Tridendriform structures on faces of hypergraph associahedra

Bérénice Delcroix-Oger joint work with Jovana Obradović (Serbian Academy of Science) and Pierre-Louis Curien (CNRS-IRIF, Université Paris Cité)

Université Université Paris Cité

SLC 87 Saint-Paul-en-Jarez, April 2022

- 2 Hypergraph associahedra (a.k.a. nestoedra)
- 3 Splitting the shuffle product on faces of hypergraph associahedra

Outline

- Hypergraph associahedra (a.k.a. nestoedra)
- 3 Splitting the shuffle product on faces of hypergraph associahedra

A surjection $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, d\}$ $(n \ge d)$ can be represented as a word $f(1) \ldots f(n)$ called packed word of length *n*, using all letters in $\{1, \ldots, d\}$.

A surjection $f : \{1, ..., n\} \rightarrow \{1, ..., d\}$ $(n \ge d)$ can be represented as a word $f(1) \dots f(n)$ called packed word of length *n*, using all letters in $\{1, ..., d\}$.

To any map $g : \{1, \ldots, n\} \rightarrow \{i_1 < \ldots < i_k\}$ can be associated a set composition $SC_g = (g^{-1}(i_1), \ldots, g^{-1}(i_k))$. There is a unique surjection $pack(g) : \{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$ having the same set composition as g.

A surjection $f : \{1, ..., n\} \rightarrow \{1, ..., d\}$ $(n \ge d)$ can be represented as a word $f(1) \dots f(n)$ called packed word of length *n*, using all letters in $\{1, ..., d\}$.

To any map $g : \{1, \ldots, n\} \rightarrow \{i_1 < \ldots < i_k\}$ can be associated a set composition $SC_g = (g^{-1}(i_1), \ldots, g^{-1}(i_k))$. There is a unique surjection $pack(g) : \{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$ having the same set composition as g.

Example

pack(154422) = 143322

Definition

The vector space spanned by packed words can be endowed with a shuffle product defined by:

$$u * v = \sum a.b,$$

where the sum runs over all words a and b such that pack(a) = u,

pack(b) = v and the concatenation a.b is a packed word.

Definition

The vector space spanned by packed words can be endowed with a shuffle product defined by:

$$u * v = \sum a.b,$$

where the sum runs over all words *a* and *b* such that pack(a) = u, pack(b) = v and the concatenation *a.b* is a packed word.

Examples:

1*1 = 11 + 12 + 21

12 * 11 = 1211 + 1322 + 1233 + 2311

Shuffle product on planar trees [Loday-Ronco, 04]

A planar tree is a combinatorial structure defined recursively by :

- | is a PT
- $\lor(F_1, \ldots, F_n)$ is a PBT, if F_1, \ldots, F_n are PBTs, for any $n \ge 2$.

Shuffle product on planar trees [Loday-Ronco, 04]

A planar tree is a combinatorial structure defined recursively by :

- | is a PT
- $\vee(F_1,\ldots,F_n)$ is a PBT, if F_1,\ldots,F_n are PBTs, for any $n \ge 2$.

Definition

The vector space spanned by PBT can be endowed with a shuffle product defined by:

$$|*T = T * \lor = T,$$

and for $T = \lor (T_1, \ldots, T_k)$ and $S = \lor (S_1, \ldots, S_p)$,

 $T * S = \lor (T * S_1, \ldots, S_p) + \lor (T_1, \ldots, T_k * S_1, \ldots, S_p) + \lor (T_1, \ldots, T_k * S)$

Shuffle product on planar trees [Loday-Ronco, 04]

A planar tree is a combinatorial structure defined recursively by :

- | is a PT
- $\vee(F_1, \ldots, F_n)$ is a PBT, if F_1, \ldots, F_n are PBTs, for any $n \ge 2$.

Definition

The vector space spanned by PBT can be endowed with a shuffle product defined by:

$$|*T = T * \lor = T,$$

and for $T = \lor (T_1, \ldots, T_k)$ and $S = \lor (S_1, \ldots, S_p)$,

 $T * S = \lor (T * S_1, \ldots, S_p) + \lor (T_1, \ldots, T_k * S_1, \ldots, S_p) + \lor (T_1, \ldots, T_k * S)$

Example:

Main questions

- How to generate these combinatorial objects ?
- Are the algebras free ? What are their basis ?

Some shuffle algebras

	Packed words	PT
Free ?	yes [NT06 with Foissy07]	yes [LR04]
Basis	unsecable words	Infinitely many

Some shuffle algebras

	Packed words	PT
Free ?	yes [NT06 with Foissy07]	yes [LR04]
Basis	unsecable words	Infinitely many

Goal :

Find a smaller basis !

Idea:

Three kinds of trees (looking at the root) : why not splitting in three the product * ?

Inductive definition of tridendriform products on trees

Tridendriform algebras

Definition (Loday, Ronco, 2004 ; Chapoton 2002)

A tridendriform algebra is a vector space A endowed with products $\prec: A \otimes A \rightarrow A, \cdot: A \otimes A \rightarrow A$ and $\succ: A \otimes A \rightarrow A$, such that: **(**a < b) < c = a < (b * c), (a * b) > c = a > (b > c),(a > b) < c = a > (b < c). $(a \cdot b) \cdot c = a \cdot (b \cdot c),$ $(a > b) \cdot c = a > (b \cdot c),$ $(a < b) \cdot c = a \cdot (b > c),$ $(a \cdot b) < c = a \cdot (b < c),$ with $* = < + \cdot + >$

Algebra on packed words WQSym [Novelli-Thibon, 2006]

$$u \# v = \sum_{\substack{\mathsf{pack}(\alpha) = u \\ \mathsf{pack}(\beta) = v \\ \mathcal{C}_{\#}}} \alpha \beta,$$

where
$$c_{\#} = \min(\alpha) < \min(\beta)$$
 for $\# = <$,
 $c_{\#} = \min(\alpha) = \min(\beta)$ for $\# = \cdot$,
and $c_{\#} = \min(\alpha) > \min(\beta)$ for $\# = >$.

Example :

$$11 > 221 = 22221 + 33221 + 22331$$
$$11 \cdot 221 = 11221$$
$$11 < 221 = 11332$$

Algebra on packed words WQSym [Novelli-Thibon, 2006]

$$u \# v = \sum_{\substack{\mathsf{pack}(\alpha) = u \\ \mathsf{pack}(\beta) = v \\ \mathcal{C}_{\#}}} \alpha \beta,$$

where
$$c_{\#} = \min(\alpha) < \min(\beta)$$
 for $\# = <$,
 $c_{\#} = \min(\alpha) = \min(\beta)$ for $\# = \cdot$,
and $c_{\#} = \min(\alpha) > \min(\beta)$ for $\# = >$.

Example :

$$\begin{split} 11 > 221 &= 22221 + 33221 + 22331 \\ & 11 \cdot 221 = 11221 \\ & 11 < 221 = 11332 \end{split}$$

Tridendriform products \Rightarrow WQSym free tridendriform algebra on infinitely many generators [Vong, Burgunder-Curien-Ronco, 2015]

Link with associahedra and permutohedra

 $\langle \boldsymbol{\boldsymbol{\lambda}} \rangle$ \wedge \sim \wedge

Hypergraph associahedra (a.k.a. nestoedra)

- 2 Hypergraph associahedra (a.k.a. nestoedra)
 - 3 Splitting the shuffle product on faces of hypergraph associahedra

Simplices

Associahedra

Hypercubes

Permutohedra

Hypergraphs

Definition

A hypergraph (on vertex set V) is a pair (V, E) where:

- V is a finite set, (the vertex set)
- *E* is a set of sets of size at least 2, $E \subset \mathcal{P}(V)$.

Example of an hypergraph on [1; 7]

Hypergraph polytope [Došen, Petrić] (=nestohedra [Postnikov])

Constructs [Postnikov; Curien-Ivanovic-Obradović]

Constructs

A construct of a hypergraph H is defined inductively. For $E \subset V(H)$ (the set of vertices of H),

- If E = V(H), the construct is the rooted tree with only one node labelled by E,
- Otherwise, denoting by (T_1, \ldots, T_n) constructs on every connected component in H E, a construct of H can be obtained by grafting these trees on a node labelled by E.

The set of constructs of a given hypergraph labels faces of the associated polytope.

First example:

First example geometrically

2

Correspondence Tubings = Constructs = Spines

2

Splitting the shuffle product on faces of hypergraph associahedra

- Hypergraph associahedra (a.k.a. nestoedra)
- 3 Splitting the shuffle product on faces of hypergraph associahedra

Consider an admissible family $(G_n^i)_{1 \le i \le s_n}$, with a collection of associative maps $\alpha(n,m) : \{s_1,\ldots,s_n\} \times \{s_1,\ldots,s_m\} \rightarrow \{s_1,\ldots,s_{n+m}\}$ such that $G_{n+m}^{\alpha(n,m)(i,j)}|_{\{1,\ldots,n\}} = G_n^i$ and $G_{n+m}^{\alpha(n,m)(i,j)}|_{\{n+1,\ldots,n+m\}} = G_m^j$ (up to a shift).

Consider an admissible family $(G_n^i)_{1 \le i \le s_n}$, with a collection of associative maps $\alpha(n,m) : \{s_1,\ldots,s_n\} \times \{s_1,\ldots,s_m\} \rightarrow \{s_1,\ldots,s_{n+m}\}$ such that $G_{n+m}^{\alpha(n,m)(i,j)}|_{\{1,\ldots,n\}} = G_n^i$ and $G_{n+m}^{\alpha(n,m)(i,j)}|_{\{n+1,\ldots,n+m\}} = G_m^j$ (up to a shift).

Definition

Define on $T \in \text{Cons}(G_n)$ and $W \in \text{Cons}(G_m)$ the following product:

$$T * W = \sum U,$$

where the sum runs over all constructs U of G_{n+m} such that T (resp. W) is obtained from $U|_{\{1,...,n\}}$ (resp. $U|_{\{n+1,...,n+m\}}$) by merging some edges (resp. and shifting the labelling).

Consider an admissible family $(G_n^i)_{1 \le i \le s_n}$, with a collection of associative maps $\alpha(n,m) : \{s_1,\ldots,s_n\} \times \{s_1,\ldots,s_m\} \rightarrow \{s_1,\ldots,s_{n+m}\}$ such that $G_{n+m}^{\alpha(n,m)(i,j)}|_{\{1,\ldots,n\}} = G_n^i$ and $G_{n+m}^{\alpha(n,m)(i,j)}|_{\{n+1,\ldots,n+m\}} = G_m^j$ (up to a shift).

Definition

Define on $T \in \text{Cons}(G_n)$ and $W \in \text{Cons}(G_m)$ the following product:

$$T * W = \sum U,$$

where the sum runs over all constructs U of G_{n+m} such that T (resp. W) is obtained from $U|_{\{1,...,n\}}$ (resp. $U|_{\{n+1,...,n+m\}}$) by merging some edges (resp. and shifting the labelling).

Theorem (Ronco, 12)

This product is associative.

Consider an admissible family $(G_n^i)_{1 \le i \le s_n}$, with a collection of associative maps $\alpha(n,m) : \{s_1,\ldots,s_n\} \times \{s_1,\ldots,s_m\} \rightarrow \{s_1,\ldots,s_{n+m}\}$ such that $G_{n+m}^{\alpha(n,m)(i,j)}|_{\{1,\ldots,n\}} = G_n^i$ and $G_{n+m}^{\alpha(n,m)(i,j)}|_{\{n+1,\ldots,n+m\}} = G_m^j$ (up to a shift).

Definition

Define on $T \in \text{Cons}(G_n)$ and $W \in \text{Cons}(G_m)$ the following product:

$$T * W = \sum U,$$

where the sum runs over all constructs U of G_{n+m} such that T (resp. W) is obtained from $U|_{\{1,...,n\}}$ (resp. $U|_{\{n+1,...,n+m\}}$) by merging some edges (resp. and shifting the labelling).

Theorem (Ronco, 12)

This product is associative.

Two goals

- Split this product
- Extend to hypergraph associahedra

 \bigcirc \bigcirc \bigcirc

Heuristics for a tridendriform structure

Let $\mathbf{H}^{\mathcal{X}}$ be a family of hypergraph polytopes, indexed by some finite sets \mathcal{X} (sets of vertices of the associated hypergraphs). For $S = A(S_1, \ldots, S_m)$ and $T = B(T_1, \ldots, T_n)$ two constructs of $\mathbf{H}^{\mathcal{X}}$ and $\mathbf{H}^{\mathcal{Y}}$ respectively (\mathcal{X}, \mathcal{Y} disjoint), we would like to define the following operations

- S < T as a sum of constructs of $\mathbf{H}^{\mathcal{X} \cup \mathcal{Y}}$ having root A,
- S > T as a sum of constructs of $\mathbf{H}^{\mathcal{X} \cup \mathcal{Y}}$ having root B,
- $S \cdot T$ as a sum of constructs of $\mathbf{H}^{\mathcal{X} \cup \mathcal{Y}}$ having root $A \cup B$.

Tridendriform products defined on faces of simplices [Loday-Ronco, Chapoton]

On simplices, we get the following (triass) products, denoting by (\mathcal{X}, A) the multipointed set whose underlying set is \mathcal{X} and whose set of pointed elements is A:

$$(\mathcal{X}, A) < (\mathcal{Y}, B) = (\mathcal{X} \cup \mathcal{Y}, A)$$
$$(\mathcal{X}, A) > (\mathcal{Y}, B) = (\mathcal{X} \cup \mathcal{Y}, B)$$
$$(\mathcal{X}, A) \cdot (\mathcal{Y}, B) = (\mathcal{X} \cup \mathcal{Y}, A \cup B)$$

Tridendriform products defined on faces of hypercubes

Applying this construction to hypercube gives :

$$u < v = u(-|v|)$$

$$u > (v_1 + v_2) = \begin{cases} (u \star v_1) + v_2 & (v_1 \neq \epsilon) \\ u + v_2 & (v_1 = \epsilon) \end{cases}$$

$$u \cdot (v_1 + v_2) = u(-|v_1|) \bullet v_2$$

where each word begins by a + and the + denotes the rightmost occurence of +.

Question

- How to formalize this construction ?
- How to deal with these examples which does not fit in the graph associahedra frame ? (lost edges, not associative)

Universe and preteam

The considered hypergraphs belong to a set of hypergraphs $\mathfrak{U},$ called universe.

A preteam is a pair $\tau = (\{\mathbf{H}_{a} | a \in A\}, \mathbf{H})$ where

- $\{\mathbf{H}_a | a \in A, \mathbf{H}_a \in \mathfrak{U}\}$ is a set of pairwise disjoint hypergraphs, called participating hypergraphs
- $\mathbf{H} \in \mathfrak{U}$ is a hypergraph such that $H = \bigcup_{a \in A} H_a$, called supporting hypergraph.

Strict and semi-strict teams

A preteam is a (resp. semi-strict) strict team if the connected components obtained by deleting a subset X_a to every hypergraph \mathbf{H}_a are in \mathfrak{U} and included in the connected components of $\mathbf{H} \setminus (\bigcup_{a \in A} X_a)$ (resp. or totally disconnected)

$$(X_{a_0}=X_{a_2}=\emptyset)$$

Strict and semi-strict teams

A preteam is a (resp. semi-strict) strict team if the connected components obtained by deleting a subset X_a to every hypergraph \mathbf{H}_a are in \mathfrak{U} and included in the connected components of $\mathbf{H} \setminus (\bigcup_{a \in A} X_a)$ (resp. or totally disconnected)

Examples:

- Simplices
- Hypercubes
- Associahedra
- Permutohedra

Product

$$*(\delta) = \sum_{\varnothing \subset B \subseteq A} q^{|B|-1} \left(\bigcup_{b \in B} X_b \right) (*(\delta_1^B), \dots, *(\delta_{n_B}^B)),$$
(1)

Polydendriform structure

Let us introduce new operations

$$*_B(\delta) = (\bigcup_{b \in B} X_b)(*(\delta_1^B), \dots, *(\delta_{n_B}^B))$$

such that the product splits

$$*(\delta) = \sum_{\varnothing \subset B \subseteq A} q^{|B|-1} *_B(\delta)$$

It satisfies relations:

Associative clan

A set of (resp. semi-strict) strict team with "good" closure properties is called strict clan (each connected component obtained from the supporting hypergraph is itself a supporting hypergraph of a team).

Theorem (Curien-D.O.-Obradović, 21+)

Consider a clan C. The product * is associative if

- C is strict,
- or C is semi-strict and q = -1.
- Strict clans: Associahedra, Permutohedra, Restrictohedra, ...
- Semi-strict clans: Simplices, Hypercubes, Cyclohedra, ...