ВЕКТОРНЫЕ РАССЛОЕНИЕ ПРИМА И РАССЛОЕНИЕ ГАННИНГА НАД ПРОСТРАНСТВОМ ТЕЙХМЮЛЛЕРА

В. В. Чуешев

Аннотация: Вводятся и изучаются векторное расслоение Прима P из голоморфных дифференциалов Прима и когомологическое расслоение Ганнинга G над пространством Тейхмюллера компактных римановых поверхностей рода $g \geq 2$ и над пространством Торелли рода $g \geq 2$. Строится базис из голоморфных дифференциалов Прима на переменной компактной римановой поверхности, голоморфно зависящий от модулей компактной римановой поверхности и от существенных характеров. Из этих расслоений составляется точная последовательность голоморфных векторных расслоений над произведением пространства Тейхмюллера рода g и специальной области в комплексном многообразии $\mathbb{C}^{2g}/\mathbb{Z}^{2g}$. Библиогр. 13.

Введение

Периоды многозначных голоморфных дифференциалов Прима на компактной римановой поверхности рода $g \geq 2$ являются важными трансцендентными инвариантами римановой поверхности. Мультипликативные функции и дифференциалы Прима появились еще в прошлом веке в работах Ф. Прима [1], П. Аппеля [2] и других авторов. Однако до сих пор они остаются малоизученными объектами, хотя частные классы таких функций и дифференциалов нашли применение в ряде областей математики: в аналитической теории чисел, при алгеброгеометрическом интегрировании нелинейных уравнений математической физики и в теории аналитических линейных расслоений над компактными римановыми поверхностями. Кроме того, как правило, изучение проводилось при фиксированной римановой поверхности. В данной работе эти объекты рассматриваются для переменной римановой поверхности.

В работах [3, 4] дано описание когомологического расслоения Ганнинга, связанного с классами периодов мультипликативных голоморфных дифференциалов Прима, ассоциированных с любыми нетривиальными характерами (одномерными представлениями фундаментальной группы поверхности в \mathbb{C}^*) для фиксированной компактной римановой поверхности рода g=2 и $g\geq 2$ соответственно.

В данной работе вводятся и изучаются векторное расслоение Прима P из голоморфных дифференциалов Прима и когомологическое расслоение Ганнинга G над пространством Тейхмюллера компактных римановых поверхностей рода $g \geq 2$ и над пространством Торелли рода $g \geq 2$. Строится базис из голоморфных дифференциалов Прима на переменной компактной римановой поверхности, голоморфно зависящий от модулей компактной римановой поверхности и

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 98–01–00699, 99–01–00630) и гранта Сибирского отделения РАН.

от существенных характеров. Из этих расслоений составляется точная последовательность голоморфных векторных расслоений над произведением пространства Тейхмюллера рода g и специальной области в комплексном многообразии $\mathbb{C}^{2g}/\mathbb{Z}^{2g}$.

1. Предварительные сведения

1. Пространство Тейхмюллера. Пусть F — фиксированная гладкая компактная ориентированная поверхность рода $g \geq 2$ с отмечанием $\{\alpha_k, \beta_k\}_{k=1}^g$, т. е. набором образующих для $\pi_1(F)$; F_0 — фиксированная комплексно-аналитическая структура (или класс конформно эквивалентных гладких метрик класса C^∞) на F. По теореме униформизации существует конечнопорожденная фуксова группа Γ первого рода, инвариантно действующая на единичном круге $U = \{z \in \mathbb{C} : |z| < 1\}$, такая, что U/Γ конформно эквивалентна F_0 , Γ изоморфна $\pi_1(F)$, и имеющая представление

$$\Gamma = \left\langle A_1, \dots, A_g, B_1, \dots, B_g : \prod_{j=1}^g C_j = \mathbf{1} \right\rangle,$$

где $C_j=[A_j,B_j]=A_jB_jA_j^{-1}B_j^{-1},\,j=1,\ldots,g,$ и 1— тождественное отображение плоскости $\mathbb C$ на себя, причем сопряжением группы Γ мёбиусовыми преобразованиями можно получить, что z=-1 и z=1— отталкивающая и притягивающая неподвижные точки для A_1 , а z=i— отталкивающая неподвижныя точка для B_1 [5]. Здесь на U задана метрика Пуанкаре $ds=|dz|/(1-|z|^2),\,|z|<1,$ которая превращает U в модель геометрии Лобачевского, а $A_j,\,B_j$ — мёбиусовы отображения круга U на себя, являющиеся изометриями в этой геометрии.

Любая другая комплексно-аналитическая структура на F задается некоторым дифференциалом Бельтрами μ на F_0 , т. е. выражением вида $\mu(z)d\bar{z}/dz$, которое инвариантно относительно выбора локального параметра на F_0 , $\mu(z)$ — комплекснозначная функция на F_0 и $\|\mu\|_{L_\infty(F_0)} < 1$ [6]. Эту структуру на F будем обозначать через F_μ . Ясно, что $\mu=0$ соответствует F_0 . Пусть M(F) — множество всех комплексно-аналитических структур на F с обычной топологией C^∞ сходимости на F_0 , $\mathrm{Diff}^+(F)$ — группа всех сохраняющих ориентацию гладких диффеоморфизмов поверхности F на себя, $\mathrm{Diff}_0(F)$ — нормальная подгруппа в $\mathrm{Diff}^+(F)$, состоящая из всех диффеоморфизмов, гомотопных тождественному диффеоморфизму id на F. Группа $\mathrm{Diff}^+(F)$ действует на M(F) по правилу $\mu \to f^*\mu$, где $f \in \mathrm{Diff}^+(F)$, $\mu \in M(F)$. Тогда пространство Тейхмюллера $\mathbb{T}_g(F) = \mathbb{T}_g(F_0)$ есть фактор-пространство $M(F)/\mathrm{Diff}_0(F)$, а пространство Римана $\mathbb{R}_g(F)$ — фактор-пространство $M(F)/\mathrm{Diff}_0(F)$. Фактор-группа $\mathrm{Diff}^+(F)/\mathrm{Diff}_0(F)$ в Мактор-группа $\mathrm{Diff}^+(F)/\mathrm{Diff}_0(F)$ в Мостранство $\mathrm{Moc}_0(F)/\mathrm{Diff}_0(F)$ в Мактор-группа $\mathrm{Diff}^+(F)/\mathrm{Diff}_0(F)$ в Мостранство $\mathrm{Moc}_0(F)/\mathrm{Diff}_0(F)$ в Мактор-группа $\mathrm{Diff}^+(F)/\mathrm{Diff}_0(F)$ в Мостранство $\mathrm{Moc}_0(F)/\mathrm{Diff}_0(F)$ в Мостранство $\mathrm{Moc}_0(F)/\mathrm{Diff}_$

Так как $\pi:U\to F_0=U/\Gamma$ — локальный диффеоморфизм, любой дифференциал Бельтрами μ на F_0 поднимается до Γ -дифференциала Бельтрами μ на U, т. е. $\mu\in L^\infty(U), \ \|\mu\|_\infty= \mathrm{ess}\sup_{U}|\mu(z)|<1,$ и

$$\mu(T(z))\overline{T'(z)}/T'(z)=\mu(z),\quad z\in U,\ T\in\Gamma.$$

Если Γ -дифференциал μ на U продолжить по симметрии на $U^* = \mathbb{C} \backslash \overline{U}$, то существует единственный квазиконформный гомеоморфизм $w_{\mu} : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$,

оставляющий неподвижными точки $\pm 1, i$, который является решением уравнения Бельтрами $w_{\bar{z}} = \mu(z)w_z$. Тогда отображение $T \to T_\mu = w_\mu T w_\mu^{-1}, T \in \Gamma$, задает [5] изоморфизм фуксовой группы Γ на фуксову группу

$$\Gamma_{\mu} = w_{\mu} \Gamma w_{\mu}^{-1} = \left\langle A_{1\mu}, \dots, B_{g\mu} : \prod_{j=1}^{g} [A_{j\mu}, B_{j\mu}] = \mathbf{1} \right\rangle.$$

Если Γ -дифференциал μ на U продолжить, положив $\mu=0$ на U^* , то существует единственный квазиконформный гомеоморфизм $w^\mu:\overline{\mathbb{C}}\to\overline{\mathbb{C}}$ с неподвижными точками +1,-1,i и отображение $T\to T^\mu=w^\mu T(w^\mu)^{-1}$ задает изоморфизм группы Γ на квазифуксову группу

$$\Gamma^{\mu} = w^{\mu} \Gamma(w^{\mu})^{-1} = \left\langle A_1^{\mu}, \dots, B_g^{\mu} : \prod_{j=1}^g [A_j^{\mu}, B_j^{\mu}] = \mathbf{1} \right\rangle.$$

Отображение w^{μ} конформно на U^* , и его производная Шварца $[w^{\mu}]$ принадлежит банахову пространству $B_2(U^*,\Gamma)$, состоящему из голоморфных функций $\varphi(z)$ на U^* таких, что $\varphi(T(z))T'(z)^2=\varphi(z),\ z\in U^*,\ T\in\Gamma,\ c$ нормой $\|\varphi\|=\sup_{z\in U^*}\{|\varphi(z)|(1-|z|^2)^2\}<\infty.$

Два Γ -дифференциала Бельтрами μ и ν называются конформно эквивалентными, если существует конформное отображение $h: F_{\mu} \to F_{\nu}$, гомотопное id на F. Класс $[\mu]$ конформно эквивалентных Γ -дифференциалов соответствует точно одной точке $[F_{\mu}] \in \mathbb{T}_g(F)$. Вложение Берса для $\mathbb{T}_g(F)$, задаваемое отображением $[\mu](=[F_{\mu}]) \to [w^{\mu}]$, является инъекцией из $\mathbb{T}_g(F)$ на стягиваемую ограниченную область в $B_2(U^*,\Gamma)$. Оно задает глобальную комплексно-аналитическую структуру на $\mathbb{T}_g(F)$, индуцированную из $B_2(U^*,\Gamma)$ [5, 6].

Классические результаты $\bar{\Pi}$. Альфорса, Π . Берса и других авторов утверждают, что

- 1) $\mathbb{T}_g(F)$ является комплексным многообразием размерности 3g-3 при $g\geq 2;$
- 2) $\mathbb{T}_g(F)$ снабжено единственной комплексно-аналитической структурой такой, что естественное отображение $\Phi: M(F) \to M(F)/\operatorname{Diff}_0(F) = \mathbb{T}_g(F)$ голоморфно и имеет только локальные голоморфные сечения;
 - 3) $\mathbb{T}_a(F)$ реализуется как ограниченная область голоморфности в $B_2(U^*,\Gamma)$;
- 4) группа $\operatorname{Mod} \mathbb{T}_g$ действует разрывно на $\mathbb{T}_g(F)$ как группа биголоморфных автоморфизмов и $\mathbb{R}_g(F) = \mathbb{T}_g(F)/\operatorname{Mod} \mathbb{T}_g;$
- 5) элементы из Γ^{μ} голоморфно зависят от $[\mu]$, а элементы из Γ_{μ} вещественно-аналитически зависят от $[\mu]$ на $\mathbb{T}_{q}(F)$;

Два Γ -дифференциала Бельтрами μ и ν будут конформно эквивалентными, если и только если $w^{\mu}T(w^{\mu})^{-1}=w^{\nu}T(w^{\nu})^{-1},\ T\in\Gamma$. Отсюда получаем отождествления $M(F)/\operatorname{Diff}_0(F)=\mathbb{T}_g(F)=\mathbb{T}_g(\Gamma),$ положив $[\mu]=[F_{\mu}]=\Gamma^{\mu}.$

Элемент $[F_{\mu}] \in \mathbb{T}_g(F)$ можно также задать как класс $[(F_{\mu}; \Sigma)]$ конформно эквивалентных отмеченных компактных римановых поверхностей $(F_{\mu}; \Sigma)$, где Σ — упорядоченный набор гомотопических классов

$$[\alpha_1], [\beta_1], \ldots, [\alpha_q], [\beta_q]$$

ориентированных петель $\alpha_1, \beta_1, \dots, \alpha_g, \beta_g$, выходящих из фиксированной точки $O \in F$ и задающих каноническое рассечение на F. При этом $(F_{\mu_1}; \Sigma_1)$ называется конформно эквивалентной $(F_{\mu_2}; \Sigma_2)$, если существует конформное отображение $h: F_{\mu_1} \to F_{\mu_2}$ и образ упорядоченного набора петель из Σ_1 по h будет

свободно гомотопен упорядоченному набору петель из Σ_2 на F. Заметим, что каждый такой набор Σ задает систему образующих в группе

$$\pi_1(F, O) = \left\langle [\alpha_1], [\beta_1], \dots, [\alpha_g], [\beta_g] : \prod_{j=1}^g [\alpha_j] [\beta_j] [\alpha_j]^{-1} [\beta_j]^{-1} = 1 \right\rangle.$$

Естественно, выбор Σ на F эквивалентен выбору системы образующих в $\pi_1(F_\mu)$, и $\{A_{j\mu}, B_{j\mu}\}_{j=1}^g$ в Γ_μ и $\{A_j^\mu, B_j^\mu\}_{j=1}^g$ в Γ^μ для любого μ . Более детальное описание этих вопросов можно найти, например, в [5, 6].

2. Векторное расслоение Прима и когомологическое расслоение Ганнинга. Зафиксируем некоторое отмечание Σ на F, ему соответствует выбор образующих $A_1, B_1, \ldots, A_g, B_g$ в Γ . Обозначим через $\operatorname{Hom}(\Gamma, \mathbb{C}^*)$ группу всех 1-мерных представлений Γ в $\mathbb{C}^* = \mathbb{C} \setminus 0$. Тогда $\operatorname{Hom}(\Gamma, \mathbb{C}^*)$ биголоморфно изоморфна $\mathbb{C}^{2g}/\mathbb{Z}^{2g}$, где \mathbb{Z}^{2g} — целочисленная решетка в \mathbb{C}^{2g} , и является 2g-мерной комплексной группой Ли. Действительно, отображение $\varphi: \mathbb{C}^{2g} \to \operatorname{Hom}(\Gamma, \mathbb{C}^*)$ — сюръективный голоморфный гомоморфизм с ядром \mathbb{Z}^{2g} . Оно задается по правилу: точке $(x_1, \ldots, x_g; y_1, \ldots, y_g) \in \mathbb{C}^{2g}$ сопоставляется представление $\rho = \rho_{x,y} \in \operatorname{Hom}(\Gamma, \mathbb{C}^*)$ такое, что

$$\rho(A_j) = \exp 2\pi i x_j, \quad \rho(B_j) = \exp 2\pi i y_j, \quad j = 1, \dots, g.$$

Характер ρ называется несущественным, если $\rho = \rho_{x,y}$, где $y = \Omega x, x \in \mathbb{C}^g$, $\Omega = (\pi_{jk})$ — матрица порядка g, состоящая из B-периодов для канонического базиса абелевых дифференциалов ζ_1, \ldots, ζ_g первого рода, дуального к каноническому базису $[\alpha_1], \ldots, [\alpha_g], [\beta_1], \ldots, [\beta_g]$ на F_0 . Множество несущественных характеров обозначим через L_g . Дополнение $\operatorname{Hom}(\Gamma, \mathbb{C}^*) \backslash L_g$ состоит из так называемых существенных характеров.

Пусть $L(I,\Omega(\mu))$ — решетка периодов для отмеченной компактной римановой поверхности $(F_\mu,\{\alpha_j(\mu),\beta_j(\mu)\}_{j=1}^g)$ с каноническим базисом абелевых дифференциалов $\zeta_1(\mu),\ldots,\zeta_g(\mu)$ первого рода, который голоморфно зависит от $[\mu]\in\mathbb{T}_g(F)$, где $\alpha_j(\mu),\,\beta_j(\mu)$ определяются по $A_j^\mu,\,B_j^\mu,\,j=1,\ldots,g$. Она голоморфно зависит от $[\mu]$. Тогда $J(F_\mu)=\mathbb{C}^g/L(I,\Omega(\mu))$ — отмеченное многообразие Якоби для F_μ и определено голоморфное семейство Jac_g компактных комплексных многообразий с базой $\mathbb{T}_g(F)$ и слоем $J(F_\mu)$ над $[\mu]\in\mathbb{T}_g(F)$ с проекцией $\pi_{J,\mu}(z)=z \ \mathrm{mod}\ L(I,\Omega(\mu)), z\in\mathbb{C}^g$ [7].

Голоморфным (многозначным) ρ -дифференциалом Прима на F_0 называется голоморфная дифференциальная 1-форма $\phi = \phi(z)dz$ на U такая, что

$$\phi(Tz) dTz = \rho(T)\phi(z) dz, \quad T \in \Gamma, \ z \in U. \tag{1}$$

По теореме монодромии имеем $\phi(z)\,dz=df(z)$ для голоморфной функции (интеграла Прима) f(z) на U, которая определяется с точностью до комплексного постоянного слагаемого, связанного с выбором точки $z_0\in U$. Из (1) следует, что $f(Tz)=\rho(T)f(z)+\phi(T)$, где $\phi(T)=f(Tz_0)-f(z_0)\rho(T)$. Отображение периодов $\phi:\Gamma\to\mathbb{C}$ для ρ -дифференциала Прима $\phi=\phi(z)\,dz$ удовлетворяет условию

$$\phi(ST) = \phi(S) + \rho(S)\phi(T), \quad S, T \in \Gamma.$$
 (2)

Для $\rho \in \text{Hom}(\Gamma, \mathbb{C}^*) \backslash L_g$, где $L_g - g$ -мерная комплексная подгруппа Ли [3], обозначим через $\Gamma(F_0, O^{1,0}(\rho))$ векторное пространство голоморфных ρ -дифференциалов Прима на F_0 и через $P(F_0) = \bigcup_{\rho \notin L_g} \Gamma(F_0, O^{1,0}(\rho))$ — расслоение При-

ма для фиксированной поверхности F_0 . Известно, что это комплексное голоморфное векторное расслоение ранга g-1 над $\operatorname{Hom}(\Gamma,\mathbb{C}^*)\backslash L_g$ [3]. При $\rho=1$

 $(\rho(T) = 1, T \in \Gamma)$ пространство $\Gamma(F_0, O^{1,0}(1))$ будет g-мерным комплексным пространством абелевых голоморфных дифференциалов на F_0 .

Для $\rho \in \text{Hom}(\Gamma, \mathbb{C}^*) \setminus 1$ обозначим через $Z^1(\Gamma, \rho)$ множество всех отображений $\phi : \Gamma \to \mathbb{C}$, удовлетворяющих условию (2). Любой элемент $\phi \in Z^1(\Gamma, \rho)$ задается набором чисел $\phi(A_1), \ldots, \phi(A_g), \phi(B_1), \ldots, \phi(B_g)$ с условием

$$\sum_{j=1}^{g} [\sigma(B_j)\phi(A_j) - \sigma(A_j)\phi(B_j)] = 0,$$
(3)

которое является следствием соотношения $\prod_{j=1}^g C_j = 1$ в Γ , где $\sigma(T) = 1 - \rho(T)$,

 $T \in \Gamma$. В комплексном векторном пространстве $Z^1(\Gamma, \rho)$ размерности 2g-1 при $\rho \neq 1$ возьмем векторное подпространство $B^1(\Gamma, \rho)$, порожденное элементом σ . Тогда $H^1(\Gamma, \rho) = Z^1(\Gamma, \rho)/B^1(\Gamma, \rho)$ — комплексное векторное пространство размерности 2g-2 при $\rho \neq 1$. Когомологическое расслоение Ганнинга для F_0 есть $G(F_0) = \bigcup_{\rho \neq 1} H^1(\Gamma, \rho)$. Это комплексное голоморфное векторное расслоение ранга 2g-2 над $\operatorname{Hom}(\Gamma, \mathbb{C}^*)\backslash 1$ [3, 4].

Заметим, что при $\rho \notin L_g$ отображение периодов $\phi: \Gamma \to \mathbb{C}$ для ρ -дифференциала Прима $\phi(z)\,dz$ задает линейное инъективное отображение $p:\phi(z)\,dz\to [\phi]\in H^1(\Gamma,\rho)$, где $[\phi]$ — класс периодов для $\phi(z)\,dz$, и $p:P(F_0)\to G(F_0)$ будет голоморфным отображением векторных расслоений над $\mathrm{Hom}(\Gamma,\mathbb{C}^*)\backslash L_g$ [3, 4].

2. Базис голоморфных дифференциалов Прима на переменной компактной римановой поверхности

Пусть $\phi=\phi(z)\,dz$ — голоморфный ρ -дифференциал Прима на отмеченной компактной римановой поверхности $\left(F_0,\{\alpha_k,\beta_k\}_{k=1}^g\right)$ рода $g\geq 2$ с существенным характером ρ , который задается мультипликаторами $m_k=\rho([\alpha_k])=\rho(A_k),$ $n_k=\rho([\beta_k])=\rho(B_k),$ $k=1,\ldots,g$ [2,3]. Возьмем $\omega=\omega(z)\,dz$ — абелев дифференциал первого рода на F_0 с простыми нулями Q_1,Q_2,\ldots,Q_{2g-2} . Если ω_0 — голоморфный абелев дифференциал на F_0 с модулями $[\mu_0]$, то он имеет с учетом кратности всего 2g-2 нулей. Если его нули кратные, то существует ω , близкий к ω_0 (см. [8, с. 98]) голоморфный абелев дифференциал на F_0 с простыми нулями Q_1,Q_2,\ldots,Q_{2g-2} . При этом $\omega=\sum_{j=1}^g a_j\zeta_j$, где ζ_1,\ldots,ζ_g — база голоморфных

нормированных дифференциалов на F_0 , которую по теореме Берса [9] можно выбрать глобально голоморфно зависящей от $[\mu]$, где $a_j,\ j=1,\ldots,g,$ — постоянные комплексные числа. Если для $[\mu_0]$ нули простые, то и для окрестности $U([\mu_0])$ голоморфный на F_μ дифференциал ω тоже будет иметь простые нули $Q_1[\mu],\ldots,Q_{2g-2}[\mu]$. Тогда отношение $f=\phi(z)\,dz/\omega(z)\,dz$ будет мультипликативной функцией с характером ρ и с простыми полюсами в Q_1,\ldots,Q_{2g-2} , из которых g-2 можно выбирать произвольно, а остальные g находятся из известного соотношения [8, с. 318]

$$\sum_{j=1}^{2g-2} \varphi_k(Q_j) = -2K_k, \quad k = 1, \dots, g,$$

или $\varphi(Q_1\dots Q_{2g-2})=-2K$ через решение проблемы обращения Якоби, где $\varphi=(\varphi_1,\dots,\varphi_g)$ — отображение Якоби, голоморфно зависящее от $[\mu]$, из любого симметрического пространства $(F_0)_n$ $(n\geq 1)$ в многообразие Якоби $J(F_0)$

для поверхности F_0 , $\varphi_k=\int\limits_{P_0}^P\zeta_k$, и $K=(K_1,\ldots,K_g)$ — вектор констант Римана [8], зависящий голоморфно от точки P_0 и от $[\mu]$. Функция f также имеет (с учетом кратности) 2g-2 нулей P_1,\ldots,P_{2g-2} , так как $\deg(f)=0$, где $(f)=P_1\ldots P_{2g-2}/Q_1\ldots Q_{2g-2}=\widetilde{D}$. П. Аппель показал в [2] (см. также [8]), что ветвь такой функции имеет вид

$$f(P) = f(Q_0) \exp \left[\sum_{j=1}^{2g-2} \int_{Q_0}^P (\tau_{P_j P_0} - \tau_{Q_j P_0}) + \sum_{k=1}^g \int_{Q_0}^P \zeta_k \log \rho(A_k) \right]$$

на $F_0' = F_0 \setminus \{\alpha_k, \beta_k\}_{k=1}^g$ (или на каноническом многоугольнике Δ для группы Γ), где $Q_0 \neq P_0$, $Q_0 \notin \widetilde{D}$, τ_{PQ} — нормированный абелев дифференциал третьего рода на F_0 с простыми полюсами P и Q и вычетами +1 и -1 в них соответственно, голоморфно зависящий от $[\mu]$ [10; 11, с. 325] и от P, Q [8].

По теореме Абеля [8] для характеров ее нули и полюсы удовлетворяют системе из g уравнений:

$$(\varphi(\widetilde{D}))_k = \sum_{j=1}^{2g-2} [\varphi_k(P_j) - \varphi_k(Q_j)] = \frac{1}{2\pi i} \log \rho(B_k) - \frac{1}{2\pi i} \left[\sum_{j=1}^g \pi_{jk} \log \rho(A_j) \right],$$

k = 1, ..., g, в $J(F_0)$. Эта система эквивалентна системе

$$\sum_{j=1}^{2g-2} \varphi_k(P_j) = -2K_k + \left[\frac{1}{2\pi i} \log n_k - \frac{1}{2\pi i} \sum_{j=1}^g \pi_{jk} \log m_j \right], \quad k = 1, \dots, g.$$
 (4)

Здесь $\Omega = (\pi_{jk})$ — матрица порядка g из B-периодов на F_0 , голоморфно зависящая от $[\mu]$ [5, 7].

Таким образом, из 2g-2 нулей P_1,\dots,P_{2g-2} для f можно выбрать g-2 нуля произвольно, например попарно различные P_{g+1},\dots,P_{2g-2} , которые образуют постоянное сечение для расслоенного пространства $\pi_{g-2}:S_T^{g-2}(V_g)\longrightarrow \mathbb{T}_g(F)$, чей слой над $[\mu]\in\mathbb{T}_g(F)$ есть пространство всех положительных дивизоров степени (g-2) на компактной римановой поверхности F_μ с модулями $[\mu]$ над некоторой окрестностью $U([\mu_0])$ [7]. Остальные g нулей P_1,\dots,P_g должны получаться как решение проблемы обращения Якоби для системы (4). Поэтому общая мультипликативная функция f зависит от g-1 произвольных констант, а именно g-2 нулей P_{g+1},\dots,P_{2g-2} и мультипликативной константы $f(Q_0)=C\neq 0$. Однако необходимо гарантировать однозначную разрешимость этой задачи обращения Якоби при некотором специальном выборе целого дивизора $P_{g+1}\dots P_{2g-2}$ степени g-2, т. е. однозначную разрешимость системы

$$\sum_{j=1}^{g} \varphi_k(P_j) = -2K_k + \left[\frac{1}{2\pi i} \log n_k - \frac{1}{2\pi i} \sum_{j=1}^{g} \pi_{jk} \log m_j \right] - \sum_{j=g+1}^{2g-2} \varphi_k(P_j), \quad (5)$$

 $k=1,\ldots,g$. Так как характер ρ существенный, то выражение в квадратных скобках (обозначим его $X=(X_1,\ldots,X_g)$) не равно 0 в $J(F_0)$ (по теореме Абеля), и задача Якоби для системы (5) однозначно разрешима. Действительно, используя обозначения из [8], предположим, что правая сторона в (5) принадлежит особому множеству W_g^1 ($\subset W_{g-1}=\varphi((F_0)_{g-1})$) при любом выборе дивизора $P_{g+1}\ldots P_{2g-2}$, т. е. проблема Якоби разрешима, но не однозначно. Тогда

правая сторона в (5) пробегает комплексное (g-2)-мерное (при $g\geq 3$) подмножество в $J(F_0)$, а W_g^1 имеет комплексную размерность строго меньше g-2 в $J(F_0)$ при условии, что F_0 — не гиперэллиптическая поверхность [8]. Таким образом, для $g\geq 3$ и F_0 — не гиперэллиптическая поверхность; противоречие. Рассмотрим общий случай. Из [8] имеем, что условие $u\in W_g^1$ эквивалентно условию $-(W_1-u)\subset W_{g-1}$. Обозначая правую часть в (5) через u, получим $-(\varphi(P)-u)\subset W_{g-1}$ для любого $P\in F_0$. Отсюда имеем систему

$$-\left(\varphi_k(P) + 2K_k - X_k + \sum_{j=g+1}^{2g-2} \varphi_k(P_j)\right) = \sum_{j=1}^{g-1} \varphi_k(R_j), \quad k = 1, \dots, g,$$

или эквивалентную систему

$$-2K + X = \sum_{j=g+1}^{2g-2} \varphi(P_j) + \varphi(P) + \sum_{j=1}^{g-1} \varphi(R_j),$$

где R_1,\ldots,R_g — некоторые точки на F_0 . Рассмотрим целый дивизор $D=P_{g+1}\ldots P_{2g-2}PR_1\ldots R_{g-1}$ степени 2g-2. Он содержит g-1 свободных (первых) точек, а значит, его индекс специальности i(D) удовлетворяет неравенству $i(D)\geq g+g-1-(2g-2)=1>0$. Отсюда $\varphi(D)=-2K$, так как D является дивизором некоторого голоморфного абелева дифференциала. Поэтому -2K+X=-2K и X=0 в $J(F_0)$. Следовательно, ρ — несущественный характер; противоречие.

Для g=2 по $Q_1[\mu_0], Q_2[\mu_0]$ найдем $P_1([\mu_0], \rho), P_2([\mu_0], \rho)$ так, что система (5) однозначно разрешима, и построим $f_1 \neq 0$. Тогда $f_1(z)\omega(z)\,dz$ будет базисом для 1-мерного комплексного векторного пространства голоморфных ρ -дифференциалов Прима с существенным характером ρ на F_0 , локально голоморфно зависящим от $[\mu]$ и ρ , так как решение $P_1([\mu], \rho), P_2([\mu], \rho)$ проблемы обращения Якоби (5) голоморфно зависит от $[\mu]$ и ρ .

Для $g \geq 3$, выбрав попарно различные целые дивизоры $P_{g+1} \dots P_{2g-2}$ степени g-2 (как нули для f) так, что задача обращения Якоби для (5) имеет однозначное решение, получим бесконечное число функций таких, как f, с заданным существенным характером ρ и с заданными фиксированными простыми полюсами Q_1, \dots, Q_{2g-2} на F_0 . Если выберем g-1 линейно независимых над $\mathbb C$ функций $f_1(z), \dots, f_{g-1}(z)$ (точнее, их ветвей) на Δ , то

$$f_1(z)\omega(z) dz, \ldots, f_{g-1}(z)\omega(z) dz$$

будет базисом голоморфных ρ -дифференциалов Прима на F_0 . Любые g функций такого вида будут линейно зависимы над \mathbb{C} . Действительно, если по g-1 попарно различным дивизорам степени g-2 выбраны функции f_1,\ldots,f_{g-1} и если f — любая другая функция, выбранная также по дивизору $D'=P'_1\ldots P'_{g-2},$ отличному от выбранных ранее дивизоров, то $f=\tilde{c}_1f_1+\cdots+\tilde{c}_{g-1}f_{g-1}$ на Δ . Сначала выберем ненулевое решение c_1,\ldots,c_{g-1} для системы уравнений

Таким образом, полюсы и характеры функций f и $c_1f_1+\cdots+c_{g-1}f_{g-1}$ одинаковы. Если у этих функций совпали g-2 нулей, то совпадут все остальные

(как однозначные решения проблемы обращения Якоби (5)). Следовательно, $cf=c_1f_1+\cdots+c_{g-1}f_{g-1},\ c\neq 0,$ и $\tilde{c}_j=c_j/c,\ j=1,\ldots,g-1.$

Для k=2 если f_1 , f_2 выбраны по различным дивизорам D_1, D_2 ($D_1 \neq D_2$) соответственно из $\{M_{g-2} \times P_0^2\} \backslash M_g^1$, то f_1 , f_2 будут линейно независимы над \mathbb{C} . Действительно, если $f_2=cf_1,\ c\neq 0$, то нули совпадают и совпадают их дивизоры нулей

$$D_1'D_1 = D_2'D_2. (*)$$

По условию $D_1 \neq D_2$ поточечно (т. е. их носители не пересекаются), а $D_1' \neq D_2'$ ввиду взаимной однозначности φ на $M_g \backslash M_g^1$ (или вследствие однозначности решения проблемы обращения Якоби). Из соотношений $D_1 \neq D_2$ и (*) получаем, что $D_1' \supset D_2$ и $D_2' \supset D_1$, т. е. $D_1' = D_2D_3$, $D_2' = D_1D_4$. Отсюда $D_2D_3D_1 = D_1D_4D_2$ и $D_3 = D_4$. Далее,

$$-2K + X - \varphi(D_1 P_0^2) = \varphi(D_2 D_3) = \varphi(D_1')$$

$$\neq \varphi(D_2') = \varphi(D_1 D_3) = -2K + X - \varphi(D_2 P_0^2).$$

Рассмотрим целый дивизор нулей $D_1D_2D_3$ для f_2 и f_1 степени g-2+g-2+2=2g-2. Он имеет 2g-4=s-1 свободных точек в силу произвола в выборе D_1 и D_2 в M_{g-2} . Тогда по [8, с. 125] имеем

$$s \le r\left(\frac{1}{D}\right) = \deg D + 1 - g + i(D),$$

или

$$i(D) \ge s - \deg D - 1 + g = 2g - 3 - 2g + 2 - 1 + g = g - 2 \ge 1 > 0$$

при $g\geq 3$, а мы как раз рассматриваем случай $g\geq 3$. Поэтому $D=D_1D_2D_3$ является дивизором голоморфного абелева дифференциала и $\varphi(D)=-2K$. Следовательно, -2K=-2K+X и X=0, что противоречит условию $X\neq 0$ так как ρ — существенный характер. Таким образом, $f_1,\ f_2$ линейно независимы над $\mathbb C$.

Для k=3 пусть f_3 линейно независима с f_1 и f_2 отдельно и f_1 , f_2 тоже линейно независимы, а f_3 выбрана по дивизору $D_3=P_{13}\dots P_{g-2,3}\neq D_1, D_2$. Тогда при $f_3=c_1f_1+c_2f_2, (c_1,c_2)\neq (0,0),$ составим систему линейных уравнений:

$$0 = c_1 f_1(P_{13}) + c_2 f_2(P_{13})$$

$$\vdots$$

$$0 = c_1 f_1(P_{g-2,3}) + c_2 f_2(P_{g-2,3})$$

из g-2 уравнений с двумя неизвестными c_1, c_2 ($g \ge 4$). Всегда можно выбрать дивизор $D_3 = P_{13}P_{23}\cdots \ne D_1, D_2$ и $D_3 \notin W_g^1$ такой, что система имеет единственное решение $c_1=0, c_2=0$. Таким образом, для g=2, g=3 и g=4 получили базис голоморфных дифференциалов Прима $f_1\omega; f_1\omega, f_2\omega$ и $f_1\omega, f_2\omega, f_3\omega$ соответственно, голоморфно зависящий от $[\mu]$ и ρ .

Если уже выбраны тем же способом линейно независимые функции $f_1,\ldots,f_{k-1},$ то выберем f_k по дивизору $D_k=P_{1k}\ldots P_{k-1,k}\ldots P_{g-2,k}\notin W_g^1,$ отличному от уже выбранных, так, что ранг матрицы $\left(f_j\left(P_l^k\right)\right),j=1,\ldots,k-1,l=1,\ldots,g-2,$ равен k-1. Получим систему линейно независимых функций f_1,\ldots,f_{k-1},f_k на $F_0.$ Продолжая для k от 4 до g-1, получим линейно независимые функции

 $f_1, \dots f_{g-1}$ на F_0 и базис $f_1\omega, \dots, f_{g-1}\omega$ голоморфных дифференциалов Прима, голоморфно зависящий от $[\mu]$ и ρ .

Для $g\geq 3$ есть другой способ выбора базиса голоморфных дифференциалов Прима, голоморфно зависящий от $[\mu]$ и ρ . Пусть $\omega_1,\ldots,\omega_{g-1},\omega_g$ — базис голоморфных абелевых дифференциалов на F_0 , голоморфно зависящий от $[\mu]$, $[\mu]\in U([\mu_0])$. Тогда $f_1\omega_1,\ldots,f_{g-1}\omega_{g-1},f_g\omega_g$ — набор голоморфных дифференциалов Прима на F_0 , где дивизоры нулей $(f_j)_0=\ldots D_j$ выбраны так же, как в предыдущем способе, и D_j , $j=1,\ldots,g$, будут попарно различными на F_0 . Так как любые g голоморфных дифференциалов Прима линейно зависимы над $\mathbb C$, то, отбрасывая один, получим g-1 линейно независимых голоморфных дифференциалов Прима на F_0 . Действительно, если $f_1\omega_1=c_2f_2\omega_2$, то нули f_1 и f_2 совпадают и, как раньше для случая k=2, получим противоречие. Если $c_1f_1\omega_1+\cdots+c_{g-1}f_{g-1}\omega_{g-1}=0$, то, например для $c_{g-1}\neq 0$, имеем

$$\omega_{g-1} = -\frac{1}{c_{g-1}} \sum_{j=1}^{g-2} c_j \frac{f_j \omega_j}{f_{g-1}}.$$

Отсюда дивизоры нулей для f_j совпадают с дивизором нулей для $f_{g-1}, j=1,\ldots,g-2$. Пришли к противоречию с выбором дивизоров $D_j, j=1,\ldots,g-1$, при $g\geq 3$. Следовательно, получен базис голоморфных дифференциалов Прима $f_1\omega_1,\ldots,f_{g-1}\omega_{g-1}$ на F_0 , голоморфно зависящий от $[\mu]$ и ρ .

Таким образом, доказана

Теорема 1. Для любых $g \geq 2$, $[\mu_0] \in \mathbb{T}_g(F_0)$, $\rho_0 \in \text{Hom}(\Gamma, \mathbb{C}^*) \backslash L_g$ существуют односвязные окрестности

$$U([\mu_0]) \subset \mathbb{T}_q(F_0), \quad U(\rho_0) \subset (\operatorname{Hom}(\Gamma, \mathbb{C}^*) \backslash L_q)$$

и голоморфные функции $f_j([\mu], \rho; z)$, $j=1,\ldots,g-1$, на $w^\mu(U)$, голоморфно зависящие от $[\mu] \in U([\mu_0])$, $\rho \in U(\rho_0)$, такие, что при фиксированных $[\mu]$ и ρ они задают базис $f_j([\mu], \rho; z)\,dz$, $j=1,\ldots,g-1$, в комплексном векторном пространстве ρ -дифференциалов Прима на отмеченной компактной римановой поверхности $w^\mu(U)/\Gamma^\mu$ рода g.

3. Расслоения Прима и Ганнинга над пространством Тейхмюллера

Пусть E — главное $\mathrm{Hom}(\Gamma,\mathbb{C}^*)$ -расслоение над $\mathbb{T}_g(F)$ со слоем $\mathrm{Hom}(\Gamma^\mu,\mathbb{C}^*)$ над точкой $[F_\mu]=\Gamma^\mu.$

Лемма 1. Голоморфное главное $\operatorname{Hom}(\Gamma, \mathbb{C}^*)$ -расслоение E биголоморфно изоморфно тривиальному расслоению $\mathbb{T}_g(F) \times \operatorname{Hom}(\Gamma, \mathbb{C}^*)$ над $\mathbb{T}_g(F)$.

Доказательство. Глобальная тривиализация (карта) Θ сопоставляет паре $([F_{\mu}]; \rho_{\mu}) \in [F_{\mu}] \times \mathrm{Hom}(\Gamma^{\mu}, \mathbb{C}^{*})$ упорядоченный набор

$$([F_{\mu}], \rho_{\mu}(A_1^{\mu}), \dots, \rho_{\mu}(A_g^{\mu}), \rho_{\mu}(B_1^{\mu}), \dots, \rho_{\mu}(B_g^{\mu})) \in [F_{\mu}] \times [\mathbb{C}^*]^{2g}$$

для любого $[F_{\mu}] \in \mathbb{T}_g(F)$. Она задает биекцию из E на $\mathbb{T}_g(F) \times [\mathbb{C}^*]^{2g}$ и определяет на E глобальную комплексно-аналитическую структуру. Аналогично отображение $\Theta_0: ([F_{\mu}]; \rho) \to ([F_{\mu}]; \rho(A_1), \ldots, \rho(A_g), \rho(B_1), \ldots, \rho(B_g))$ задает глобальную карту на $\mathbb{T}_g(F) \times \operatorname{Hom}(\Gamma, \mathbb{C}^*)$. Определим отображение Ψ по правилу $\Psi: ([F_{\mu}]; \rho_{\mu}) \to ([F_{\mu}]; \rho)$, где $\rho(A_j) = \rho_{\mu}(A_j^{\mu}), \, \rho(B_j) = \rho_{\mu}(B_j^{\mu}), \, j = 1, \ldots, g$. Оно

будет изоморфизмом из $\operatorname{Hom}(\Gamma^{\mu}, \mathbb{C}^{*})$ на $\operatorname{Hom}(\Gamma, \mathbb{C}^{*})$ при фиксированном $[F_{\mu}]$. В картах Θ и Θ_{0} отображение Ψ имеет вид (id, id), а значит, будет биголоморфным изоморфизмом из E на $\mathbb{T}_{q}(F) \times \operatorname{Hom}(\Gamma, \mathbb{C}^{*})$ над $\mathbb{T}_{q}(F)$. Лемма 1 доказана.

С помощью леммы 1 введем векторные расслоение Прима P над $\mathbb{T}_g(F) \times (\operatorname{Hom}(\Gamma,\mathbb{C}^*)\backslash L_g)$ со слоем $\Gamma([F_\mu],O^{1,0}(\rho_\mu))$ над точкой $([F_\mu];\rho)$, где $\rho(A_j)=\rho_\mu(A_j^\mu),\ \rho(B_j)=\rho_\mu(B_j^\mu),\ j=1,\ldots,g,$ и расслоение Ганнинга G над $\mathbb{T}_g(F)\times (\operatorname{Hom}(\Gamma,\mathbb{C}^*)\backslash 1)$ со слоем $H^1(\Gamma^\mu,\rho_\mu)$ над точкой $([F_\mu];\rho)$.

На P зададим естественную эрмитову метрику по аналогии с классическим эрмитовым скалярным произведением на пространстве голоморфных абелевых дифференциалов. Известно, что не существует глобальных голоморфных сечений для естественного отображения $\Phi: M(F) \to \mathbb{T}_g(F)$ [13]. Однако как показал Эрл [13], существует семейство глобальных вещественно-аналитических сечений для Φ , параметризованное единичным диском на \mathbb{C} . Пусть $s: \mathbb{T}_g(F) \to M(F)$ — любое такое фиксированное глобальное вещественно-аналитическое сечение.

Для элементов $\phi_1 = \phi_1(z) dz$, $\phi_2 = \phi_2(z) dz \in \Gamma([F_\mu], O^{1,0}(\rho_\mu))$ их эрмитово скалярное произведение (в слое над $([F_\mu]; \rho)$) определяется по формуле

$$\langle \phi_1, \phi_2 \rangle = i \int_{\Delta(s[\mu])} \phi_1(w) \, dw \wedge \overline{\phi_2(w) \, dw},$$

где $w\in \Delta(s[\mu])=w^{s[\mu]}(\Delta);\ \Delta$ — фиксированная связная фундаментальная область для Γ , естественно выбранная по фиксированному набору петель из отмечания на F; $[\mu]\equiv [F_\mu]\in \mathbb{T}_g(F).$ Например, область Δ получается подъемом (коммутаторного) пути $\prod_{j=1}^g C_j$ из фиксированной точки $z_0\in U$, лежащей над точкой $O\in F$, из которой проведено фиксированное каноническое рассечение на F. Это будет послойная эрмитова метрика на P над $\mathbb{T}_g(F)\times (\mathrm{Hom}(\Gamma,\mathbb{C}^*)\backslash L_g)$, так как

$$\langle \phi_1, \phi_2 \rangle = i \int_{\Lambda} \phi_1(w^{s[\mu]}(z)) dw^{s[\mu]}(z) \wedge \overline{\phi_2(w^{s[\mu]}(z)) dw^{s[\mu]}(z)}$$

вещественно-аналитично на вещественно-аналитических сечениях расслоения P.

Теорема 2. Расслоение Прима P является эрмитовым голоморфным векторным расслоением ранга g-1 над $\mathbb{T}_g(F) \times (\operatorname{Hom}(\Gamma, \mathbb{C}^*) \backslash L_g)$.

ДОКАЗАТЕЛЬСТВО. На P уже задана послойная эрмитова метрика. По-кажем, что P будет голоморфным векторным расслоением. По теореме 1 над любой достаточно малой односвязной окрестностью $U([F_{\mu_0}] \times U(\rho_0))$ в базе существует базис $\{\phi_j([\mu]; \rho_\mu; z) \, dz\}_{j=1}^{g-1}$ для $\Gamma([F_\mu]; O^{1,0}(\rho_\mu))$, голоморфно зависящий от $([\mu]; \rho) \in U([F_{\mu_0}]) \times U(\rho_0)$. Отображение, сопоставляющее

$$\phi([\mu], \rho_{\mu}; z) dz = \sum_{j=1}^{g-1} \lambda_{j}([\mu]; \rho) \phi_{j}([\mu]; \rho_{\mu}; z) dz$$

набор

$$([\mu], \rho; \lambda_1([\mu], \rho), \ldots, \lambda_{q-1}([\mu], \rho)),$$

задает тривиализацию (карту) $\Theta([\mu_0], \rho_0)$, биективно и послойно изоморфно отображающую $P|_{U([F_{\mu_0}])\times U(\rho_0)}$ на $U([F_{\mu_0}])\times U(\rho_0)\times \mathbb{C}^{g-1}$.

Пусть $U([F_{\mu_1}]) \cap U([F_{\mu_2}])$ и $U(\rho_1) \cap U(\rho_2)$ — непустые односвязные области в $\mathbb{T}_g(F)$ и в $\mathrm{Hom}(\Gamma,\mathbb{C}^*) \backslash L_g$, а $\{\phi_j([\mu],\rho_\mu;z)\,dz\}_{j=1}^{g-1}$ и $\{\phi_k'([\mu],\rho_\mu;z)\,dz\}_{k=1}^{g-1}$ — базисы над $U([F_{\mu_1}]) \times U(\rho_1)$ и $U([F_{\mu_2}]) \times U(\rho_2)$ соответственно. Тогда невырожденная матрица A_{12} перехода от первого базиса ко второму состоит из голоморфных функций от $([\mu],\rho)\in (U([F_{\mu_1}])\cap U([F_{\mu_2}])) \times (U(\rho_1)\cap U(\rho_2))$. Для любого такого $([\mu],\rho)$ имеем

$$\phi([\mu], \rho_{\mu}; z) dz = \sum_{j=1}^{g-1} \lambda_{j}([\mu], \rho) \phi_{j}([\mu], \rho_{\mu}; z) dz$$

$$= \sum_{k=1}^{g-1} \beta_{k}([\mu], \rho) \phi'_{k}([\mu], \rho_{\mu}; z) dz, \quad z \in w^{\mu}(U).$$

Поэтому вектор-столбец $(\beta_1([\mu],\rho),\ldots,\beta_{g-1}([\mu],\rho))$ получается как результат действия слева голоморфно зависящей от $([\mu],\rho)$ матрицы $(A_{12}^T)^{-1}$ на вектор-столбец $(\lambda_1([\mu],\rho),\ldots,\lambda_{g-1}([\mu],\rho))$, где A_{12}^T — матрица, получающаяся транспонированием A_{12} . Следовательно, набор локальных карт $\Theta([\mu_0],\rho_0)$ $([\mu_0] \in \mathbb{T}_g(F),\rho_0 \in \operatorname{Hom}(\Gamma,\mathbb{C}^*)\backslash L_g)$ задает на P структуру голоморфного векторного расслоения над $\mathbb{T}_q(F) \times (\operatorname{Hom}(\Gamma,\mathbb{C}^*)\backslash L_g)$. Теорема 2 доказана.

Теорема 3. Когомологическое расслоение Ганнинга G является голоморфным векторным расслоением ранга 2g-2 над $\mathbb{T}_g(F) \times (\operatorname{Hom}(\Gamma, \mathbb{C}^*) \setminus 1)$.

Доказательство. Покроем $\operatorname{Hom}(\Gamma, \mathbb{C}^*) \setminus 1$ 2g окрестностями

$$U_l = \{ \rho : \rho(A_l) \neq 1 \}, \quad U_{q+l} = \{ \rho : \rho(B_l) \neq 1 \}, \quad l = 1, \dots, g.$$

При $\rho_{\mu} \neq 1$, как установлено в [3], существует изоморфизм векторного пространства $H^1(\Gamma^{\mu},\rho_{\mu})$ и векторного пространства $\operatorname{Hom}_{\rho_{\mu}}([\Gamma^{\mu},\Gamma^{\mu}],\mathbb{C})$, состоящего из гомоморфизмов $\phi_0: [\Gamma^{\mu},\Gamma^{\mu}] \to (\mathbb{C},+)$ таких, что $\phi_0(S^{\mu}T^{\mu}(S^{\mu})^{-1}) = \rho_{\mu}(S^{\mu})\phi_0(T^{\mu})$, где $T^{\mu} \in [\Gamma^{\mu},\Gamma^{\mu}], S^{\mu} \in \Gamma^{\mu}, [\Gamma,\Gamma]$ — коммутант группы Γ . Значит, расслоение G над $\mathbb{T}_g(F) \times (\operatorname{Hom}(\Gamma,\mathbb{C}^*)\backslash 1)$ изоморфно расслоению со слоем $\operatorname{Hom}_{\rho_{\mu}}([\Gamma^{\mu},\Gamma^{\mu}],\mathbb{C})$ над $([\mu],\rho)$, где $\rho(A_j) = \rho_{\mu}(A_j^{\mu}), \ \rho(B_j) = \rho_{\mu}(B_j^{\mu}), \ j=1,\ldots,g$. Зададим карту $\Theta(U_l,\{A_j,B_j\}_{j=1}^g)$ над $\mathbb{T}_g(F) \times U_l$, биективно отображающую $G\mid_{\mathbb{T}_g(F)\times U_l}$ на $\mathbb{T}_g(F) \times U_l \times \mathbb{C}^{2g-2}$ по правилу: элементу $\phi_0([\mu],\rho_{\mu}) \in \operatorname{Hom}_{\rho_{\mu}}([\Gamma^{\mu},\Gamma^{\mu}],\mathbb{C})$ сопоставляется набор

$$([\mu], \rho; \xi_1^l, \dots, \xi_{g-1}^l, \eta_1^l, \dots, \eta_{g-1}^l).$$

Здесь над U_l имеем

$$\xi_j^l = \phi_0([\mu], \rho_\mu) \left(\left[A_{\tilde{j}}^\mu, A_l^\mu \right] \right), \quad \eta_j^l = \phi_0([\mu], \rho_\mu) \left(\left[B_{\tilde{j}}^\mu, A_l^\mu \right] \right),$$

а над U_{g+l} —

$$\xi_j^{g+l} = \phi_0([\mu], \rho_\mu) \left(\left[A_{\tilde{j}}^\mu, B_l^\mu \right] \right), \quad \eta_j^{g+l} = \phi_0([\mu], \rho_\mu) \left(\left[B_{\tilde{j}}^\mu, B_l^\mu \right] \right),$$

где $\tilde{j}=j$ при $1\leq j\leq l-1$ и $\tilde{j}=j+1$ при $l\leq j\leq g-1$. Для $\rho\in U_1$, например, будет $\sigma_\mu(A_1^\mu)=1-\rho_\mu(A_1^\mu)\neq 0$ и любой элемент $\phi_0=\phi_0([\mu],\rho_\mu)\in \mathrm{Hom}_{\rho_\mu}([\Gamma^\mu,\Gamma^\mu],\mathbb{C})$ можно задать как $\phi_0=\phi^1\mid [\Gamma^\mu,\Gamma^\mu]$ для $\phi^1=\phi^1([\mu],\rho_\mu)\in Z^1(\Gamma^\mu,\rho_\mu)$ такого, что $\phi^1(A_1^\mu)=0,\,\phi^1(T^\mu)=\sigma_\mu(A_1^\mu)^{-1}\phi_0([T^\mu,A_1^\mu]),\,T^\mu\in\Gamma^\mu.$ Отсюда

$$\xi_i^1 = \phi_0(\lceil A_{i+1}^{\mu}, A_1^{\mu} \rceil) = \phi^1(\lceil A_{i+1}^{\mu}, A_1^{\mu} \rceil) = \sigma_{\mu}(A_1^{\mu})\phi^1(A_{i+1}^{\mu}),$$

$$\eta_j^1 = \phi_0([B_{j+1}^{\mu}, A_1^{\mu}]) = \phi^1([B_{j+1}^{\mu}, A_1^{\mu}]) = \sigma_{\mu}(A_1^{\mu})\phi^1(B_{j+1}^{\mu}), \quad j = 1, \dots, g-1.$$

Кроме того, из уравнения (3) следует, что

$$\phi^{1}(B_{1}^{\mu}) = \sigma_{\mu}(A_{1}^{\mu})^{-2} \sum_{j=1}^{g-1} [\sigma_{\mu}(B_{j+1}^{\mu})\xi_{j}^{1} - \sigma_{\mu}(A_{j+1}^{\mu})\eta_{j}^{1}].$$

Таким образом, $\phi^1(A_j^\mu), \phi^1(B_j^\mu), \ j=1,\ldots,g$, выражаются через $\xi_j^1,\eta_j^1,\ j=1,\ldots,g-1$, и последние можно взять в качестве координат для ϕ_0 в слоях над $\mathbb{T}_g(F)\times U_1$. Аналогично можно поступить для остальных окрестностей. Теперь так же, как в доказательстве теоремы 1 из [4], получим, что матрицы перехода $A_{k,l}$ голоморфны на $\mathbb{T}_g(F)\times (U_l\cap U_k)$ для всех $k,l=1,\ldots,2g$. Следовательно, такие карты $\Theta(U_l,\{A_j,B_j\}_{j=1}^g),l=1,\ldots,2g$, задают структуру голоморфного векторного расслоения на G над $\mathbb{T}_g(F)\times (\operatorname{Hom}(\Gamma,\mathbb{C}^*)\backslash 1)$. Теорема 3 доказана.

Из свойств отображения периодов $p:P\to G$ получается

Теорема 4. Последовательность голоморфных векторных расслоений и отображений

$$0 \to P \xrightarrow{p} G \xrightarrow{h} G/P \to 0$$

над $\mathbb{T}_q(F) \times (\operatorname{Hom}(\Gamma, \mathbb{C}^*) \backslash L_q)$ является точной для любого $g \geq 2$.

Доказательство. По предыдущим теоремам расслоения P и G имеют структуру голоморфных векторных расслоений. Кроме того, p — послойная инъекция. Покажем, что отображение p голоморфно относительно этих структур. Пусть $U([\mu_0]) \times U(\rho_0)$ — достаточно малая односвязная окрестность точки $([\mu_0], \rho_0)$, как в теореме 1, где $U(\rho_0) \subset (\operatorname{Hom}(\Gamma, \mathbb{C}^*) \backslash L_g)$. Тогда $U(\rho_0)$ лежит в одной из областей $U_j = \{\rho: \rho(A_j) \neq 1\}, \ U_{g+j} = \{\rho: \rho(B_j) \neq 1\}, \ j = 1, \ldots, g,$ покрытия для $\operatorname{Hom}(\Gamma, \mathbb{C}^*) \backslash 1$. Пусть, например, $U(\rho_0) \subset U_1$. Тогда существует базис голоморфных дифференциалов Прима:

$$\phi_1([\mu], \rho_{\mu}; z) dz, \dots, \phi_{q-1}([\mu], \rho_{\mu}; z) dz,$$

голоморфно зависящий от $([\mu]; \rho) \in U([\mu_0]) \times U(\rho_0), z \in w^{\mu}(U)$, и любой элемент $\phi([\mu], \rho_{\mu}; z) \, dz \in \Gamma([F_{\mu}], \rho_{\mu})$ имеет разложение

$$\phi([\mu], \rho_{\mu}; z) dz = \sum_{j=1}^{g-1} \lambda_j([\mu], \rho) \phi_j([\mu], \rho_{\mu}; z) dz.$$

В карте $\Theta([\mu_0], \rho_0)$ он имеет послойные координаты $(\lambda_1([\mu], \rho), \dots, \lambda_{g-1}([\mu], \rho))$. Элемент

$$[\phi([\mu];\rho_{\mu})] = p(\phi([\mu],\rho_{\mu};z) dz) \in H^1(\Gamma^{\mu},\rho_{\mu})$$

в карте $\Thetaig(U_1;\{A_j,B_j\}_{j=1}^gig)$ над $\mathbb{T}_g(F)\times U_1$ имеет послойные координаты

$$\xi_j^1 = \tilde{\phi}^1([A_{j+1}, A_1]) = \int_{z_0}^{[A_{j+1}, A_1]z_0} \phi([\mu], \rho_\mu; z) \, dz,$$

$$\eta_j^1 = \tilde{\phi}^1([B_{j+1}, A_1]) = \int_{z_0}^{[B_{j+1}, A_1]z_0} \phi([\mu], \rho_\mu; z) dz, \quad j = 1, \dots, g-1,$$

где $\tilde{\phi}^1 \in Z^1(\Gamma^\mu, \rho_\mu)$ — любой представитель класса периодов $[\phi([\mu], \rho_\mu)]$ при $\rho_\mu \in U_1$ [3]. Следовательно, вектор-столбец $(\xi_1^1, \dots, \xi_{g-1}^1, \eta_1^1, \dots, \eta_{g-1}^1)$ получается как действие слева матрицы $A([\mu], \rho)$ на вектор-столбец

$$(\lambda_1([\mu], \rho), \ldots, \lambda_{q-1}([\mu], \rho)).$$

Здесь j-я строка матрицы $A([\mu], \rho)$ есть

$$(\tilde{\phi}_1^1([\mu], \rho_{\mu})([A_{j+1}, A_1]), \dots, \tilde{\phi}_{q-1}^1([\mu], \rho_{\mu})([A_{j+1}, A_1]))$$

и (g+j-1)-я строка —

$$(\tilde{\phi}_1^1([\mu], \rho_{\mu})([B_{j+1}, A_1]), \dots, \tilde{\phi}_{g-1}^1([\mu], \rho_{\mu})([B_{j+1}, A_1])), \quad j = 1, \dots, g-1.$$

Эта матрица порядка $(g-1) \times (2g-2)$ состоит из элементов, голоморфно зависящих от $([\mu], \rho) \in U([\mu_0]) \times U(\rho_0)$, где

$$\tilde{\phi}_k^1([\mu], \rho_\mu)[A_{j+1}, A_1] = \int_{z_0}^{[A_{j+1}, A_1]z_0} \phi_k([\mu], \rho_\mu; z) dz,$$

$$\tilde{\phi}_k^1([\mu], \rho_\mu)[B_{j+1}, A_1] = \int_{z_0}^{[B_{j+1}, A_1]z_0} \phi_k([\mu], \rho_\mu; z) \, dz, \quad k = 1, \dots, g-1.$$

Аналогично получаются голоморфные матрицы для отображения p в других случаях, когда $U(\rho_0) \subset U_l, \ l=2,3,\ldots,2g$, но надо рассматривать соответствующие коммутаторы. Следовательно, p будет голоморфным отображением относительно структур на P и на G.

Теперь нужно доказать, что на фактор-расслоении $G/P \equiv G/p(P)$ можно задать структуру голоморфного векторного расслоения, относительно которой естественное отображение $h: G \to G/P$ будет голоморфным. Сначала покажем, что p(P) является голоморфным векторным подрасслоением в голоморфном векторном расслоении G. Над достаточно малой окрестностью $U([\mu_0]) \times U(\rho_0)$ выберем фиксированный базис

$$\phi_1(z) dz = \phi_1([\mu], \rho_{\mu}; z) dz, \dots, \phi_{g-1}(z) dz = \phi_{g-1}([\mu], \rho_{\mu}; z) dz,$$

голоморфно зависящий от $([\mu], \rho)$. В карте $\Theta([\mu_0], \rho_0)$ он имеет послойные координаты

$$(1,0,\ldots,0),\ldots,(0,\ldots,0,1)\in\mathbb{C}^{g-1}$$

соответственно. Голоморфное инъективное \mathbb{C} -линейное отображение p этот базис переводит в линейно независимую над \mathbb{C} систему $\{p(\phi_j(z)\,dz)\}_{j=1}^{g-1}$ сечений расслоения G, также голоморфно зависящую от $([\mu],\rho)\in U[\mu_0]\times U(\rho_0)$. Снова достаточно рассмотреть случай, когда $U(\rho_0)\subset U_1$. В карте

$$\Theta(U_1; \{A_j, B_j\}_{j=1}^g)$$

сечение $p(\phi_1(z) dz)$ имеет координаты

$$(\xi_1, \dots, \xi_{g-1}, \eta_1, \dots, \eta_{g-1}) = (1, 0, \dots, 0)A^T([\mu], \rho)$$

= $(\tilde{\phi}_1^1[A_2, A_1], \dots, \tilde{\phi}_1^1[A_g, A_1], \tilde{\phi}_1^1[B_2, A_1], \dots, \tilde{\phi}_1^1[B_g, A_1]), \dots,$

 $p(\phi_{g-1}(z)\,dz)$ — координаты $(\tilde{\phi}_{g-1}^1[A_2,A_1],\dots,\tilde{\phi}_{g-1}^1[B_g,A_1])$. Составим матрицу размера $(g-1)\times(2g-2)$ из этих строк. Она содержит ровно g-1 линейно независимых строк и столько же независимых столбцов. Рассмотрим эту матрицу при фиксированных $([\mu_0],\rho_0)$. Существует биголоморфный автоморфизм α для \mathbb{C}^{2g-2} , переставляющий координаты и такой, что после его естественного действия на столбцы этой матрицы она будет иметь вид $(C_1([\mu_0],\rho_0);C_2([\mu_0],\rho_0))$, где $\det C_1([\mu_0],\rho_0)\neq 0$. В достаточно малой окрестности (обозначим ее так же) $U[\mu_0]\times U(\rho_0)$ имеем $\det C_1([\mu],\rho)\neq 0$. Строки полученной матрицы дают набор линейно независимых сечений в тривиальном расслоении $U[\mu_0]\times U(\rho_0)\times \mathbb{C}^{2g-2}$, голоморфно зависящих от $([\mu],\rho)$, и порождают, для фиксированной точки $([\mu],\rho),(g-1)$ -мерное подпространство в \mathbb{C}^{2g-2} . Дополним этот набор базисными векторами e_g,\dots,e_{2g-2} до базиса сечений в $U[\mu_0]\times U(\rho_0)\times \mathbb{C}^{2g-2}$.

Получаем квадратную матрицу порядка 2g-2 вида $\begin{pmatrix} C_1 & C_2 \\ O & I \end{pmatrix}$, где I— единичная матрица порядка g-1. Биголоморфный автоморфизм β этого произведения, который при фиксированных $([\mu],\rho)$ имеет матрицу преобразования вида $\begin{pmatrix} C_1^{-1} & -C_1^{-1}C_2 \\ O & I \end{pmatrix}$, переводит указанный базис сечений в стандартный базис сечений e_1,\ldots,e_{2g-2} для $U(\rho_0)\times\mathbb{C}^{2g-2}$. Поэтому в новой карте $\Psi=\beta\alpha\Theta(U_1,\{A_j,B_j\}_{j=1}^g)$ той же структуры голоморфного векторного расслоения набор голоморфных сечений $p(\phi_1(z)\,dz),\ldots,p(\phi_{g-1}(z)\,dz)$) имеет вид $([\mu],\rho,e_1),\ldots,([\mu],\rho,e_{g-1})$. Следовательно, получаем послойный изоморфизм

$$\Psi: p(P)|_{U[\mu_0] \times U(\rho_0)} \to (U[\mu_0] \times U(\rho_0) \times \mathbb{C}^{g-1}) \subset U[\mu_0] \times U(\rho_0) \times \mathbb{C}^{2g-2},$$

а значит, p(P) является голоморфным векторным подрасслоением ранга g-1 в G. В таких картах Ψ матрица перехода $A_{0,1;k,l}([\mu],\rho)$ для G над $U(\rho_0)$ принимает вид $\begin{pmatrix} I & O \\ C & D \end{pmatrix}$, где матрицы

$$A = A([\mu], \rho) = I, \quad C = C([\mu], \rho), \quad D = D([\mu], \rho)$$

порядка g-1 голоморфно зависят от $([\mu], \rho) \in (U[\mu_0] \cap U[\mu_1]) \times (U_k \cap U_l)$. При этом $A([\mu], \rho)$ и $D([\mu], \rho)$ являются матрицами перехода для p(P) и G/p(P) соответственно, а значит, G/p(P) — голоморфное векторное расслоение со слоем $H^1(\Gamma^\mu, \rho_\mu)/(p(P))_{([\mu], \rho)}$ над точкой $([\mu], \rho)$. Отображение

$$h: [\phi([\mu], \rho_{\mu})] \to [\phi([\mu], \rho_{\mu})] + p(P)_{([\mu], \rho)}$$

в картах Ψ будет иметь вид

$$([\mu], \rho; \xi_1, \dots, \xi_{g-1}; \eta_1, \dots, \eta_{g-1}) \to ([\mu], \rho; 0, \dots, 0; \eta_1, \dots, \eta_{g-1}).$$

Следовательно, отображение h будет голоморфным. Теорема 4 доказана.

Замечание. Пространство Торелли Υ_g определяется как фактор-пространство $\mathbb{T}_g(F)/\tau_g$, где группа Торелли τ_g — нормальная подгруппа в $\operatorname{Mod} \mathbb{T}_g$, состоящая из элементов, тождественно действующих на первой группе гомологий $H_1(F,Z)$ поверхности F [5,6]. Так как τ_g действует свободно на $\mathbb{T}_g(F)$, т. е. без неподвижных точек, то определено естественное неразветвленное голоморфное накрытие $\mathbb{T}_g(F) \to \Upsilon_g$. Группа накрывающих отображений этого накрытия естественно действует как группа биголоморфных автоморфизмов пространства $\mathbb{T}_g(F) \times (\operatorname{Hom}(H_1(F,Z),\mathbb{C}^*) \backslash L_g)$ (тождественно на втором сомножителе).

Поэтому теоремы 1–4 будут верны для естественно определенных над $\Upsilon_g \times (\operatorname{Hom}(H_1(F,Z),\mathbb{C}^*) \setminus L_g)$ расслоений Прима и Ганнинга, так как

$$\operatorname{Hom}(\Gamma, \mathbb{C}^*) \cong \operatorname{Hom}(\Gamma/[\Gamma, \Gamma], \mathbb{C}^*) = \operatorname{Hom}(H_1(F, Z), \mathbb{C}^*).$$

ЛИТЕРАТУРА

- Prym F., Rost G. Theorie der Prymschen Funktionen erster Ordnung im Anschluss an die Schoepfungen Riemann's. Leipzig, 1911.
- Appell P. Sur les integrales de fonctions a multiplicateurs et leur application an developpement des fonctions abeliennes en series trigonometriques // Acta Math. 1890. V. 13, N 3/4. P. 1–174.
- Gunning R. C. On the period classes of Prym differentials // J. Reine Angew. Math. 1980.
 V. 319. P. 153–171.
- Чуешев В. В. Когомологическое расслоение Ганнинга и группа Торелли // Сиб. мат. журн. 1990. Т. 31, № 3. С. 198–203.
- Крушкаль С. Л. Квазиконформные отображения и римановы поверхности. Новосибирск: Наука. 1975.
- Earle C. J. Teichmueller theory // Discrete groups and automorhpic functions. London: Academic Press, 1977. (Proc. the London Math. Soc.(ed. by Harvey W.J.)). P. 143–162.
- Earle C. J. Families of Riemann surfaces and Jacobi varieties // Ann. Math. 1978. V. 107.
 P. 255–286
- Farkas H. M., Kra I. Riemann surfaces. New York: Springer-Verl., 1992. (Grad. Text's Math.; v.71).
- Bers L. Holomorphic differentials as functions of Moduli // Bull. Amer. Math. Soc. 1961.
 V. 67, N 2. P. 206–210.
- Baker H. F. Abel's theorem and the allied theory (including the theory of theta functions). Cambridge: Cambridge Univ. Press., 1897.
- **11.** Мамфорд Д. Лекции о тэта-функциях. М.: Мир, 1988.
- Earle C. J., Kra I. Positive divisors and Poincare series on variable Riemann surfaces // Tohôku Math. J. 1987. V. 39. P. 429–436.
- Earle C. J. On quasiconformal extentions of the Beurling Ahlfors type // Contributions to Analysis. New-York; London: Acad. Press, 1974. P. 99–105.

Cтатья поступила 19 ноября 1999 г., окончательный вариант - 14 февраля 2001 г.

Чуешев Виктор Васильевич Кемеровский гос. университет, ул. Красная, 6, Кемерово 650043 chueshev@lanserv1.kemsu.ru