Categorifying combinatorial Hopf algebras

Nat Thiem University of Colorado Boulder

Joint with Farid Aliniaeifard The University of British Columbia

Supported in part by the Simons Foundation

Some examples.

Also. Loday—Ronco, Poirier—Reutenauer, Reading, Lam— Pylyavsky, Connes—Kreimer, Steenrod, etc.

Pylyavsky, Connes-Kreimer, Steenrod, etc.

Pylyavsky, Connes-Kreimer, Steenrod, etc.

Also. I believe my notation is regionally incorrect.

Also. Loday-Ronco, Poirier-Reutenauer, Reading, Lam-Pylyavsky, Connes-Kreimer, Steenrod, etc.

General Structure.

Pylyavsky, Connes-Kreimer, Steenrod, etc.

General Structure.

. graded vector space

$$\mathcal{H} = igoplus_{n \geq 0} \mathcal{H}_n$$

Also. Loday-Ronco, Poirier-Reutenauer, Reading, Lam-Pylyavsky, Connes-Kreimer, Steenrod, etc.

General Structure.

. graded vector space

basis of combinatorial
$$\mathcal{H} = \bigoplus_{n \ge 0} \mathcal{H}_n$$
 objects

Also. Loday-Ronco, Poirier-Reutenauer, Reading, Lam-Pylyavsky, Connes-Kreimer, Steenrod, etc.

General Structure.

. graded vector space basis of combinatorial $\mathcal{H}=\bigoplus_{n\geq 0}\mathcal{H}_n$ objects . bialgebra structure n

$$\mathcal{H}_m\otimes\mathcal{H}_n\longrightarrow\mathcal{H}_{m+n}$$

$${\mathcal H}_n \longrightarrow igoplus_{j=0}^n {\mathcal H}_j \otimes {\mathcal H}_{n-j}$$

Also. Loday-Ronco, Poirier-Reutenauer, Reading, Lam-Pylyavsky, Connes-Kreimer, Steenrod, etc.

General Structure.

General Structure.

Problem. There are many choices of basis. Which are the good ones? Why?

General Structure.

$$\mathcal{H}_m \otimes \mathcal{H}_n \longrightarrow \mathcal{H}_{m+n} \qquad \mathcal{H}_n \longrightarrow \bigoplus_{j=0} \mathcal{H}_j \otimes \mathcal{H}_{n-j}$$

compatible (think functors + Mackey formula)

Problem. There are many choices of basis. Which are the good ones? Why?

Also. Loday–Ronco, Poirier–Reutenauer, Reading, Lam– Pylyavsky, Connes–Kreimer, Steenrod, etc. Representation theory gives one approach to addressing these questions.

General Structure.

. graded vector space basis of combinatorial $\mathcal{H}=igoplus_{n\geq 0}\mathcal{H}_n$ objects

. graded vector space basis of combinatorial $\mathcal{H}=igoplus_{n\geq 0}\mathcal{H}_n$ objects

Towards representation theory.

For an equivalence relation \sim on a group G, let

 $f_{\sim}(G) = \{\psi: G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\}$

. graded vector space basis of combinatorial $\mathcal{H}=\bigoplus_{n\geq 0}\mathcal{H}_n$ objects

Towards representation theory.

For an equivalence relation \sim on a group G, let

$$\mathsf{f}_\sim(G) = \{\psi: G o \mathbb{C} \mid \psi(g) = \psi(h) ext{ if } g \sim h\}$$

SO

 $f_{=}(G) = \{ all functions \} \supseteq \{ class function \} = f_{conjugacy}(G).$

. graded vector space basis of combinatorial $\mathcal{H}=\bigoplus_{n\geq 0}\mathcal{H}_n$ objects

Towards representation theory.

For an equivalence relation \sim on a group G, let

$$\mathsf{f}_\sim(G) = \{\psi: G o \mathbb{C} \mid \psi(g) = \psi(h) ext{ if } g \sim h\}$$

SO

 $f_{=}(G) = \{ all \ functions \} \supseteq \{ class \ function \} = f_{conjugacy}(G).$

Given a tower of groups

$$G_0 \subseteq G_1 \subseteq G_2 \subseteq \cdots$$

with an associated equivalence relation \sim , let

$$\mathsf{f}_{\sim} = \bigoplus_{n \ge 0} \mathsf{f}_{\sim}(G_n).$$

. graded vector space

$$\mathcal{H} = igoplus_{n \geq 0} \mathcal{H}_n$$

$$\mathbf{f}_{\sim} = \bigoplus_{n \ge 0} \mathbf{f}_{\sim}(G_n).$$

 $\mathsf{f}_\sim = igoplus_{n\geq 0} \mathsf{f}_\sim(G_n).$

General Structure.

. graded vector space

$$\mathcal{H} = igoplus_{n \geq 0} \mathcal{H}_n$$

i=0

General Structure. $\mathbf{f}_{\sim} = \bigoplus \mathbf{f}_{\sim}(G_n).$. graded vector space $n \ge 0$ $\mathcal{H} = (H) \mathcal{H}_n$ $n \ge 0$. bialgebra structure $\mathcal{H}_m\otimes\mathcal{H}_n\longrightarrow\mathcal{H}_{m+n}\qquad \mathcal{H}_n\longrightarrow\bigoplus\mathcal{H}_j\otimes\mathcal{H}_{n-j}$ i=0**Towards representation theory.** Here we want compatible functors $I: f_{\sim}(G_m) \otimes f_{\sim}(G_n) \longrightarrow f_{\sim}(G_{m+n})$ $R_{m.n}: \mathbf{f}_{\sim}(G_{m+n}) \longrightarrow \mathbf{f}_{\sim}(G_m) \otimes \mathbf{f}_{\sim}(G_n)$ \boldsymbol{n} such that I and $\sum R_{j,n-j}$ give a Hopf algebra. j=0

General Structure. $\mathbf{f}_{\sim} = \bigoplus \mathbf{f}_{\sim}(G_n).$. graded vector space $n \ge 0$ $\mathcal{H} = (H) \mathcal{H}_n$ $n \ge 0$. bialgebra structure $\mathcal{H}_m\otimes\mathcal{H}_n\longrightarrow\mathcal{H}_{m+n}\qquad \mathcal{H}_n\longrightarrow\bigoplus\mathcal{H}_j\otimes\mathcal{H}_{n-j}$ i=0**Towards representation theory.** Here we want compatible functors $I: f_{\sim}(G_m) \otimes f_{\sim}(G_n) \longrightarrow f_{\sim}(G_{m+n})$ $R_{m.n}: \mathbf{f}_{\sim}(G_{m+n}) \longrightarrow \mathbf{f}_{\sim}(G_m) \otimes \mathbf{f}_{\sim}(G_n)$ \boldsymbol{n} such that I and $\sum R_{j,n-j}$ give a Hopf algebra. i=0

General Stru			$\mathbf{f}_{\sim}=igoplus$	$ig) f_\sim(G_n).$	
. graded vector space $n \ge \mathcal{H} = \bigoplus_{n \ge 0} \mathcal{H}_n$ Sym = symmetric functions $n \ge 0$			0 $f_{conjugacy}(S_n)$		
. bialgebra structure					
$\mathcal{H}_m \otimes \mathcal{H}_n \longrightarrow \mathcal{H}_{m+n} \qquad \mathcal{H}_n \longrightarrow \bigoplus_{j=0} \mathcal{H}_j \otimes \mathcal{H}_{n-j}$					
G_n	\sim	Ι	$R_{m,n}$	${\cal H}$	
S_n	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$\left {\operatorname{Res}}_{{S_m} imes {S_n}}^{{S_{m + n}}} ight $	Sym	
G(r,1,n)	conjugacy	Ind	Res	Sym	
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym	
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym	

General Structure. . graded vector space $\mathcal{H} = \bigoplus_{n \ge 0} \mathcal{H}_n$ Sym = symmetric functions $n \ge 0$. bialgebra structure n $f_{\sim} = \bigoplus_{n \ge 0} f_{\sim}(G_n).$				
$\mathcal{H}_m \otimes \mathcal{H}_n \longrightarrow \mathcal{H}_{m+n} \qquad \mathcal{H}_n \longrightarrow \bigoplus_{j=0} \mathcal{H}_j \otimes \mathcal{H}_{n-j}$				
G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
$old S_{oldsymbol{n}}$	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$\left {\operatorname{Res}}_{{S_m} imes {S_n}}^{{S_{m + n}}} ight $	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R*	Sym

Deligne – Lusztig induction and restriction

General Structure. . graded vector space $\mathcal{H} = \bigoplus_{n \ge 0} \mathcal{H}_n$ Sym = symmetric functions $n \ge 0$. bialgebra structure $\mathbf{f}_{\sim} = \bigoplus_{n \ge 0} \mathbf{f}_{\sim}(G_n).$				
$\mathcal{H}_m\otimes\mathcal{H}_n\longrightarrow\mathcal{H}_{m+n}\qquad \mathcal{H}_n\longrightarrow igoplus_{j=0}^n\mathcal{H}_j\otimes\mathcal{H}_{n-j}$				
G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
$old S_{oldsymbol{n}}$	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$\left Res_{S_m imes S_n}^{S_{m+n}} ight $	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R*	Sym

Deligne – Lusztig induction and restriction

G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
S_n	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$\left {\operatorname{Res}}_{{S_m} imes {S_n}}^{{S_{m + n}}} ight $	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym
Traditional examples

G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
S_n	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$\left {\operatorname{Res}}_{{S_m} imes {S_n}}^{{S_{m + n}}} ight $	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym

G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
S_n	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$ { extbf{Res}}^{S_{m+n}}_{S_m imes S_n} $	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym
$UT_n(\mathbb{F}_q)$	super	Inf	Res	NCSym

$$\mathsf{UT}_n(\mathbb{F}_q) = egin{bmatrix} 1 & & & & \ & 1 & & & \ & 0 & & & 1 \ & & & 1 \ & & & 1 \ & & & 1 \ \end{pmatrix}$$

G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
$old S_n$	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$Res_{S_m imes S_n}^{S_{m+n}}$	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym
$UT_n(\mathbb{F}_q)$	super	Inf	Res	NCSym

G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
S_n	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$\left Res_{S_m imes S_n}^{S_{m+n}} ight $	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym 🚫
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym 🚫
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym
$UT_n(\mathbb{F}_q)$	super	Inf	Res	NCSym

and with Aliniaeifard,

$igsquarbox{UT}_n(\mathbb{F}_q)$	super	Inf	Res	CQSym*
----------------------------------	-------	-----	-----	--------

G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
S_n	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$ { extbf{Res}}_{S_m imes S_n}^{S_{m+n}} $	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym 🚫
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym 🖉
$UT_n(\mathbb{F}_q)$	super	Inf	Res	NCSym

and with Aliniaeifard,

$UT_n(\mathbb{F}_q)$	super	Inf	Res	CQSym*
$\mathfrak{ut}_n(\mathbb{F}_q)$	super	Stfl	Dela	FQSym

G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
S_n	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$Res_{S_m imes S_n}^{S_{m+n}}$	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym
$UT_n(\mathbb{F}_q)$	super	Inf	Res	NCSym

and with Aliniaeifard,

$UT_n(\mathbb{F}_q)$	super	Inf	Res	CQSym*
$\mathfrak{ut}_n(\mathbb{F}_q)$	super	Stfl	Dela	FQSym
G^{n-1}	super	various	various	NSym

G_n	\sim	Ι	$R_{m,n}$	${\cal H}$
S_n	conjugacy	$Ind_{S_m imes S_n}^{S_{m+n}}$	$Res_{S_m imes S_n}^{S_{m+n}}$	Sym
G(r,1,n)	conjugacy	Ind	Res	Sym
$GL_n(\mathbb{F}_q)$	conjugacy	Indf	Resf	Sym
$U_n(\mathbb{F}_q)$	conjugacy	R	R *	Sym
$UT_n(\mathbb{F}_q)$	super	Inf	Res	NCSym

and with Aliniaeifard,

$UT_n(\mathbb{F}_q)$	super	Inf	Res	CQSym*
$\mathfrak{ut}_n(\mathbb{F}_q)$	super	Stfl	Dela	FQSym
G^{n-1}	super	various	various	NSym

Given a finite group G, a supercharacter theory \sim is an equivalence relation on G such that

$$\mathsf{f}_\sim(G) = \{\psi: G o \mathbb{C} \mid \psi(g) = \psi(h) ext{ if } g \sim h\} \subseteq \mathsf{f}_{\mathsf{conjugacy}}(G)$$

is a subspace containing both the regular character and a basis of orthogonal characters.

$UT_n(\mathbb{F}_q)$	super	Inf	Res	CQSym*
$\mathfrak{ut}_n(\mathbb{F}_q)$	super	Stfl	Dela	FQSym
G^{n-1}	super	various	various	NSym

Given a finite group *G*, a supercharacter theory ~ is an equivalence relation on *G* such that (blocks = superclasses) $f_{\sim}(G) = \{\psi: G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\} \subseteq f_{\text{conjugacy}}(G)$ is a subspace containing both the regular character and a basis of orthogonal characters.

$UT_n(\mathbb{F}_q)$	super	Inf	Res	CQSym*
$\mathfrak{ut}_n(\mathbb{F}_q)$	super	Stfl	Dela	FQSym
G^{n-1}	super	various	various	NSym

Given a finite group G, a supercharacter theory \sim is an equivalence relation on G such that (blocks = superclasses) $f_{\sim}(G) = \{\psi: G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\} \subseteq f_{\text{conjugacy}}(G)$ is a subspace containing both the regular character and a basis of orthogonal characters. \leftarrow supercharacters

$UT_n(\mathbb{F}_q)$	super	Inf	Res	CQSym*
$\mathfrak{ut}_n(\mathbb{F}_q)$	super	Stfl	Dela	FQSym
G^{n-1}	super	various	various	NSym

Given a finite group G, a supercharacter theory \sim is an equivalence relation on G such that (blocks = superclasses) $f_{\sim}(G) = \{\psi: G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\} \subseteq f_{\text{conjugacy}}(G)$ is a subspace containing both the regular character and a basis of orthogonal characters. \leftarrow supercharacters

Remark. The superclasses and the supercharacters behave largely like conjugacy classes and irreducible characters.

$UT_n(\mathbb{F}_q)$	super	Inf	Res	CQSym*
$\mathfrak{ut}_n(\mathbb{F}_q)$	super	Stfl	Dela	FQSym
G^{n-1}	super	various	various	NSym

Given a finite group G, a supercharacter theory \sim is an equivalence relation on G such that (blocks = superclasses) $f_{\sim}(G) = \{\psi: G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\} \subseteq f_{\text{conjugacy}}(G)$ is a subspace containing both the regular character and a basis of orthogonal characters. \leftarrow supercharacters

Remark. The superclasses and the supercharacters behave largely like conjugacy classes and irreducible characters.

Given a finite group G, a supercharacter theory \sim is an equivalence relation on G such that (blocks = superclasses) $f_{\sim}(G) = \{\psi: G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\} \subseteq f_{\text{conjugacy}}(G)$ is a subspace containing both the regular character and a basis of orthogonal characters. ← — supercharacters **Remark.** The superclasses and the supercharacters behave largely like conjugacy classes and irreducible characters. **Favorite example (lattice supercharacter theories).** Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G.

Given a finite group G, a supercharacter theory \sim is an equivalence relation on G such that (blocks = superclasses) $f_{\sim}(G) = \{\psi: G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\} \subseteq f_{\text{conjugacy}}(G)$ is a subspace containing both the regular character and a basis of orthogonal characters. — supercharacters **Remark.** The superclasses and the supercharacters behave largely like conjugacy classes and irreducible characters. **Favorite example (lattice supercharacter theories).** Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Given a finite group *G*, a supercharacter theory \sim is an equivalence relation on *G* such that (blocks = superclasses) $f_{\sim}(G) = \{\psi : G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\} \subseteq f_{\text{conjugacy}}(G)$ is a subspace containing both the regular character and a basis of orthogonal characters. \leftarrow supercharacters Remark. The superclasses and the supercharacters behave

largely like conjugacy classes and irreducible characters.

Favorite example (lattice supercharacter theories).

Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Define

$$g \sim h$$
 if and only if $g^{\mathcal{L}} = h^{\mathcal{L}}$.

Given a finite group G, a supercharacter theory \sim is an equivalence relation on G such that (blocks = superclasses) $f_{\sim}(G) = \{\psi : G \to \mathbb{C} \mid \psi(g) = \psi(h) \text{ if } g \sim h\} \subseteq f_{\text{conjugacy}}(G)$ is a subspace containing both the regular character and a basis of orthogonal characters. \leftarrow supercharacters

Remark. The superclasses and the supercharacters behave largely like conjugacy classes and irreducible characters.

Favorite example (lattice supercharacter theories).

Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Define

$$g \sim h$$
 if and only if $g^{\mathcal{L}} = h^{\mathcal{L}}$.

Thm (Alinieaifard). The equivalence relation \sim is a supercharacter theory.

Favorite example (lattice supercharacter theories).

Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Define

$$g \sim h$$
 if and only if $g^{\mathcal{L}} = h^{\mathcal{L}}$.

Favorite example (lattice supercharacter theories).

Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Define

$$g \sim h$$
 if and only if $g^{\mathcal{L}} = h^{\mathcal{L}}$.

Favorite example (lattice supercharacter theories).

Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Define

$$g \sim h$$
 if and only if $g^{\mathcal{L}} = h^{\mathcal{L}}$.

Example. Fix a finite group H, and for $n \in \mathbb{Z}_{>0}$, let

$$G_n = \underbrace{H \times H \times \cdots \times H}_{n-1 \text{ terms}} \times \{1\}.$$

Favorite example (lattice supercharacter theories).

Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Define

$$g \sim h$$
 if and only if $g^{\mathcal{L}} = h^{\mathcal{L}}$.

Example. Fix a finite group H, and for $n \in \mathbb{Z}_{>0}$, let

$$G_n = \underbrace{H imes H imes \cdots imes H}_{n-1 ext{ terms}} imes \{1\}.$$

For a binary sequence $\underline{b} = (b_1, \dots, b_{n-1}) \in \{0, 1\}^{n-1}$, let

$$G_{\underline{b}} = \{(g_1, \dots, g_{n-1}, 1) \in G_n \mid g_j \neq 1 \text{ implies } b_j = 1\}.$$

Favorite example (lattice supercharacter theories).

Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Define

$$g \sim h$$
 if and only if $g^{\mathcal{L}} = h^{\mathcal{L}}$.

Example. Fix a finite group H, and for $n \in \mathbb{Z}_{>0}$, let

$$G_n = \underbrace{H \times H \times \cdots \times H}_{n-1 \text{ terms}} \times \{1\}.$$

For a binary sequence $\underline{b} = (b_1, \dots, b_{n-1}) \in \{0, 1\}^{n-1}$, let

$$G_{\underline{b}} = \{(g_1, \dots, g_{n-1}, 1) \in G_n \mid g_j \neq 1 \text{ implies } b_j = 1\}.$$

Let

$$\mathcal{L}_n = \{G_{\underline{b}} \mid \underline{b} \in \{0,1\}^{n-1}\}$$

Favorite example (lattice supercharacter theories).

Let \mathcal{L} be a sublattice of the lattice \mathcal{N} of normal subgroups of G. For $g \in G$, let

$$g^{\mathcal{L}} = \min\{N \in \mathcal{L} \mid g \in N\}.$$

Define

$$g \sim h$$
 if and only if $g^{\mathcal{L}} = h^{\mathcal{L}}$.

Example. Fix a finite group H, and for $n \in \mathbb{Z}_{>0}$, let

$$G_n = \underbrace{H \times H \times \cdots \times H}_{n-1 \text{ terms}} \times \{1\}.$$

For a binary sequence $\underline{b} = (b_1, \dots, b_{n-1}) \in \{0, 1\}^{n-1}$, let

$$G_{\underline{b}} = \{(g_1, \ldots, g_{n-1}, 1) \in G_n \mid g_j \neq 1 \text{ implies } b_j = 1\}.$$
Let

$$\mathcal{L}_n = \{G_{\underline{b}} \mid \underline{b} \in \{0,1\}^{n-1}\}.$$

Here

$$g^{\mathcal{L}_n} = \{(h_1, \ldots, h_{n-1}, 1) \in G_n \mid h_j
eq 1 ext{ implies } g_j
eq 1\}.$$

$$n = 4$$

Example. Fix a finite group H, and for $n \in \mathbb{Z}_{\geq 0}$, let

$$G_n = \underbrace{H \times H \times \cdots \times H}_{n-1 \text{ terms}} \times \{1\}.$$

For a binary sequence $\underline{b} = (b_1, \dots, b_{n-1}) \in \{0, 1\}^{n-1}$, let

$$G_{\underline{b}} = \{(g_1, \ldots, g_{n-1}, 1) \in G_n \mid g_j \neq 1 \text{ implies } b_j = 1\}.$$
Let

$$\mathcal{L}_n = \{G_{\underline{b}} \mid \underline{b} \in \{0,1\}^{n-1}\}.$$

Here

$$g^{\mathcal{L}_n} = \{(h_1, \ldots, h_{n-1}, 1) \in G_n \mid h_j \neq 1 \text{ implies } g_j \neq 1\}.$$

n = 4

$$\begin{array}{c} H \times H \times \{1\} \\ H \times H \times \overline{\{1\} \times \{1\}} & H \times \{1\} \\ H \times \{1\} \times \overline{\{1\} \times \{1\}} & H \times \{1\} \\ H \times \{1\} \times \overline{\{1\} \times \{1\}} & \overline{\{1\} \times \{1\}} \times \overline{\{1\}} \times$$

Example. Fix a finite group H, and for $n \in \mathbb{Z}_{>0}$, let

$$G_n = \underbrace{H \times H \times \cdots \times H}_{} \times \{1\}.$$

For a binary sequence $\underline{b} = (b_1, \dots, b_{n-1}) \in \{0, 1\}^{n-1}$, let

$$G_{\underline{b}} = \{(g_1, \ldots, g_{n-1}, 1) \in G_n \mid g_j \neq 1 \text{ implies } b_j = 1\}.$$
Let

$$\mathcal{L}_n = \{G_{\underline{b}} \mid \underline{b} \in \{0,1\}^{n-1}\}$$

Here

$$g^{\mathcal{L}_n} = \{(h_1,\ldots,h_{n-1},1) \in G_n \mid h_j
eq 1 ext{ implies } g_j
eq 1\}.$$

n=4

We have an equivalence relation whose classes are indexed by integer compositions, and whose containment lattice is the usual refinement order.

General Structure. $\mathsf{f}_\sim = igoplus_{n\geq 0} \mathsf{f}_\sim(G_n).$. graded vector space $\mathcal{H} = \bigoplus \mathcal{H}_n$ $n \ge 0$. bialgebra structure $\mathcal{H}_m\otimes\mathcal{H}_n\longrightarrow\mathcal{H}_{m+n}\qquad \mathcal{H}_n\longrightarrow \bigoplus_{i\in \mathcal{I}}\mathcal{H}_j\otimes\mathcal{H}_{n-j}$ **Towards representation theory.** Here we want compatible functors $I: f_{\sim}(G_m) \otimes f_{\sim}(G_n) \longrightarrow f_{\sim}(G_{m+n})$ $R_{m.n}: \mathbf{f}_{\sim}(G_{m+n}) \longrightarrow \mathbf{f}_{\sim}(G_m) \otimes \mathbf{f}_{\sim}(G_n)$ \boldsymbol{n} such that I and $\sum R_{j,n-j}$ give a Hopf algebra. j=0

Towards representation theory.

Here we want compatible functors

$$I: \mathsf{f}_{\sim}(G_m) \otimes \mathsf{f}_{\sim}(G_n) \longrightarrow \mathsf{f}_{\sim}(G_{m+n})$$

 $R_{m,n}: \mathsf{f}_{\sim}(G_{m+n}) \longrightarrow \mathsf{f}_{\sim}(G_m) \otimes \mathsf{f}_{\sim}(G_n)$
such that I and $\sum_{j=0}^{n} R_{j,n-j}$ give a Hopf algebra.

Towards representation theory.

Here we want compatible functors

 $I: \mathsf{f}_{\sim}(G_m) \otimes \mathsf{f}_{\sim}(G_n) \longrightarrow \mathsf{f}_{\sim}(G_{m+n})$ $R_{m,n}: \mathsf{f}_{\sim}(G_{m+n}) \longrightarrow \mathsf{f}_{\sim}(G_m) \otimes \mathsf{f}_{\sim}(G_n)$ such that I and $\sum_{j=0}^n R_{j,n-j}$ give a Hopf algebra.

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \operatorname{reg}_H\} \subseteq f_{\operatorname{conjugacy}}(H)$.

$$egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

 $\begin{array}{l} \text{For } A \subseteq \{1, 2, \dots, n\} \text{ with complement } B, \text{let} \\ R_A : f_{\sim}(G_n) \longrightarrow & f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi) \end{array}$

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

 $\begin{array}{l} \text{For } A \subseteq \{1, 2, \dots, n\} \text{ with complement } B, \text{let} \\ R_A : f_{\sim}(G_n) \longrightarrow & f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi) \end{array}$

 $\psi_1 \otimes \psi_2 \otimes \psi_3 \otimes \psi_4 \otimes \psi_5 \otimes \psi_6 \otimes \psi_7 \otimes \mathbb{1}$

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, ..., n\}$ with complement B, let $R_A : f_{\sim}(G_n) \longrightarrow \qquad f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|})$ $\psi \qquad \mapsto \iota^A \odot \operatorname{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \operatorname{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi)$ n = 8

 $\psi_1 \otimes \psi_2 \otimes \psi_3 \otimes \psi_4 \otimes \psi_5 \otimes \psi_6 \otimes \psi_7 \otimes \mathbb{I}$

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

 $\begin{array}{l} \text{For } A \subseteq \{1, 2, \dots, n\} \text{ with complement } B, \text{let} \\ R_A : f_\sim(G_n) \longrightarrow & f_\sim(G_{|A|}) \otimes f_\sim(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi) \\ n = 8 \qquad A \begin{array}{l} 1 & 2 \\ \psi_1 \otimes \psi_2 \otimes \psi_3 \otimes \psi_4 \otimes \psi_5 \otimes \psi_6 \otimes \psi_7 \otimes 1 \end{array} \end{array}$

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

 $\begin{array}{ll} \text{For } A \subseteq \{1, 2, \dots, n\} \text{ with complement } B, \text{let} \\ R_A : f_\sim(G_n) \longrightarrow & f_\sim(G_{|A|}) \otimes f_\sim(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi) \\ n = 8 & A \underbrace{11}_{\psi_1 \otimes \psi_2 \otimes \psi_3 \otimes \psi_4 \otimes \psi_5 \otimes \psi_6 \otimes \psi_7 \otimes 1} B \end{array}$

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

 $\begin{array}{l} \text{For } A \subseteq \{1, 2, \dots, n\} \text{ with complement } B, \text{let} \\ R_A : f_\sim(G_n) \longrightarrow & f_\sim(G_{|A|}) \otimes f_\sim(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n} \left((\alpha \times \beta)_A \odot \psi \right) \\ n = 8 \qquad A \underbrace{11}_{\psi_1 \otimes \psi_2 \otimes \psi_3 \otimes \psi_4 \otimes \psi_5 \otimes \psi_6 \otimes \psi_7 \otimes 1} B \end{array}$

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

 $\begin{array}{l} \text{For } A \subseteq \{1, 2, \dots, n\} \text{ with complement } B, \text{let} \\ R_A : f_{\sim}(G_n) \longrightarrow & f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n} \left((\alpha \times \beta)_A \odot \psi \right) \\ n = 8 \ A \ \begin{array}{c} 1 \\ \psi_1 \otimes \psi_2 \end{array} & \end{array}_{3} \ \end{array}_{4 \otimes \psi_4 \otimes \psi_5} \ \end{array}_{5 \otimes \psi_6 \otimes \psi_7} \ \end{array}_{3 \otimes 1} B \end{array}$

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, ..., n\}$ with complement B, let $R_A : f_{\sim}(G_n) \longrightarrow \qquad f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|})$ $\psi \qquad \mapsto \iota^A \odot \operatorname{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \operatorname{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi)$ $n = 8 A \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad B$ $\psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1$

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes \iota\otimes \gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, ..., n\}$ with complement B, let $R_A : f_{\sim}(G_n) \longrightarrow \qquad f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|})$ $\psi \qquad \mapsto \iota^A \odot \operatorname{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \operatorname{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi)$ $n = 8 A \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad B$ $\psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1$

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes \iota\otimes \gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, ..., n\}$ with complement B, let $R_A : f_{\sim}(G_n) \longrightarrow \qquad f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|})$ $\psi \qquad \mapsto \iota^A \odot \operatorname{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \operatorname{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi)$ $n = 8 A \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad B$ $\psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1 \qquad B$

 $G_{(A,B)}=H imes$ {1} imes {1} imes H imes {1} imes H imes {1} imes H imes {1} imes {1}

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, ..., n\}$ with complement B, let $R_A : f_{\sim}(G_n) \longrightarrow \qquad f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|})$ $\psi \qquad \mapsto \iota^A \odot \operatorname{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \operatorname{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi)$ $n = 8 A \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad B$ $\psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1 \qquad (\langle \psi_2, \alpha \rangle 1)$

 $G_{(A,B)} = H \times \{1\} \times \{1\} \times H \times \{1\} \times H \times \{1\} \times \{1\} \times \{1\}$

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

Example. Fix $\iota, lpha, eta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes \iota\otimes \gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

 $\begin{array}{l} \text{For } A \subseteq \{1, 2, \dots, n\} \text{ with complement } B, \text{let} \\ R_A : f_\sim(G_n) \longrightarrow & f_\sim(G_{|A|}) \otimes f_\sim(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi) \\ n = 8 \ A \ \ 1 \\ \psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1 \\ (\psi_2, \alpha) 1 \ (\psi_3, \beta) 1 \ (\psi_5, \alpha) 1 \ (\psi_7, \beta) 1 \end{bmatrix} B \\ G_{(A,B)} = H \times \{1\} \times \{1\} \times \{1\} \times H \times \{1\} \times H \times \{1\} \times \{1\} \} \end{array}$

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, ..., n\}$ with complement B, let $R_A : f_\sim(G_n) \longrightarrow f_\sim(G_{|A|}) \otimes f_\sim(G_{|B|})$ $\psi \mapsto \iota^A \odot \inf_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \operatorname{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi)$ $n = 8 A \amalg_{\psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta} \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1$ $(\psi_2, \alpha) \amalg (\psi_3, \beta) \amalg (\psi_5, \alpha) \amalg (\psi_7, \beta) \amalg$ $G_{(A,B)} = H \times \{1\} \times \{1\} \times H \times \{1\} \times H \times \{1\} \times \{1\}$ $G_5 \times G_3 \cong H \times \{1\} \times \{1\}$

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, \ldots, n\}$ with complement B, let $\begin{array}{ccc} R_A: f_{\sim}(G_n) \longrightarrow & f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi) \end{array}$ n = 8 A 1 2 3 4 5 6 7 8 B $\psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1 B$ $\langle \psi_2, lpha
angle \mathbb{I} \ \langle \psi_3, eta
angle \mathbb{I} \ \langle \psi_5, lpha
angle \mathbb{I} \ \langle \psi_7, eta
angle \mathbb{I}
angle$ $G_{(A,B)} = H \times \{1\} \times \{1\} \times H \times \{1\} \times H \times \{1\} \times \{1\} \times \{1\}$ $\psi_1 \otimes \langle \psi_2, \alpha \rangle \iota \otimes \langle \psi_3, \beta \rangle \iota \otimes \psi_4 \otimes \langle \psi_5, \alpha \rangle \iota \otimes \psi_6 \otimes \langle \psi_7, \beta \rangle \mathbb{I} \otimes \mathbb{I}$ $G_5 \times G_3 \cong H \times H \times H \times H \times H \times H \times \{1\} \times \{1\}$

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, \ldots, n\}$ with complement B, let $\begin{array}{ccc} R_A : f_{\sim}(G_n) \longrightarrow & f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi) \end{array}$ n = 8 A 1 2 3 4 5 6 7 8 B $\psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1 B$ $\langle\!\langle\psi_2,lpha
angle 1\!
angle \langle\!\langle\psi_3,eta
angle 1
angle \qquad \langle\!\langle\psi_5,lpha
angle 1
angle \qquad \langle\!\langle\psi_7,eta
angle 1
angle$ $G_{(A,B)} = H \times \{1\} \times \{1\} \times H \times \{1\} \times H \times \{1\} \times \{1\} \times \{1\}$ $\psi_1 \otimes \langle \psi_2, \alpha \rangle \iota \otimes \langle \psi_3, \beta \rangle \iota \otimes \psi_4 \otimes \langle \psi_5, \alpha \rangle \iota \otimes \psi_6 \otimes \langle \psi_7, \beta \rangle \mathbb{I} \otimes \mathbb{I}$ $G_5 \times G_3 \cong H \times H \times H \times H \times H \times H \times \{1\} \times \{1\}$

Example. Fix $\iota, \alpha, \beta \in \mathbb{C}$ -span $\{\mathbb{1}_H, \mathsf{reg}_H\} \subseteq f_{\mathsf{conjugacy}}(H)$.

 $egin{array}{rll} I:& f_\sim(G_m)\otimes f_\sim(G_n)&\longrightarrow& f_\sim(G_{m+n})\ &(\psi\otimes \mathbb{1})\otimes (\gamma\otimes \mathbb{1})&\mapsto&\psi\otimes\iota\otimes\gamma\otimes \mathbb{1} \end{array}$

Remark. If $\iota = \mathbb{1}_H$, then *I* is the usual inflation functor, and if $\iota = \operatorname{reg}_H$, then *I* is the induction functor.

For $A \subseteq \{1, 2, \ldots, n\}$ with complement B, let $\begin{array}{ccc} R_A : f_{\sim}(G_n) \longrightarrow & f_{\sim}(G_{|A|}) \otimes f_{\sim}(G_{|B|}) \\ \psi & \mapsto \iota^A \odot \mathsf{Inf}_{G_{(A,B)}}^{G_{|A|} \times G_{|B|}} \circ \mathsf{Def}_{G_{(A,B)}}^{G_n}((\alpha \times \beta)_A \odot \psi) \end{array}$ n = 8 A 1 2 3 4 5 6 7 8 B $\psi_1 \otimes \psi_2 \odot \alpha \otimes \psi_3 \odot \beta \otimes \psi_4 \otimes \psi_5 \odot \alpha \otimes \psi_6 \otimes \psi_7 \odot \beta \otimes 1 B$ $\langle\!\langle\psi_2,lpha
angle 1\!
angle \langle\!\langle\psi_3,eta
angle 1
angle \qquad \langle\!\langle\psi_5,lpha
angle 1
angle \qquad \langle\!\langle\psi_7,eta
angle 1
angle$ $G_{(A,B)} = H \times \{1\} \times \{1\} \times H \times \{1\} \times H \times \{1\} \times \{1\} \times \{1\}$ $\psi_1 \otimes \langle \psi_2, \alpha \rangle \iota \otimes \langle \psi_3, \beta \rangle \iota \otimes \psi_4 \otimes \langle \psi_5, \alpha \rangle \iota \otimes \psi_6 \otimes \langle \psi_7, \beta \rangle \mathbb{1} \otimes \mathbb{1}$ $G_5 \times G_3 \cong H \times \underline{H} \times \underline{H} \times H \times \underline{H} \times H \times \underline{\{1\}} \times \{1\}$

- . f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,\alpha
 angle=\langle\iota,\beta
 angle=1.$
- . if $\mathsf{f}_\sim(H^\bullet)$ is a Hopf algebra, then

 $\mathsf{f}_\sim(H^ullet)\cong\mathsf{NSym}.$

- . f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,\alpha
 angle=\langle\iota,\beta
 angle=1$.
- . if $\mathsf{f}_\sim(H^\bullet)$ is a Hopf algebra, then

$$\mathsf{f}_\sim(H^ullet)\cong\mathsf{NSym}.$$

Remarks.

. if $\alpha \neq \beta$, then $\iota = \alpha^* + \beta^*$.

- . f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,\alpha
 angle=\langle\iota,\beta
 angle=1.$
- . if $\mathsf{f}_\sim(H^\bullet)$ is a Hopf algebra, then

$$\mathsf{f}_\sim(H^ullet)\cong\mathsf{NSym}.$$

Remarks.

. if $\alpha \neq \beta$, then $\iota = \alpha^* + \beta^*$.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.).

- . f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,\alpha
 angle=\langle\iota,\beta
 angle=1.$
- . if $\mathsf{f}_\sim(H^\bullet)$ is a Hopf algebra, then

$$\mathsf{f}_\sim(H^ullet)\cong\mathsf{NSym}.$$

Remarks.

. if $\alpha \neq \beta$, then $\iota = \alpha^* + \beta^*$.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.).

.. In fact, the normal lattice theory comes with 3 canonical bases: superclass identifiers, supercharacters, and normal subgroup identifiers.

- . f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,\alpha
 angle=\langle\iota,\beta
 angle=1$.
- . if $\mathsf{f}_\sim(H^\bullet)$ is a Hopf algebra, then

$$\mathsf{f}_\sim(H^ullet)\cong\mathsf{NSym}.$$

Remarks.

. if $\alpha \neq \beta$, then $\iota = \alpha^* + \beta^*$.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.). |G| - 1 becomes a parameter

.. In fact, the normal lattice theory comes with 3 canonical bases: superclass identifiers, supercharacters, and normal subgroup identifiers.

- . f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,\alpha
 angle=\langle\iota,\beta
 angle=1.$
- . if $\mathsf{f}_\sim(H^\bullet)$ is a Hopf algebra, then

$$\mathsf{f}_\sim(H^ullet)\cong\mathsf{NSym}.$$

Remarks.

. if $\alpha \neq \beta$, then $\iota = \alpha^* + \beta^*$.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.). |G| - 1 becomes a parameter

.. In fact, the normal lattice theory comes with 3 canonical bases: superclass identifiers, supercharacters, and normal subgroup identifiers.

. By varying α and β we get different "natural" homomorphisms to other Hopf algebras such as NCSym and FQSym.

. f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,\alpha
angle=\langle\iota,\beta
angle=1$.

Remarks.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.).

.. In fact, the normal lattice theory comes with 3 canonical bases: superclass identifiers, supercharacters, and normal subgroup identifiers.

. By varying α and β we get different "natural" homomorphisms to other Hopf algebras such as NCSym and FQSym.

. f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,lpha
angle=\langle\iota,eta
angle=1$.

Remarks.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.).

.. In fact, the normal lattice theory comes with 3 canonical bases: superclass identifiers, supercharacters, and normal subgroup identifiers.

. By varying α and β we get different "natural" homomorphisms to other Hopf algebras such as NCSym and FQSym.

. f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,lpha
angle=\langle\iota,eta
angle=1$.

Remarks.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.).

.. In fact, the normal lattice theory comes with 3 canonical bases: superclass identifiers, supercharacters, and normal subgroup identifiers.

. By varying α and β we get different "natural" homomorphisms to other Hopf algebras such as NCSym and FQSym.

. There are a family of "canonical" homomorphisms from NSym to Sym that depend on an algebra homomorphism NSym $\rightarrow \mathbb{C}$. Representation theory gives of a natural set of choices for such algebra homomorphisms.

. f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,\alpha
angle=\langle\iota,\beta
angle=1$.

Remarks.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.).

. By varying α and β we get different "natural" homomorphisms to other Hopf algebras such as NCSym and FQSym.

. There are a family of "canonical" homomorphisms from NSym to Sym that depend on an algebra homomorphism NSym $\rightarrow \mathbb{C}$. Representation theory gives of a natural set of choices for such algebra homomorphisms.

. f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,lpha
angle=\langle\iota,eta
angle=1$.

Remarks.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.).

. By varying α and β we get different "natural" homomorphisms to other Hopf algebras such as NCSym and FQSym.

. There are a family of "canonical" homomorphisms from NSym to Sym that depend on an algebra homomorphism NSym $\rightarrow \mathbb{C}$. Representation theory gives of a natural set of choices for such algebra homomorphisms.

. f $_\sim(H^ullet)$ is a Hopf algebra if and only if $\langle\iota,lpha
angle=\langle\iota,eta
angle=1$.

Remarks.

. By varying α and β we get different isomorphisms, that send characters of G_n to different bases (e.g. *h*-basis, ribbon basis, etc.).

. By varying α and β we get different "natural" homomorphisms to other Hopf algebras such as NCSym and FQSym.

. There are a family of "canonical" homomorphisms from NSym to Sym that depend on an algebra homomorphism NSym $\rightarrow \mathbb{C}$. Representation theory gives of a natural set of choices for such algebra homomorphisms.

. By varying the supercharacter theory on H, we obtain a family of Hopf algebras that behave NSym-like.