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@ Plancherel measure



Let n € Zzo.

A partition of (size) n is a non increasing sequence of positive
integers A = (A1 > -+- > Ap > 0) with sum n.

.

The partitions of 5 are (5), (4,1), (3,2), (3,1,1), (2,2,1),
(2,1,1,1), (1,1,1,1,1).

.
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One can picture a partition with its Young diagram.

The Young diagram of the partition (5, 3,3,2) is [].




Plancherel measure

Let A be a partition of n. A standard tableau of shape A is a
labelling of the boxes of the Young diagram of A\ with the integers
1,...,n such that the rows (resp. columns) are increasing from left
to right (resp. top to bottom).

The tableau

2]5] is standard with shape (3,3,1).

1
3[6]7
4]

We denote by std(A) the number of standard tableaux with shape A.
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Proposition

n= Y std(A)?

A partition of n

The Plancherel measure on the set of partitions of n is defined by:

std(\)?
nl

Pl,(\) ==



Russian convention

Figure: Russian convention for the partition (4,4,2,1).



Limit shape theo

Figure: A partition of n = 700 and the limit shape
(Kerov—Vershik, Logan—Shepp, 1977).



@ Core of a partition
@ Descent set



Descent set

Definition
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The descent set associated with a partition A
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A determinantal process

The discrete Bessel kernel is defined for x,y € R by:

jn(X>Y) = \/B

where J, is the Bessel function of the first kind of order x.

Theorem (Borodin-Okounkov-Olshanski 2000)

Let x1,...,xs € Z be distinct. Under the (Poissonised) Plancherel
measure pl,, we have:

pl,(x1,...,xs € D(\)) = det[J"(Xa,xb)]lga’st. ()




@ Core of a partition

@ Rim hooks



Hooks and their rims

Figure: A hook (with e) and its corresponding rim hook (in red)
for A = (5,5,5,4,2).



Link between rim hooks and beads

Proposition

Let A\, i be two partitions. The Young diagram of y is obtained by
removing a rim hook of size e in the Young diagram of A if and only
if:

D(u) = (D) \ {b}) U{b— e},
for a certain b € D(\) with b — e ¢ D(\).




Link between rim hooks and beads

Proposition

Let A\, i be two partitions. The Young diagram of y is obtained by
removing a rim hook of size e in the Young diagram of A if and only
if:

D(u) = (D) \ {b}) U{b— e},
for a certain b € D(\) with b — e ¢ D(\).

With A == (2,2,1,1) one has D(\) = (1,0,-2,—-3,—-5,-6,...)

and:
[] ? L] ]




@ Core of a partition

@ Core



Core of a partition

Let e > 1.

Definition (Core)

The e-core of a partition is the partition that we obtain after we
have removed all the possible rim hooks of size e of the Young
diagram.

@ The 8-core of (5,5,5,4,2) is (3,2):

@ The 4-core of (3,2,2,1) is empty:
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Is the e-core well-defined?

Proposition

The e-core of a partition \ is obtained by sliding all the beads in
D(A) as far as possible to the right in their class of congruence
modulo e.
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@ the order corresponds to:
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.

the 4-core being:




Partitions with the same core

Theorem (“Nakayama's Conjecture”, Brauer—Robinson 1947)

Two partitions belong to the same p-block of &, if and only if they
have the same p-core.




Partitions with the same core

Theorem (“Nakayama's Conjecture”, Brauer—Robinson 1947)

Two partitions belong to the same p-block of &, if and only if they

have the same p-core.
v

Proposition (James—Kerber)

Two partitions have the same e-core if and only if they have the

same multiset of e-residues. )

@ The partition (3,2,2,1) has empty 4-core and its multiset of
4-residues is given by [0[1]2]

0
3

[=]>]w]o

@ The partition (4,4) has empty 4-core and its multiset of

4-residues is given by [0]1]12]3],
3[2[1]0




© Core asymptotics under the Plancherel measure
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Some 5-cores (in green) for n = 700.

Figure



Computing the core size

For i € Z/eZ, the number of boxes of residue i in the Young
diagram of a partition A is:
1

C,'(A) = 5

> wa(i+ ke) — |i + ke| € N.
keZ
Define:

X,'()\) = C,'(/\) — C,'_:,_l()\) e 7.
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Proposition (Garvan-Kim-Stanton 1990, Fayers 2006)

The size £e(\) of the e-core of \ is given by:

e—1
ee(x)zg S ()Y (V). ()
i=0

i€Z/eZ
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For i € Z/eZ, the number of boxes of residue i in the Young
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A\

Remark (Back to partitions with the same core)

One can show that x;(\) = x;(u) for all i € Z/eZ if and only if A
and p share the same e-core.




Central limit theorem

Proposition (R. 21)
For all i € {0,...,e — 1} one has:

xi(A) = #(eZs_2 + ) NDO) — 2 +R(),  ($)

2
where R(\) L o
n—+00




Proposition (R. 21)
For all i € {0,...,e — 1} one has:

xi(A) = #(eZs_2 + ) NDO) — 2 +R(),  ($)

Central limit theorem

where R(\) N
n——-00 )

We denote by E,, Var, the expectation and variance under pl,,.

Theorem (Costin—Lebowitz 1995)
Define #,’ = #(eZ>_n2 + I) N D()\) /fVarn #,’ T} —+00 then:
- n o0

#i—En#i  d
Vi By e L)

The theorem was stated in a much more general setting.




Expectation and variance

Theorem (R. 21)
When n — +o0, one has:

EnX,'()\) = O(].),

and:

4
Varp xi(A\) ~ 7r\e/25 cot 21e'

.

Corollary (R. 21)

Under the (Poissonised) Plancherel measure pl,, one has:

V4% () —— N (0, % cot W) :
7r

n—-+00 2e

.




Joint asymptotics

We now use a multidimensional version of the central limit theorem
(Soshnikov 2000).

Theorem (R. 21)

Under the (Poissonised) Plancherel measure pl,, one has:

z (X"(A)> —9 _, N(0,B),

2\ n'/* Jicz ez n—rtoo

where B = (b;) with b == cot(j — i + 2) T — cot(j — i — 1) Z.
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In particular, if ug, ..., pe—1 are the eigenvalues of B then:

e—1
577l i T ().

k=0




Joint asymptotics

We now use a multidimensional version of the central limit theorem
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Theorem (R. 21)
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In particular, if ug, ..., pe—1 are the eigenvalues of B then:

en

2\/%66()\) 00 Zr 27”/()

k=0

Proposition (R. 21)

For all k € {0,...,e — 1} we have ux = 2esin k“.




Conclusion

Theorem (R. 21, main result)

Under the (Poissonised) Plancherel measure pl,,, the size {s(\) of
the e-core satisfies:

e—1
& d 1 o km
aynte M o L M(3sin )

(sum of mutually independent random variables).

A




Conclusion

Theorem (R. 21, main result)

Under the (Poissonised) Plancherel measure pl,,, the size {s(\) of
the e-core satisfies:

T km
mge( ) m Z r Sln 7)

(sum of mutually independent random variables).

Lulov—Pittel (1999) and Ayyer-Sinha (2020) have shown that under
the uniform measure on the set of partitions of n one has:

T
%z e(\) Tﬂo Mt Z r,ve




In pictures

Y |
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Figure: Convergence in distribution of 4”7&9()\) to i;} r(3,sin &2

for e =7 and n = 100,500, 3000.
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