ОБ ОДНОМ УСЛОВИИ РАЗРЕШИМОСТИ СИСТЕМ С ИНЪЕКТИВНЫМ СИМВОЛОМ В ТЕРМИНАХ ИТЕРАЦИЙ ПОТЕНЦИАЛОВ ДВОЙНОГО СЛОЯ

А. А. Шлапунов

Аннотация: Доказывается существование $H^p(D)$ -предела итераций потенциалов двойного слоя, построенных при помощи параметрикса Ходжа на гладком компактном многообразии X (здесь D — открытое связное подмножество в X). Этот предел является ортогональным проектором из пространства Соболева $H^p(D)$ на замкнутое подпространство $H^p(D)$ -решений некоторого эллиптического оператора P порядка $p \geq 1$. Используя этот результат, мы получаем формулы для соболевских решений уравнения Pu = f в D, если такие решения существуют. Решения даются в виде суммы ряда, слагаемые которого суть итерации потенциалов двойного слоя. Похожее разложение построено также для P-задачи Неймана в D. Библиогр. 8.

1. Введение

Работа базируется на одном очень простом наблюдении. Рассмотрим операторное уравнение Au=f с некоторым ограниченным линейным оператором $A:H_0\to H_1$ в гильбертовых пространствах $H_0,\ H_1$ и предположим, что для всех $u\in H_0$ справедлива следующая формула:

$$u = \Pi_1 u + \Pi_2 A u,$$

где Π_1 — проектор из H_0 на ядро ker A. Тогда можно надеяться, что при разумных условиях элемент $\Pi_2 f$ определяет решение уравнения Au = f. Этот метод неоднократно использовался в комплексном анализе и хорошо зарекомендовал себя там.

Известно, что теория Ходжа для эллиптического дифференциального оператора P на компактном многообразии X дает L^2 -ортогональный проектор на пространство решений уравнения Pu=0 на всем X. В настоящей работе, используя теорию Ходжа, мы строим ортогональный проектор из пространства Соболева $H^p(D)$ (где D — открытое связное подмножество в X, а p — порядок оператора P) на замкнутое подпространство $H^p(D)$ -решений уравнения Pu=0 в D (см. § 2 и 3).

Работа мотивирована следующими соображениями. Во-первых, локальная разрешимость линейных дифференциальных операторов с инъективным символом и гладкими коэффициентами уже многие годы является одним из основных нерешенных вопросов теории переопределенных систем (см., например, [1]). Вышеупомянутые результаты позволяют построить формулу для H^p -решений

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 00–15–96140) и группы профессора Шульце (университет г. Потсдам, Германия).

уравнения Pu=f на открытых подмножествах в X для оператора P с инъективным символом, если такие решения существуют (см. §4). Решение дается в виде суммы ряда, слагаемые которого суть итерации потенциалов двойного слоя, в то время как разрешимость уравнения Pu=f эквивалентна сходимости этого ряда вместе с ортогональностью ядру ker P^* (последнее представляет собой тривиальное необходимое условие разрешимости). Во-вторых, этот метод дает возможность построить аналогичное разложение для P-задачи Неймана (см. §5, 6).

Для системы Коши — Римана $P=\bar{\partial}$ в \mathbb{C}^n (n>1) эти потенциалы двойного слоя являются интегралами типа Мартинелли — Вохнера. В этом случае подобные результаты получены А. В. Романовым [2] и А. М. Кытмановым [3 с. 177]. В [2] построена явная формула для решения $u\in H^1(D)$ уравнения $\bar{\partial}u=f$, где D — псевдовыпуклая область с гладкой границей, а $f-\bar{\partial}$ -замкнутая (0,1)-форма с коэффициентами из $H^1(D)$; в [3] регуляризована $\bar{\partial}$ -задача Неймана в таких областях.

2. Теория Ходжа на компактном многообразии

Пусть $X-C^\infty$ -многообразие размерности $\dim X=n, E$ и F — гладкие $\mathbb C$ -векторные расслоения над X, а $do_p(E\to F)$ — векторное пространство линейных дифференциальных операторов с гладкими коэффициентами порядка $\leq p$ между расслоениями E и F. Пусть E^* — сопряженное расслоение к E, $(.,.)_x$ — эрмитова метрика в слоях E, dx — форма объема на X. Обозначим через $^tP \in do_p(F^*\to E^*)$ транспонированный оператор, а через $P^* \in do_p(F\to E)$ — (формально) сопряженный для $P \in do_p(E\to F)$.

Пусть $S_P(U)$ обозначает пространство слабых решений уравнения Pu=0 на открытом подмножестве U в X. Для всякой области (т. е. открытого связного множества) D в X обозначим через $L^2(E_{|D})$ пространство Лебега, состоящее из всех измеримых функций на D, для которых $(u,u)_{L^2(E_{|D})}=\int\limits_D (u,u)_x\,dx<\infty$.

Обозначим также через $H^m(E_{|D})$ пространство Соболева, состоящее из сечений-распределений расслоения E над D, слабые производные которых принадлежат $L^2(E_{|D})$ до порядка m, а через $S_P^m(D)$ — замкнутое подпространство в $H^m(E_{|D})$, состоящее из слабых решений уравнения Pu=0 в D ($m \in \mathbb{N}$).

Пусть $\sigma(P)$ — главный символ оператора P. В дальнейшем мы будем предполагать, что символ $\sigma(P)(x,\zeta)$ инъективен для всех $x\in X$ и векторов ζ из (действительного) кокасательного расслоения над многообразием X. Тогда лапласиан $\Delta=P^*P$ является эллиптическим оператором порядка 2p на X и для него существует параметрикс Ходжа, скажем, Φ (см., например, $[1,\S 8]$).

Рассмотрим для $u, v \in H^p(E)$ эрмитову форму

$$h(u,v) = \int_X (Pu, Pv)_x dx + \int_X (Ku, Kv)_x dx,$$

где K — соответствующий Φ ортогональный L^2 -проектор на конечномерное пространство $S_P(X)$, для которого $PK = KP^* = 0$ и $\Phi K = K\Phi = 0$.

Предложение 2.1. Эрмитова форма $h(\cdot, \cdot)$ является скалярным произведением на $H^p(E)$, определяющим топологию, эквивалентную исходной. Оператор K является ортогональным относительно $h(\cdot, \cdot)$ проектором на подпро-

странство $S_P(X)$ в $H^p(E)$. Положим

$$Tf(x) = \int_{Y} {}^{t}({}^{t}P^{*}(y)\Phi(x,y))f(y) dy.$$

Тогда

$$h(Tf, u) = \int_{X} (f, Pu)_x dx$$

для всех $f \in L^2(F), u \in H^p(E)$.

Доказательство. Интегрируя по частям, получаем

$$(TPu)(x) + (Ku)(x), \quad x \in X, \tag{2.1}$$

для всех $u \in H^p(E)$. Коэффициенты оператора P являются $C^\infty(E)$ -функциями, а значит, $Pu \in L^2(F)$. Из (2.1) следует, что h(u,u)=0 эквивалентно $u\equiv 0$ на X. Поскольку $(\cdot,\cdot)_x$ является эрмитовой метрикой, заключаем, что $h(\cdot,\cdot)$ представляет собой скалярное произведение на $H^p(E)$. Так как оператор K сглаживающий, то $\|.\|_{H^p(E)}$ не слабее, чем $\sqrt{h(\cdot,\cdot)}$.

Из (2.1) и теоремы об ограниченности псевдодифференциальных операторов (см. [4, 1.2.3.5]) вытекает, что найдется такая постоянная $c_1 > 0$, что для всех $u \in H^p(E)$

$$||u||_{H^p(E)}^2 \le c_1(||Pu||_{L^2(F)}^2 + ||Ku||_{H^p(E)}^2).$$

Поскольку K сглаживающий, найдется такая постоянная $c_2 > 0$, что

$$||Ku||_{H^p(E)}^2 \le c_2 ||Ku||_{L^2(E)}^2$$

для всех $u \in H^p(E)$. Эквивалентность топологий доказана.

Если $f \in C^{\infty}(F)$, $u \in H^p(E)$, то, интегрируя по частям, получаем $Tf = \Phi(P^*f)$. Из свойств параметрикса Ходжа следует, что KTf = 0, а значит,

$$h(Tf, u) = \int_X (P\Phi(P^*f), Pu)_x \, dx = \int_X (P^*P\Phi(P^*f), u)_x \, dx$$
$$= \int_X (P^*f, u)_x \, dx = \int_X (f, Pu)_x \, dx.$$

Поскольку $C^{\infty}(F)$ плотно в $L^{2}(F)$, справедливо требуемое утверждение для интеграла T.

Наконец, для $u, v \in H^p(E)$ видим, что

$$h(Ku, v) = h(u, v) - h(TPu, v) = \int_{X} (Ku, Kv)_x dx,$$

т. е. K — самосопряженный оператор относительно h(.,.) в $H^p(E)$ и $K^2=I,$ что и требовалось. \square

Как хорошо известно, с помощью оператора T легко получить условия разрешимости уравнения PU=f на X и найти само решение. На самом деле параметрикс Ходжа может быть полезен для этой цели и на открытых подмножествах многообразия X. Обозначим через $G_P(.,.)$ оператор Грина для

 $P \in do_p(E \to F)$ (см., например, [1, с. 82]). Пусть D — относительно компактная область в X с гладкой границей ∂D . Определим операторы T_D , K_D и M, положив

$$(K_D u)(x) = \int_D^t (K(x,y))u(y) \, dy \quad (x \in X),$$

$$(Mu)(x) = -\int_{\partial D} G_P(^t P^*(y,D)\Phi(x,y), u(y)) \quad (x \in X \setminus \partial D),$$

$$(T_D f)(x) = \int_D^t (^t P^*(y,D)\Phi(x,y))f(y) \, dy \quad (x \in X)$$

$$(2.2)$$

для $u \in H^p(E_{|D}), f \in L^2(F_{|D}).$

Из теоремы об ограниченности псевдодифференциальных операторов (см. [4]) и формулы Стокса следует, что

$$(Mu)(x) + (K_D u)(x) + (T_D P u)(x) = \begin{cases} u(x), & x \in D, \\ 0, & x \in X \setminus \overline{D} \end{cases}$$
 (2.3)

для всех $u \in H^p(E_{|D})$, а операторы $M: H^p(E_{|D}) \to H^p(E_{|D}), K_D: H^p(E_{|D}) \to H^p(E_{|D})$ и $T_D: L^2(F_{|D}) \to H^p(E_{|D})$ непрерывны.

ПРИМЕР 2.2. Пусть Y — относительно компактная область с гладкой границей ∂Y в некотором открытом множестве $\widetilde{X} \subset \mathbb{R}^n, \ n>1,$ а P — оператор с инъективным символом на \widetilde{X} . Предположим, что оператор P^*P имеет двустороннее фундаментальное решение на \widetilde{X} , и пусть Φ — функция Грина задачи Дирихле для оператора P^*P в Y. В [5] построено скалярное произведение $h_D(.,.)$ на $H^p(E_{|D})$, определяющее топологию, эквивалентную исходной, и такое, что предел итераций потенциалов двойного слоя $\lim_{N\to\infty} M^N$ — ортогональный относительно $h_D(.,.)$ проектор на $S_P^p(D)$. В [5] также доказано, что

$$h_D(T_D f, v) = \int_D (f, Pv)_x dx$$

для всех $f \in L^2(F_{|D})$ и $v \in H^p(E_{|D})$. Эта ситуация соответствует разложению Ходжа для задачи Дирихле для P^*P в Y.

В следующем параграфе мы докажем аналогичные результаты для интегралов T_D и M в нашей более общей ситуации.

3. Построение скалярного произведения $h_D(.,.)$

Нам понадобится информация о разрешимости задачи Дирихле для оператора $\Delta = P^*P$ в области D в X. Пусть U — окрестность ∂D в X, а F_j ($0 \le j \le p-1$) — векторные расслоения над U. Зафиксируем систему Дирихле, скажем $\{B_j\}_{j=0}^{p-1}$, граничных дифференциальных операторов $B_j \in do_j(E_{|U} \to F_j)$. Это означает, что каждый символ $\sigma(B_j)(x,\zeta)$ имеет максимально возможный ранг для всех $x \in U$ и векторов ζ , конормальных к ∂D .

Задача 3.1. Пусть $\bigoplus_{j=0}^{p-1}\psi_j\in\oplus H^{p-j-1/2}(F_{j|\partial D})$ и $\phi\in L^2(E_{|D}).$ Найти сечение $\psi\in H^p(E_{|D})$ такое, что

$$\left\{ \begin{array}{ll} P^*P\psi = \phi & \text{ B } D; \\ (B_j\psi)_{|\partial D} = \psi_j & (0 \leq j \leq p-1). \end{array} \right.$$

Обозначим через $H_0^p(E_{|D})$ пространство

$$H_0^p(E_{|D}) = \{u \in H^p(E_{|D}) : B_j u = 0 \text{ на } \partial D \text{ для } 0 \le j \le p-1\}.$$

Тогда $H_0^p(E_{|D})$ — замыкание $\mathscr{D}(E_{|D})$ в $H^p(E_{|D})$.

В следующем хорошо известном утверждении $Z_0(D) = S_P(D) \cap H_0^p(E_{|D})$, а $Z_0^{\perp}(D)$ состоит из сечений $\psi \in H^p(E_{|D})$ таких, что

$$\int\limits_{D} (\psi(x), v(x))_x \, dx = 0$$

для всех $v \in Z_0(D)$.

Лемма 3.2. Задача 3.1 разрешима в том и только том случае, когда

$$\int\limits_{D} (\phi,v)_x\,dx=0\quad \text{для всех }v\in Z_0(D).$$

Она имеет не более чем конечное число решений; разность между двумя решениями принадлежит конечномерному пространству $Z_0(D)$. Более того, существует такая постоянная c > 0, что

$$\|\psi\|_{H^p(E_{|D})} \le c \left(\|\phi\|_{L^2(E_{|D})} + \sum_{j=0}^{p-1} \|\psi_j\|_{H^{p-j-1/2}(F_{j|\partial D})} \right)$$

для всех решений $\psi \in Z_0^{\perp}(D)$ задачи 3.1.

Обозначим $S^p_{P^*P}(X\setminus \overline{D})\cap Z^\perp_o(X\setminus \overline{D})$ через $\widetilde{S}^p_\Delta(X\setminus \overline{D})$. Используя лемму 3.2, мы получаем линейный изоморфизм

$$\widetilde{S}^p_{\Delta}(X\setminus\overline{D})\ni v\xrightarrow{\mathscr{R}^+}\bigoplus_{j=0}^{p-1}(B_jv)_{|\partial D}\in\bigoplus_{j=0}^{p-1}(H^{p-j-1/2}(E_{|\partial D})).$$

Композиция $(\mathcal{R}^+)^{-1}$ с оператором сужения

$$H^p(E_{|D})\ni u\xrightarrow{\mathscr{R}^-}\bigoplus_{j=0}^{p-1}(B_ju)_{|\partial D}\in\bigoplus_{j=0}^{p-1}(H^{p-j-1/2}(E_{|\partial D}))$$

дает нам линейное непрерывное отображение $H^p(E_{|D})\ni u\to S(u)\in \widetilde{S}^p_\Delta(X\setminus\overline{D}).$ Для $u\in H^p(E_{|D})$ введем следующее обозначение:

$$U(u)(x) = \begin{cases} u(x), & x \in D, \\ S(u)(x), & x \in X \setminus \overline{D}. \end{cases}$$

Поскольку $(B_j S(u))_{|\partial D} = (B_j u)_{|\partial D} \ (0 \le j \le p-1)$, имеем $U(u) \in H^p(E)$.

Теорема 3.3. Эрмитова форма $h_D(u,v) = h(U(u),U(v))$ является скалярным произведением на $H^p(E_{|D})$, определяющим топологию, эквивалентную исходной. Более того,

$$h_D(T_D f, u) = \int_D (f, Pu)_x \, dx$$

для всех $f \in L^2(F_{|D}), u \in H^p(E_{|D}).$

ДОКАЗАТЕЛЬСТВО. Из предложения 2.1 следует, что $\sqrt{(h_D(.,.))}$ не слабее, чем стандартная норма $\|.\|_{H^p(E_{|D})}$. С другой стороны,

$$h_D(u, u) = h(U(u), U(u)) \le c_1 ||U(u)||^2_{H^p(E)}$$

$$\le 2c_1 (||u||^2_{H^p(E_{|D|})} + ||S(u)||^2_{H^p(E_{|X \setminus D|})}).$$

Используя лемму 3.2 и непрерывность оператора сужения, заключаем, что найдутся такие постоянные c_3 , c_4 , что

$$||S(u)||_{H^{p}(E_{|X\setminus D})}^{2} \le c_{3} \sum_{j=0}^{p-1} ||B_{j}u||_{H^{p-j-1/2}(F_{j|\partial D})}^{2} \le c_{4} ||u||_{H^{p}(E_{|D})}$$

для всех $u \in H^p(E_{|D})$, что и доказывает эквивалентность топологий.

Предложение 3.4. Для всех $u,v\in H^p(E_{|D}),\ f\in L^2(F_{|D})$ выполнены равенства

$$h_D(T_D f, v) = \int_D (f, Pv)_x dx,$$

$$h_D((M + K_D)u, v) = \int_{X \setminus D} (PS(u), PS(v))_x dx + \int_X (KU(u), KU(v))_x dx.$$

Доказательство. Пусть $f\in \mathscr{D}(F_{|D})$. Тогда $T_D f$ принадлежит $H^p(E)$ (и даже $C^\infty(E)$). Покажем, что $U(Tf_{|D})=Tf$. Для этого нам нужно проверить, что $(T_D f)_{|X\setminus \overline{D}}\in \widetilde{S}^p_\Delta(X\setminus \overline{D})$. Однако $T_D f=Tf=\Phi(P^*f)$, а значит, $P^*PT_D f=P^*f-KP^*f=P^*f$ на X. Поскольку $f\in \mathscr{D}(F_{|D})$, то $P^*PT_D f=0$ в $X\setminus \overline{D}$. Очевидно, что $Z_o(X\setminus \overline{D})\subset Z(X)$, а интеграл $\Phi(P^*f)$ ортогонален Z(X). Следовательно, $T_D f_{|X\setminus \overline{D}}\in Z_o^\perp(X\setminus \overline{D})$, что и требовалось.

Далее, если $u \in H^p(E_{|D})$, то из предложения 2.1 следует, что

$$h_D(T_D f, u) = h(T f, U(u)) = \int_X (f, P U(u))_x dx = \int_D (f, P u)_x dx.$$

Так как $\mathscr{D}(F_{|D})$ плотно в $L^2(F_{|D})$, а оператор T_D ограничен, эта формула верна для всех $u \in H^p(E_{|D})$ и $f \in L^2(F_{|D})$. Наконец, из (2.2) вытекает, что

$$h_D((M+K_D)u, v) = h_D(u - T_D P u, v)$$

$$= \int_{X \setminus D} (PS(u), PS(v))_x dx + \int_X (KU(u), KU(v))_x dx.$$

Теорема доказана. □

Следствие 3.5. Операторы

$$T_DP: H^p(E_{|D}) \to H^p(E_{|D}), \quad (M+K_D): H^p(E_{|D}) \to H^p(E_{|D})$$

являются линейными ограниченными самосопряженными неотрицательными операторами и, более того, $||T_DP|| \le 1$, $||M + K_D|| \le 1$.

Легко понять, что $Z_0^\perp(D)$ — ортогональное дополнение $Z_0(D)$ в пространстве $H^p(E_{|D})$ относительно $h_D(.,.)$. В самом деле, $Z_0(D)\subset Z(X)$, поскольку

всякий элемент $u \in Z_0(D)$ может быть продолжен нулем из D на X как решение уравнения Pu = 0 на X. Тогда S(u) = 0 для всех $u \in Z_0(D)$ и

$$h_D(u,v) = \int_X (KU(u), KU(v))_x dx = \int_D (u,v)_x dx.$$

Из следствия 3.5 вытекает, что можно рассматривать итерации $(M+K_D)^{\nu}$ и $(T_DP)^{\nu}$ интегралов $(M+K_D)$ и T_DP соответственно в пространствах Соболева $H^p(E_{|D})$. В следующем утверждении $\Pi(\Sigma)$ обозначает ортогональный (относительно $h_D(.,.)$) проектор на замкнутое подпространство Σ в $H^p(E_{|D})$.

Следствие 3.6. В сильной операторной топологии пространства $H^p(E_{|D})$

$$\lim_{\nu \to \infty} (M + K_D)^{\nu} = \Pi(S_P^p(D)), \quad \lim_{\nu \to \infty} (T_D P)^{\nu} = \Pi(\ker(M + K_D)),$$

в сильной операторной топологии пространства $L^2(F_{\mid D})$

$$\lim_{\nu \to \infty} (I - PT_D)^{\nu} = \Pi(\ker(T_D)).$$

Доказательство. Из следствия 3.5 следует, что

$$\lim_{\nu \to \infty} (M + K_D)^{\nu} = \Pi(I - K_D - M),$$

$$\lim_{\nu \to \infty} (I - PT_D)^{\nu} = \ker(PT_D), \quad \lim_{\nu \to \infty} (T_D P)^{\nu} = \ker(I - T_D P)$$

в сильной операторной топологии в $H^p(E_{|D})$ (см., например, [5, § 2] или [6] для компактных операторов). А из предложения 3.4 и (2.2) вытекает, что

$$\ker(I - T_D P) = \ker(M + K_D), \quad \ker T_D P = S_D^p(D) \quad \ker P T_D = \ker T_D. \quad \Box$$

4. Условия разрешимости для Pu=f

В этом разделе с помощью следствия 3.6 исследуется разрешимость уравнения Pu=f в D. В частности, когда оно разрешимо, мы получаем явное решение в виде суммы ряда, который может быть вычислен по данным f.

Следствие 4.1. В сильной операторной топологии пространства $H^p(E_{|D})$

$$I = \Pi(S^p(D)) + \sum_{\mu=0}^{\infty} (M + K_D)^{\mu} (T_D P), \tag{4.1}$$

$$I = \Pi(\ker(M + K_D)) + K_D + \sum_{\mu=0}^{\infty} (T_D P)^{\mu} M,$$
(4.2)

в сильной операторной топологии пространства $L^2(F_{|D})$

$$I = \Pi(\ker T_D) + \sum_{\mu=0}^{\infty} P(M + K_D)^{\mu} T_D.$$
 (4.3)

Доказательство. Из формулы (2.2) следует, что для всех $\nu \in \mathbb{N}$

$$I = (I - PT_D)^N + \sum_{\mu=0}^{N-1} (I - PT_D)^{\mu} PT_D.$$
 (4.4)

Согласно (2.2) имеем

$$(I - PT_D)^{\mu}PT_D = P(I - T_D P)^{\mu}T_D = P(M + K_D)^{\mu}T_D.$$

Используя теперь следствие 3.6, мы можем перейти к пределу по $N \to \infty$ в (4.4) и получить (4.3). Доказательство формул (4.1) и (4.2) проводится аналогично. \square

Теорема 4.2. Пусть $f \in L^2(F_{|D})$. Для существования сечения $u \in H^p(E)$, удовлетворяющего Pu = f в D, необходимо и достаточно, чтобы

(1) ряд
$$Rf = \sum_{\mu=0}^{\infty} (M + K_D)^{\mu} T_D f$$
 сходился в $H^p(E_{|D})$;

 $(2)\int\limits_{D}(g,f)_{x}\,dx=0$ для всех $g\in\ker T_{D}.$

Более того, если (1) и (2) выполнены, то PRf = f на D.

ДОКАЗАТЕЛЬСТВО. Необходимость следует из теоремы 3.3 и следствия 4.1. Обратно, пусть (1) и (2) выполнены. Тогда из следствия 4.1 вытекает, что

$$f = \sum_{\mu=0}^{\infty} P(M + K_D)^{\mu} T_D f.$$

Поскольку ряд Rf сходится в $H^p(E_{|D})$, то f = PRf. \square

В [5] получен этот результат в случае, рассмотренном в примере 2.2.

Замечание 4.3. Из следствия 3.6 следует, что решение u=Rf уравнения Pu=f в D принадлежит $\left(S_P^p(D)\right)^\perp$, где $\left(S_P^p(D)\right)^\perp$ — ортогональное (относительно $h_D(.,.)$) дополнение $S_P^p(D)$ в $H^p(E_{|D})$, и является единственным решением в этом подпространстве. Частичные суммы R_Nf ряда Rf можно трактовать как приближенные решения уравнения Pu=f в D. Как легко увидеть с помощью следствий 3.6 и 4.1,

$$\lim_{N \to \infty} ||PR_N f - f - \Pi(\ker T_D) f||_{L^2(F_{|D})} = 0$$

для всех $f \in L^2(F_{|D})$ и $R_N f \in (S^p_P(D))^{\perp}$ для всех $N \in \mathbb{N}$.

Замечание 4.4. Для сечения $g \in L^2(F_{|D})$ обозначим через \tilde{g} его продолжение из D нулем на X. Тогда $0 = T_D g = T \tilde{g}$, а значит, $\ker T_D$ — множество таких функций g из $L^2(F_{|D})$, что $P^* \tilde{g} = 0$ (слабо) на X.

Если оператор P может быть включен в какой-нибудь эллиптический комплекс (E^i,P^i) , то условие (2) в теореме 4.2 может быть заменено следующим: $P^1f=0$ в D и $\int\limits_D (g,f)_x\,dx=0$ для всех $g\in\ker T_D\cap S^0_{P_1}(D)$.

Как и выше, $\{B_j\}_{j=0}^{p-1}$ — система Дирихле порядка p-1 на ∂D , $\{C_j\}_{j=0}^{p-1}$ — система Дирихле, двойственная к $\{B_j\}_{j=0}^{p-1}$ относительно формулы Грина (см., например, [7, лемма 28.3]). Пусть $\mathfrak{H}(D)=\{g\in L^2(F_{|D}): P^*g=0, P^1g=0 \text{ в } D \text{ и } (^tC_j^*g)_{|\partial D}=0, 0\leq j\leq p-1 \text{ в смысле слабых граничных значений}\}.$

Будем называть $\mathfrak{H}(D)$ гармоническим пространством для комплекса $\{E^i,P^i\}$ в D. В силу эллиптичности комплекса $\mathfrak{H}(D)\subset C^\infty(F_{|D})$. Нетрудно видеть, что для комплекса Дольбо это определение гармонического пространства $\mathfrak{H}(D)$ совпадает с данным в [8]. Легко также доказать, что $\ker T_D\cap S_{P^1}^0(D)=\mathfrak{H}(D)$. Тем не менее пространство $\mathfrak{H}(D)$ не является, вообще говоря, конечномерным (если только $D\neq X$).

5. Р-задача Неймана

В этом разделе теорема 3.3 используется для изучения P-задачи Неймана для эллиптического оператора $P \in do_p(E \to F)$.

Задача 5.1. Пусть $\phi \in L^2(E_{|D})$ и $\psi_j \in W^{-j-1/2,2}(F_{j|\partial D})$ $(0 \le j \le p-1)$ — заданные сечения. Найти $\psi \in H^p(E_{|D})$ такое, что

$$\left\{ \begin{array}{ll} P^*P\psi=\phi & \text{ в }D; \\ {}^tC_j^*P\psi=\psi_j & \text{ на }\partial D \ (0\leq j\leq p-1). \end{array} \right.$$

Уравнение $P^*P\psi=\phi$ в D понимается в смысле распределений, а граничные значения — в вариационном смысле:

$$\int_{D} (\phi, v)_x dx - \int_{\partial D} \sum_{j=0}^{p-1} (\psi_j, B_j v)_y ds(y) = \int_{D} (P\psi, Pv)_y dy \quad \text{для всех } v \in C^{\infty}(E_{|\overline{D}}).$$

$$(5.1)$$

Предложение 5.2. Пусть $\phi = 0$ и $\psi_j = 0$ для всех $0 \le j \le p-1$. Тогда $\psi \in H^p(E_{|D})$ является решением задачи 5.1 в том и только том случае, когда $\psi \in S_p^p(D)$.

ДОКАЗАТЕЛЬСТВО. Очевидно, что $\psi \in S_P^p(D)$ — решение задачи 5.1 для $\phi = 0$ и $\psi_j = 0$ ($0 \le j \le p-1$). Обратно, если ψ — решение задачи 5.1 для $\phi = 0$ и $\psi_j = 0$ ($0 \le j \le p-1$), то $T_D P \psi = 0$. Значит, $\psi = (M+K_D)\psi = \lim_{\nu \to \infty} (M+K_D)^{\nu} \psi$, т. е. $\psi \in S_P^p(D)$ (см. следствие 3.6). \square

Оператор P^*P эллиптичен, его коэффициенты бесконечно дифференцируемы, и символы граничных операторов $(^tC_j^*)$ имеют максимальные ранги на ко-нормальных векторах к ∂D . Но поскольку пространство $S_P^p(D)$ может быть бесконечномерным, из предложения 5.2 вытекает, что задача 5.1 может быть некорректной.

Положим

$$\widetilde{T}_D(\oplus \psi_j)(x) = \int_{\partial D} \sum_{j=0}^{p-1} {}^t({}^tB_j^*(y)\Phi(x,y))\psi_j(y) \, ds(y),$$
$$V(\phi)(x) = \int_D {}^t(\Phi(x,y))\phi(y) \, dy.$$

Теорема 5.3. Задача 5.1 разрешима в том и только том случае, когда (1) справедливо равенство

$$\int\limits_{D} (\phi, v)_x dx - \int\limits_{\partial D} \sum\limits_{j=0}^{p-1} (\psi_j, B_j v)_y ds(y) = 0$$

для всех $v \in S_P^p(D)$;

(2) ряд

$$r(\phi, \oplus \psi_j) = \sum_{\mu=0}^{\infty} (M + K_D)^{\mu} (V(\phi) - \widetilde{T}_D(\oplus \psi_j))$$

сходится в пространстве $H^p(E_{|D})$.

Если выполнены условия (1), (2), то ряд $r(\phi, \oplus \psi_j)$ является решением задачи 5.1.

Доказательство. Пусть задача 5.1 разрешима, а $\psi \in H^p(E_{|D})$ — одно из ее решений. Тогда $V(\phi) - \widetilde{T}_D(\oplus \psi_j) = T_D P \psi$ и из следствия 3.6 вытекает, что ряд $RP\psi = r(\phi \oplus \psi_j)$ сходится в $H^p(E_{|D})$.

Обратно, пусть выполнены условия (1) и (2). Докажем, что ряд $r(\phi, \oplus \psi_h)$ удовлетворяет (5.1). Заметим, что

$$T_D Pr(\phi, \oplus \psi_j) = (I - (M + K_D))r(\phi, \oplus \psi_j) = V(\phi) - \widetilde{T}_D(\oplus \psi_j). \tag{5.2}$$

Используя (2.3), легко понять, что для всех $v \in C^{\infty}(E_{|D})$ и $x \in D$ имеем

$$v(x) = \int_{D}^{t} (\Phi(x, y)) P^{*} Pv(y) \, dy + (K_{D}v)(x) - \int_{\partial D}^{t} G_{P^{*}P}(\Phi(x, y), v(y)).$$

Тогда из теоремы Фубини и (5.2) следует, что

$$\begin{split} \int\limits_{D} (Pr(\phi,\oplus\psi_{j},Pv)_{x} \, dx \\ &= \int\limits_{D} (T_{D}Pr(\phi,\oplus\psi_{j}),P^{*}Pv)_{y} \, dy - \int\limits_{\partial D} G_{P^{*}P}(T_{D}Pr(\phi,\oplus\psi_{j}),v(y)) \\ &= \int\limits_{D} (V(\phi) - \widetilde{T}_{D}(\oplus\psi_{j}),P^{*}Pv)_{y} \, dy - \int\limits_{\partial D} G_{P^{*}P}(V(\phi) - \widetilde{T}_{D}(\oplus\psi_{j}),v(y)) \\ &= \int\limits_{D} (\phi,v - K_{D}v)_{x} \, dx - \int\limits_{\partial D} \sum_{j=0}^{p-1} (\psi_{j},B_{j}(v - K_{D}v))_{x} \, dx. \end{split}$$

Наконец, поскольку $K_Dv\in S^p_P(D)$, условие (1) означает, что выполняется (5.1). Теорема 5.3 доказана. \square

Конечно, если для задачи 5.1 выполнены условия Шапиро — Лопатинского, то ряд $r(\phi, \oplus \psi_i)$ сходится для всех данных ϕ и ψ_i .

В ситуации, рассмотренной в примере 2.2, подобная теорема доказана в [5].

6. Примеры

Пусть P — однородный $(l \times k)$ -оператор с постоянными коэффициентами в \mathbb{R}^n $(n \ge 2)$ с инъективным символом порядка $p \ge 1$. Тогда P^*P имеет стандартное фундаментальное решение сверточного типа (см. [7, c. 74]). Для n > 2p мы получаем разложение Ходжа в $L^2(\mathbb{R}^n)$ с K = 0 и Φ , равным нулю «в бесконечности» (см. [7, c. 74]). В этом случае S(u) — решение внешней задачи Дирихле для P^*P и D, равное нулю «в бесконечности». Используя разложение в «ряд Лорана» для решений эллиптических систем (см. [7, теорема [7,25]), заключаем, что $PS(u) \in [L^2(\mathbb{R}^n \setminus \overline{D})]^l$, а

$$h_D(u,v) = \int_{\mathbb{R}^n} (PU(v))^*(x)(PU(u))(x) dx$$
 на $[H^p(D)]^k$.

Таким образом, эта ситуация соответствует компактификации \mathbb{R}^n с одной бесконечно удаленной точкой.

ПРИМЕР 6.1. Пусть P — оператор градиента в \mathbb{R}^n . Тогда $(-P^*P)$ — обычный оператор Лапласа в \mathbb{R}^n , $\Phi = \phi_n$ — стандартное фундаментальное решение оператора Лапласа в \mathbb{R}^n . Комплекс совместности для P — это комплекс де Рама, а задача 5.1 — классическая задача Неймана. Хорошо известно, что она является фредгольмовой.

ПРИМЕР 6.2. Пусть P — система Коши — Римана в \mathbb{C}^n ($n \geq 2$). Тогда $(-4P^*P)$ есть оператор Лапласа в \mathbb{R}^{2n} . Комплекс совместности для P — это комплекс Дольбо, а задача $5.1 - \bar{\partial}$ -задача Неймана (см., например, [3]). Хорошо известно, что это некорректная задача.

ПРИМЕР 6.3. Пусть ∂_j означает $\frac{\partial}{\partial x_j}$. Рассмотрим систему P в \mathbb{R}^3 :

$$P = \begin{pmatrix} \sqrt{2\mu}\partial_1 & 0 & 0\\ 0 & \sqrt{2\mu}\partial_2 & 0\\ 0 & 0 & \sqrt{2\mu}\partial_3\\ \sqrt{\lambda}\partial_1 & \sqrt{\lambda}\partial_2 & \sqrt{\lambda}\partial_3\\ \sqrt{\mu}\partial_2 & \sqrt{\mu}\partial_1 & 0\\ \sqrt{\mu}\partial_3 & 0 & \sqrt{2\mu}\partial_1\\ 0 & \sqrt{2\mu}\partial_3 & \sqrt{2\mu}\partial_2 \end{pmatrix},$$

где $\lambda \ge 0, \, \mu > 0$. Тогда $(-P^*P)$ — оператор Ламе

$$\mathcal{L} = \mu \Delta + (\lambda + \mu) \nabla \operatorname{div}$$

в \mathbb{R}^3 с постоянными Ламе μ , λ , а $\Phi(x-y)$ — матрица Кельвина — Сомильяна $(\Phi^{(i,j)})_{i,j=1,2,3}$ с компонентами

$$\Phi^{(i,j)} = \frac{1}{2\mu(\lambda + 2\mu)} \left(\delta_{ij}(\lambda + 3\mu) \phi_n(x - y) - (\lambda + \mu) x_j \frac{\partial}{\partial x_i} \phi_n(x - y) \right)$$

(здесь δ_{ij} — символ Кронекера).

В этом случае $S_P(D)$ состоит из (не всех!) многочленов первой степени. Оператор совместности P^1 для P дается в виде

$$\begin{pmatrix} \sqrt{\lambda} & \sqrt{\lambda} & \sqrt{\lambda} & -\sqrt{2\mu} & 0 & 0 & 0 \\ \partial_{2,2} & \partial_{1,1} & 0 & 0 & -\sqrt{2}\partial_{1,2} & 0 & 0 \\ \partial_{3,3} & 0 & \partial_{1,1} & 0 & 0 & -\sqrt{2}\partial_{1,3} & 0 \\ 0 & \partial_{3,3} & \partial_{2,2} & 0 & 0 & 0 & -\sqrt{2}\partial_{2,3} \\ 0 & 0 & -\sqrt{2}\partial_{1,2} & 0 & -\partial_{3,3} & \partial_{2,3} & \partial_{1,3} \\ 0 & -\sqrt{2}\partial_{1,3} & 0 & 0 & \partial_{2,3} & -\partial_{2,2} & \partial_{1,2} \\ -\sqrt{2}\partial_{3,2} & 0 & 0 & 0 & \partial_{1,3} & \partial_{1,2} & -\partial_{1,1} \end{pmatrix},$$

где $\partial_{i,j} = \frac{\partial^2}{\partial x_i \partial x_j}$

В линейной теории упругости уравнение Pu=f можно интерпретировать следующим образом: по заданным компонентам деформации f изотропного упругого тела D найти компоненты смещения u(x) для всех точек $x \in D$. Простые вычисления показывают, что для всех $f \in [L^2(D)]^7$, удовлетворяющих условиям совместности в выпуклой области D, существует решение уравнения Pu=f в $[H^1(D)]^3$.

Граничный оператор

$${}^{t}C_{0}^{*}P = \tau = (\tau^{(i,j)})_{i,j=1,2,3}$$

— это оператор напряжения с компонентами

$$\tau^{(i,j)} = \left(\delta_{ij}\mu \frac{\partial}{\partial n} + \lambda n_i(x) \frac{\partial}{\partial x_i} + \mu n_j(x) \frac{\partial}{\partial x_i}\right),\,$$

где $n_j(x)-j$ -я компонента внешней нормали n(x) к ∂D в точке $x, \frac{\partial}{\partial n}$ — нормальная производная относительно ∂D .

В линейной теории упругости задачу 5.1 можно интерпретировать следующим образом: по заданным компонентам вектора напряжения ψ_0 на границе изотропного упругого тела D, находящегося под действием силы ϕ , найти компоненты смещения u(x) для всех точек $x \in D$. Хорошо известно, что эта задача является фредгольмовой.

ЛИТЕРАТУРА

- Тарханов Н. Н. Метод параметрикса в теории дифференциальных комплексов. Новосибирск: Наука, 1990.
- Романов А. В. Сходимость итераций интеграла Мартинелли Бохнера и система Коши — Римана // Докл. АН СССР. 1978. Т. 242, № 4. С. 780–783.
- Кытманов А. М. Интеграл Мартинелли Бохнера и его применения. Новосибирск: Наука, 1992.
- Rempel S., Schulze B.-W. Index theory of elliptic boundary problems. Berlin: Akademie-Verl., 1982.
- Nacinovich M., Shlapunov A. A On iterations of the Green integrals and their applications to elliptic differential complexes // Math. Nachr. 1996. V. 180. P. 243–286.
- 6. Лаврентьев М. М, Романов В. Г., Шишатский С. П. Некорректные задачи математической физики и анализа. Новосибирск: Наука, 1980.
- Тарханов Н. Н. Ряд Лорана для решений эллиптических систем. Новосибирск: Наука, 1991.
- 8. Hörmander L. L²-estimates and existence theorems for the $\overline{\partial}$ operator // Acta Math. 1965. V. 113, N 1–2. P. 89–152.

Cтатья поступила 21 апреля 2000 г., окончательный вариант — 27 ноября 2000 г.

Шлапунов Александр Анатольевич Красноярский гос. университет, математический факультет просп. Свободный, 79, Красноярск 660041 shlapuno@math.kgu.krasnoyarsk.su; shlapuno@lan.krasu.ru