambda_6)$ , we have  $(\lambda_5, \lambda_6) = (0, 0)$ . Set  $\Phi^{(3,2)}(\nu) = (129, 78, 27, 16, 0, 0) \in \mathcal{L}^{(3,2)}$ .

Example for  $\Phi^{(k,l)}$  with (k, l) = (3, 2)

| i | $m_i^{(1)}$ | $\left[\lambda_1^{(i)} ight]^{(3,2)}$           | m <sub>i</sub> <sup>(2)</sup> | $\left[\lambda_3^{(i)}\right]^{(3,2)}$    | m <sup>(3)</sup> | $\left[\lambda_5^{(i)} ight]^{(3,2)}$ |
|---|-------------|-------------------------------------------------|-------------------------------|-------------------------------------------|------------------|---------------------------------------|
| 7 | 0           | $(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \dots)$         | 0                             | $(0, 0, 0, 0, 0, 0, 0, 0, \dots)$         | 0                | $(0, 0, 0, 0, 0, 0, 0, 0, \ldots)$    |
| 6 | 3           | $(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, \ldots)$        | 0                             | $(0, 0, 0, 0, 0, 0, 0, 0, \dots)$         | 0                | $(0, 0, 0, 0, 0, 0, 0, 0, \dots)$     |
| 5 | 1           | $(0, 0, 0, 0, \frac{1}{2}, 0, 1, 0, 0, \dots)$  | 1                             | $(0, 0, 0, 0, \frac{1}{2}, 0, 0, \ldots)$ | 0                | (0, 0, 0, 0, <mark>0</mark> , 0, 0,)  |
| 4 | 3           | $(0, 0, 0, \frac{1}{2}, 0, 1, 1, 0, 0, \ldots)$ | 0                             | $(0, 0, 0, 0, 0, 1, 0, 0, \ldots)$        | 0                | $(0, 0, 0, 0, 0, 0, 0, 0, \dots)$     |
| 3 | 2           | $(0, 0, \frac{1}{2}, 0, 0, 0, 0, 1, 0, \ldots)$ | 1                             | $(0, 0, \frac{1}{2}, 0, 1, 0, 0, \ldots)$ | 0                | (0, 0, <mark>0</mark> , 0, 0, 0, 0,)  |
| 2 | 4           | $(0, 2, 0, 1, 0, 0, 0, 1, 0, \ldots)$           | 1                             | $(0, 1, 1, 0, 1, 0, 0, \ldots)$           | 0                | (0, 0, 0, 0, 0, 0, 0,)                |
| 1 | 5           | $(1, 0, 0, 2, 0, 0, 0, 1, 0, \ldots)$           | 1                             | $(0, 0, 0, 1, 1, 0, 0, \ldots)$           | 0                | $(0, 0, 0, 0, 0, 0, 0, 0, \ldots)$    |

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 15/15