О ПЕРИОДИЧЕСКИХ ГРУППАХ, НАСЫЩЕННЫХ КОНЕЧНЫМИ ПРОСТЫМИ ГРУППАМИ

К. А. Филиппов

Аннотация. Дано полное описание периодических групп, насыщенных множеством конечных простых групп, в которых любая инволюция лежит в центре содержащей ее силовской 2-подгруппы.

Ключевые слова: насыщенность, группа.

Введение

Группа G насыщена группами из множества групп \mathfrak{M} , если любая конечная подгруппа из G содержится в подгруппе, изоморфной некоторой группе из \mathfrak{M} . Множество \mathfrak{M} называется насыщающим множеством для G [1].

В [2, теорема 2] утверждается, что периодическая группа G с абелевой силовской 2-подгруппой, насыщенная конечными простыми подгруппами, ло-кально конечна и изоморфна либо Re(P), либо $L_2(P)$ над подходящим локально конечным полем P. Однако приведенное доказательство содержит неточность, так как предполагает, что из абелевости одной силовской 2-подгруппы вытекает абелевость любой силовской 2-подгруппы G, что не так [3].

В настоящей работе, в частности, устранена эта неточность и получен более общий результат.

Теорема. Пусть периодическая группа G насыщена конечными простыми неабелевыми группами и в любой ее конечной 2-подгруппе K все инволюции из K лежат в центре K. Тогда G изоморфна одной из следующих групп: $J_1, L_2(Q), Re(Q), U_3(Q), Sz(Q)$ для подходящих локально конечных поля Q.

1. Используемые результаты

Предложение 1 [4]. Если периодическая группа G обладает конечной силовской 2-подгруппой, то все силовские 2-подгруппы G конечны и сопряжены.

Предложение 2 [5]. Периодическая группа, содержащая инволюцию c конечным централизатором, локально конечна и почти разрешима.

Предложение 3 [6–9]. Если локально конечная группа G локально покрывается множеством подгрупп лиевского типа, ранги которых ограничены в совокупности, то и сама G изоморфна группе лиевского типа конечного ранга.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 10–01–00509–а).

Предложение 4 [10, 11]. Пусть G — конечная простая неабелева группа и все инволюции из ее силовской 2-подгруппы S содержатся в центре S. Тогда G изоморфна одной из следующих групп: $J_1; Re(3^{2n+1}); L_2(q), q > 3, q = 3, 5 \pmod{8}$ или $q = 2^n, U_3(2^n), Sz(2^{2n+1})$. При этом S не содержит элементов порядка S и все инволюции из S сопряжены.

Предложение 5 [12]. Периодическая группа G, насыщенная проективными специальными группами размерности 2 над конечными полями, изоморфна группе $L_2(P)$ над подходящим локально конечным полем P.

Предложение 6 [13]. Пусть G — бесконечная локально конечная группа, насыщенная группами диэдра. Тогда в G существует строго возрастающая цепочка конечных групп диэдра $D^{(1)}\subset D^{(2)}\subset \cdots \subset D^{(n)}\subset \ldots$ такая, что $G=\bigcup_i D^{(i)}=L \leftthreetimes \langle t \rangle$, где L — локально циклическая группа, t — инволюция и $l^t=l^{-1}$ для любого $l\in L$.

Предложение 7 [10]. Силовская 2-подгруппа группы J_1 элементарная абелева порядка 8, и все инволюции из J_1 сопряжены.

Предложение 8 [10]. Пусть G = Re(q), где $q = 3^{2n+1} > 3$, a — инволюция из G, T — силовская 2-подгруппа в G. Тогда

- (1) T элементарная абелева группа порядка 8, $C_G(T)=T$ и $H=N_G(T)=T$ λ $(\langle b \rangle \lambda \langle d \rangle)$, где $\langle b \rangle \lambda \langle d \rangle$ группа Фробениуса порядка 21;
 - (2) $C_G(a) = \langle a \rangle \times L$, где $L \simeq L_2(q)$;
- (3) $G = \langle H, C_G(a) \rangle = \langle S, C_G(a) \rangle$, где S произвольная силовская 2-подгруппа группы G, не содержащая инволюции a;
 - (4) все инволюции из G сопряжены в G.

Предложение 9 [14]. Пусть $G=L_2(q)$, где $q=2^n>2$, P- силовская 2-подгруппа группы $G,\,B=N_G(P)$. Тогда

- (1) P элементарная абелева группа и любые две силовские 2-подгруппы G пересекаются тривиально, в частности, $C_G(a) = P$ для любой инволюции $a \in P$:
- (2) $B = P \times H$ группа Фробениуса с ядром P и циклическим неинвариантным множителем H порядка q-1, действующим транзитивно на множестве всех инволюций из P;
 - (3) $N = N_G(H) = H \setminus \langle \nu \rangle$ группа диэдра;
 - (4) С порождается любыми двумя силовскими 2-подгруппами.

Предложение 10 [10]. Пусть $G=U_3(2^n),\ P$ — силовская 2-подгруппа группы из G и $B=N_G(P)$. Тогда

- (1) $G = B\langle v \rangle B$, где v инволюция и $B \cap B^v = H$ подгруппа Картана;
- (2) P группа периода 4 ступени нильпотентности 2 и $P'=Z(P)=\Phi(P)=\Omega_1(P);$
- (3) любые две силовские 2-подгруппы группы G имеют тривиальное пересечение;
- (4) если a- инволюция из P, то $C_G(a)=P \leftthreetimes H_1,$ где H_1- циклическая группа, причем $H_1 \le B$ и $Z(P) \le C_G(H_1);$
- (5) B = P > H, где H циклическая группа порядка $\frac{2^{2n}-1}{d}$, где d=3, если 3 делит число 2^n+1 , и d=1 в противном случае;
- (6) $H=H_0\times H_1$, где H_1 подгруппа из утверждения (4), $|H_0|=2^n-1$ и $|H_1|=\frac{2^n+1}{d}$, причем v инвертирует H_0 и централизует H_1 ;

(7) $P > H_0$ — группа Фробениуса с неинвариантным множителем H_0 , действующим транзитивно на множестве инволюций группы P.

Предложение 11 (теорема Шмидта) [14]. *Расширение локально конечной* группы при помощи локально конечной группы — локально конечная группа.

Предложение 12 [15]. Пусть G — периодическая группа, содержащая инволюцию, S — силовская 2-подгруппа из G и централизатор любой инволюции из G абелев. Тогда либо S — локально циклическая группа, либо $S \triangleleft G$, либо $G = R \times L_2(Q)$, где R — абелева группа без инволюций, Q — локально конечное поле характеристики 2.

Предложение 13 (теорема Санова) [16,17]. *Произвольная группа, порядки элементов которой не превосходят* 4, локально конечна.

Предложение 14 [18]. Пусть G — группа, содержащая конечную инволюцию и инволюцию с периодическим централизатором. Если каждая конечная подгруппа четного порядка из G содержится в конечной простой неабелевой подгруппе и любые две различные силовские 2-подгруппы из G пересекаются по тривиальной подгруппе, то G изоморфна $L_2(Q)$, $U_3(Q)$ или Sz(Q) для подходящего локально конечного поля Q характеристики 2.

Предложение 15 [10]. Пусть G = Sz(q), P -силовская подгруппа группы G, $B = P\lambda H -$ подгруппа Бореля, H -подгруппа Картана из B. Тогда

- (1) P группа порядка q^2 периода 4 и $P' = Z(P) = \Omega_1(P)$;
- (2) все инволюции группы G сопряжены и $C_G(a)=P$ для любой инволюции $a\in P;$
 - (3) любые две силовские 2-подгруппы в G имеют тривиальное пересечение;
 - (4) H действует транзитивно на множестве инволюций из P;
 - (5) G порождается любой парой своих силовских 2-подгрупп.

2. Доказательство теоремы

Пусть G удовлетворяет условиям теоремы.

Лемма 1. Группа G является простой.

Доказательство. Пусть $1 \neq H \triangleleft G$, a — неединичный элемент из H и $b \in G \backslash H$. По условиям теоремы найдутся конечные простые неабелевы подгруппы K и M из G такие, что $\langle a \rangle \subset K$, $\langle b \rangle \subset M$. Очевидно, что $K \subseteq H$ и $M \cap H = 1$, в частности, в H и в $G \backslash H$ найдутся соответственно инволюции i и j. В силу периодичности группы G подгруппа $R = \langle i, j \rangle$ конечна, и по условиям теоремы $R \subset L \subseteq G$, где L — конечная простая неабелева группа. При этом $L \cap H \neq 1$ и потому $L \subset H$. Получаем противоречие с выбором j. Лемма доказана.

Лемма 2. Без ограничения общности можно считать, что насыщающее множество для группы G следующее: $\mathfrak{M} = \{J_1; L_2(2^n); Re(3^{2n+1}); U_3(2^{2n}); Sz(2^{2n+1}); L_2(q), q = 3, 5 \mod 8\}.$

Доказательство. Пусть L — произвольная конечная простая неабелева подгруппа группы G. Обозначим через P некоторую ее силовскую 2-подгруппу. Поскольку P содержится в силовской 2-подгруппе группы G, по условию теоремы все инволюции из P содержатся в центре P. Но тогда L изоморфна одной из групп перечисленных в лемме в силу предложения 4. Лемма доказана.

Лемма 3. Все инволюции группы G сопряжены, и любая силовская 2-подгруппа из G — локально конечная группа периода ≤ 4 .

Доказательство. Пусть a и b — произвольные инволюции из G. В силу периодичности группы G подгруппа $L = \langle a,b \rangle$ конечна, и по условиям теоремы $L \subset M$, где M — конечная простая группа, изоморфная одной из групп множества \mathfrak{M} (лемма 2), а в каждой из групп, являющихся элементами множества \mathfrak{M} , все инволюции сопряжены [10,11]. Теперь возьмем произвольный 2-элемент $x \in G$. По условию насыщенности $\langle x \rangle < L$, где L — группа, изоморфная одной из групп множества \mathfrak{M} . Но тогда по предложению $4 |\langle x \rangle| \leq 4$. Лемма доказана.

I. Все силовские 2-подгруппы группы G абелевы. Пусть группа G удовлетворяет условиям теоремы и все ее силовские 2-подгруппы абелевы. Пусть S — некоторая силовская 2-подгруппа группы G. При доказательстве рассматриваются четыре случая.

Случай 1: |S|=2. Данный случай невозможен. В самом деле, в силу условия S — силовская 2-подгруппа некоторой простой конечной неабелевой группы. Но в любой такой группе порядок силовской 2-подгруппы больше двух.

Случай 2: |S|=4. В этом случае можно считать, что насыщающие множество $\mathfrak{M}=\{L_2(q)\mid q=3.5\,\mathrm{mod}\,8\}$ и по предложению 5 $G\simeq L_2(Q)$, где Q — подходящее локально конечное поле. Таким образом, в этом случае утверждение теоремы имеет место.

Случай 3: |S|=8. Так как для конечных групп G теорема верна, предполагаем, что $|G|=\infty$.

Пусть $S=\langle a\rangle \times \langle z\rangle \times \langle t\rangle$ — некоторая силовская 2-подгруппа группы G. Положим $C=C_G(a);\ C_1=C_C(z);\ C_2=C_{C_1}(t);\ S_1=\langle a\rangle \times \langle z\rangle.$

Лемма 4. $C_1=\langle a\rangle \times \langle z\rangle \times (D\leftthreetimes \langle t\rangle)=C_G(S_1),$ где D- локально циклическая группа без инволюций и $x^t=x^{-1}$ для любого $x\in D.$

Доказательство. Если C — конечная группа, то по предложению 2 G — локально конечная группа, и теорема верна по предложению 3.

Пусть C — бесконечная группа. Предположим, что C_1 — конечная группа. Тогда C — бесконечная локально конечная группа (предложение 2). Рассмотрим фактор-группу $\overline{C} = C/\langle a \rangle$, являющуюся локально конечной, и пусть \overline{K} — произвольная конечная подгруппа из \overline{C} , а K — ее полный прообраз в C. Без ограничения общности можно считать, что $|K| > |J_1|$. Заметим, что $|J_1| > |L_2(8)| > |L_2(4)|$.

Так как C локально конечна, $\langle S, K \rangle$ — конечная группа и в силу условий $\langle S, K \rangle \subset R \simeq R_2(3^{2n+1})$, где R — подгруппа G. Но тогда $\langle S, K \rangle \subset C_R(a) = \langle a \rangle \times L$ и $L_2 \simeq L_2(3^{2n+1})$. Поскольку $C_R(a) \subset C$, переходя к фактор-группе \overline{C} , получаем цепочку включений $\overline{K} \subset \langle \overline{S}, \overline{K} \rangle \subset \overline{L}_2(3^{2n+1})$.

Таким образом, любая конечная подгруппа \overline{K} из \overline{C} содержится в некоторой простой конечной неабелевой подгруппе \overline{L}_2 из \overline{C} и $\overline{L}_2 \simeq L_2(3^{2n+1})$. По предложению 5 $\overline{C} \simeq L_2(Q)$, где Q — локально конечное поле характеристики 3. Отсюда получаем, что $C = \langle a \rangle \times L$, где $L \simeq L_2(Q)$ и C_1 — бесконечная группа; противоречие с предположением $|C_1| < \infty$.

Итак, C_1 — бесконечная группа. Предположим, что $C_2 = C_{C_1}(t) = C_{C_2}(S)$ — бесконечная группа. Возьмем элемент b нечетного порядка из C_2 (это можно сделать, поскольку S — силовская 2-подгруппа в C_2 и фактор-группа $\overline{C}_2 = C_2/S$ — бесконечная периодическая группа без инволюций). Рассмотрим конечную подгруппу $S \times \langle b \rangle$, которая по условию теоремы лежит в некоторой конечной простой неабелевой подгруппе K. При этом $K \simeq Re(3^{2n+1})$ или $K \simeq J_1$,

но и в первом, и во втором случаях $C_K(S)=S$ [10,11]. Противоречие с тем, что $C_K(S)$ содержат элемент нечетного порядка. Итак, C_2 — конечная группа, и по предложению 2 C_1 — бесконечная локально конечная группа. Рассмотрим фактор-группу $\overline{C}_1=C_1/S_1$, и пусть \overline{K} — конечная подгруппа из \overline{C}_1 с условием $|\overline{K}|>|J_1|$, а K — ее полный прообраз в C_1 . По условию теоремы $K\leq R< G$ и $R\simeq Re(3^{2n+1})$. Так как K лежит в $C_R(a)$, то $K\subset \langle a\rangle\times L\subset R$, где $L\simeq L_2(3^{2n+1})$, и, кроме того, $\langle z\rangle\times\langle t\rangle\leq L$. Следовательно, $K<\langle a\rangle\times C_L(z)=\langle a\rangle\times(D_1\!\!\!\!\! \searrow t)$, где $C_L(z)=N=D_1\!\!\!\!\!\!\! \searrow \langle t\rangle$ — группа диэдра. Возвращаясь в фактор-группу \overline{C}_1 , получаем, что $\overline{K}<\overline{N}$ — конечная группа диэдра. По предложению 6 $\overline{C}_1=\overline{D}\!\!\!\!\!\!\!\!\!\!> \langle \overline{t}\rangle$ — локально конечный диэдр, а $C_1=\langle a\rangle\times(D\mathbin{\!\!\!\!>} \langle t\rangle)=\langle a\rangle\times\langle z\rangle\times(D\mathbin{\!\!\!>} \langle t\rangle)$, где D — группа без инволюций. Лемма доказана.

Лемма 5. $N_G(S) = S \leftthreetimes (\langle b \rangle \leftthreetimes \langle d \rangle)$, где $\langle b \rangle \leftthreetimes \langle d \rangle$ — группа Фробениуса порядка 21, $|C_S(d)| = 2$ и $S \leftthreetimes \langle b \rangle$ — группа Фробениуса порядка 56.

Доказательство. Из предложения 4 вытекает, что $N_G(S)$ — конечная подгруппа. В силу условий теоремы $N_G(S)$ вложим в конечную простую группу, изоморфную $Re(3^{2n+1})$. Теперь достаточно воспользоваться предложением 8. Лемма доказана.

Лемма 6. Группа G содержит бесконечную локально конечную простую подгруппу R, изоморфную Re(Q), где Q — локально конечное поле характеристики 3, не содержащее подполей порядка 9, причем $C_G(a) < R$ для любой инволюции $a \in R$.

Доказательство. Рассмотрим группу C_1 из леммы 4. Представим C_1 в виде объединения возрастающей цепочки подгрупп $N_1 < N_2 < \cdots < N_k < \ldots$, где $N_k = \langle a \rangle \times \langle z \rangle \times (D_k \times \langle t \rangle), \ D_i$ — циклическая группа без инволюций и $D_i \times \langle t \rangle$ — конечная группа диэдра.

По условию теоремы начиная с некоторого достаточно большого m будет $N_k\subset R_k\simeq Re(q)$, где k>m. По лемме 5 $N_G(S)\subset R_k$ для любого k>m, но тогда $\langle N_C(S),N_k\rangle=R_k$ для любого k>m. Отсюда $R_{K_1}\subset R_{K_2}\subset\cdots\subset R_{K_i}\subset\ldots$ возрастающая цепочка вложенных друг в друга подгрупп, а $R=\bigcup R_k$ бесконечно локально конечная подгруппа, изоморфная Re(Q), где Q— локально конечное поле характеристики 3 (предложение 3). Лемма доказана.

Лемма 7. Пусть R — подгруппа из формулировки леммы 6. Тогда G = R.

Доказательство. Предположим, что $G \neq R$. В силу леммы 1 в $G \setminus R$ найдется инволюция t; пусть a — инволюция из R. По условиям теоремы $\langle a,t \rangle < M < G$, где M — конечная простая группа. Убедимся, что $H = M \cap R$ — сильно вложенная подгруппа в M. Пусть $x \in H \cap H^g$, где $g \in M \setminus H$ и $x^2 = 1$. Это означает, что $y^g = x$ для некоторой инволюции $y \in H$. Так как $y, x \in R$ (лемма 6), то $y^r = x$ и $y^{gr^{-1}} = y$ для некоторого $r \in R$. Следовательно, $gr^{-1} \in C_G(y) \subset R$ (лемма 6), т. е. $g \in R$; противоречие с выбором g. Итак, H — сильно вложенная подгруппа в M. Стало быть, $M \simeq L_2(8)$ или $M \simeq L_2(4)$ [3, теорема 4.24].

Предположим, что $M\simeq L_2(4)$. Тогда $H=M\cap R=(\langle a\rangle\times\langle x\rangle)\leftthreetimes\langle d\rangle\simeq A_4,$ x — инволюция, а |d|=3. По предложению 8 в R найдется инволюция w такая, что $w\in C_R(H)$. Возьмем в $M\setminus H$ инволюцию v такую, что $d^v=d^{-1}$. Конечная группа $\langle d,v,w\rangle$ содержится в $M_1\subset G$, где M_1 — конечная простая группа с элементарной абелевой силовской 2-подгруппой и сильно вложенной подгруппой $M_1\cap R$, поскольку $w\in M_1\cap R$. Следовательно, M_1 изоморфна $L_2(4)$ или $L_2(8)$. Но ни одна из этих ситуаций невозможна, поскольку M_1 содержит элемент d

порядка 3 и $C_{M_1}(d)$ содержит инволюцию w (предложение 9). Итак, M не может быть изоморфна $L_2(4)$. Пусть $M \simeq L_2(8)$. Тогда $M \cap R = H = S_M \leftthreetimes \langle l \rangle$, где $|S_M| = 2^3$, |l| = 7 и H — группа Фробениуса порядка 56. Возьмем в $M \diagdown H$ инволюцию y такую, что $l^y = l^{-1}$, а в $R \diagdown H$ — инволюцию z такую, что $l^z = l^{-1}$. Конечная группа $\langle l, z, t \rangle$ содержится в M_1 , где M_1 — конечная простая группа с элементарной абелевой силовской 2-подгруппой и сильно вложенной подгруппой $M_1 \cap R$, поскольку $z \in M_1 \cap R$. Следовательно, $M_1 \simeq L_2(4)$, $M_1 \simeq L_2(8)$, но ни одна из этих ситуаций невозможна, так как сильно вложенная подгруппа $M_1 \cap R$ содержит группу диэдра вида $\langle l \rangle \leftthreetimes \langle z \rangle$. Полученное противоречие означает, что G = R, и лемма доказана.

Леммы 6 и 7 завершают рассмотрение случая |S| = 8.

Случай 4: |S| > 8. В силу предложения 4 S — элементарная абелева группа. Возьмем инволюцию $x \in S$, и пусть $C = C_G(x)$.

Лемма 8. C — абелева группа.

Доказательство. Пусть C — неабелева группа. Тогда в C существует элемент нечетного порядка d и C — не локально конечная группа. Действительно, если C — локально конечная группа, то возьмем в C конечную подгруппу $S_1 = \langle (\langle x \rangle \times \langle z \rangle \times \langle v \rangle \times \langle t \rangle), d \rangle$, где $x^2 = z^2 = v^2 = t^2 = 1$. По условию $S_1 < L$, где $L \in \mathfrak{M}$. Следовательно, $L \simeq L_2(2^n)$, n > 3. Но $C_L(x) = 2$ -группа; противоречие с тем, что $d \in C_L(x)$. Положим $\overline{C} = C/\langle x \rangle$. Ясно, что $\overline{S} = S/\langle x \rangle$ — силовская 2-подгруппа в \overline{C} . Если $C_{\overline{C}_1}(\overline{y})$ для любой инволюции $\overline{y} \in \overline{C}$ является абелевой группой, то по предложению $12\ \overline{S} \lhd \overline{C}$, а $S \lhd C$. Тогда $S \leftthreetimes \langle d \rangle$ — локально конечная подгруппа из C. Повторяя рассуждения, приведенные для доказательства не локальной конечности C, снова приходим к противоречию.

Итак, найдется инволюция $\bar{y} \in \overline{C}$ такая, что $C_{\overline{C}}(\bar{y})$ — неабелева группа, а значит, найдется элемент $1 \neq d_1$ нечетного порядка такой, что $d_1 \in C_{\overline{C}}(\bar{y})$. Как и для $C_G(x)$, показывается, что $C_{\overline{C}_1}(\bar{y})$ — не локально конечная группа. Обозначим через C_1 полный прообраз $C_{\overline{C}}(\bar{y})$ в C. Пусть d_1 — элемент нечетного порядка из C_1 такой, что $\bar{d}_1=d_1\langle x\rangle$, а y — инволюция из C такая, что $\bar{y}=y\langle x\rangle$. Тогда $\bar{d}_1^{-1}\bar{y}\bar{d}_1=\bar{y},\ d_1^{-1}yd=y_1$ и $C_1=C_C(\langle x\rangle imes \langle y\rangle).$ Положим $\overline{C}_1=C_1/F,$ где $F=\langle x
angle imes \langle y
angle$ и $\overline{S}_1=S/F$. Ясно, что $\overline{S}_1\leq \overline{C}_1$ и \overline{S}_1 — силовская 2-подгруппа группы \overline{C}_1 . Если $C_{\overline{C}_1}(\overline{z})$ — абелева группа для любой инволюции $\overline{z}\in\overline{C}_1$, то по предложению $12\ \overline{S}_1 \lhd \overline{C}_1$ и, значит, $S \lhd C_1$. Поскольку C_1 содержит элемент нечетного порядка d_1 , можно рассмотреть локально конечную подгруппу $S \leftthreetimes \langle d_1
angle$ и получить противоречие. Следовательно, $C_{\overline{C}_1}(\bar{z})$ — неабелева группа для некоторой инволюции $\bar{z}\in \overline{C}_1$, а значит, она содержит элемент \bar{d}_2 нечетного порядка и \overline{C}_1 — не локально конечная группа. Возвращаясь в группу C_1 , обозначим через C_2 полный прообраз $C_{\overline{C}_1}(\bar{z})$ в C_1 и положим $d_2=d_2(\langle x \rangle \times \langle y \rangle),$ где d_2 — элемент нечетного порядка. Равенство $ar{d}_2^{-1}ar{z}ar{d}_2=ar{z}$ в \overline{C}_2 переходит в равенство $d_2^{-1}zd=zv$ в C_2 для некоторого $v\in F$. Так как $F\subset Z(C_2),$ а $|d_2|$ — нечетное число, то v=1 и $d_2^{-1}zd_2=z$. Рассмотрим конечную подгруппу $M=(\langle x\rangle \times \langle y\rangle \times \langle z\rangle) \times \langle d_2\rangle$. По условию $M\subset L,\,L\in\mathfrak{M}.$ Но ни одна из групп множества \mathfrak{M} не содержит подгрупп такого вида; противоречие. Таким образом, C — абелева группа. Лемма доказана.

Завершим рассмотрение случая 4. В силу последней леммы и предложения $12~G\simeq L_2(Q)$, где Q — подходящие локально конечное поле характеристики 2. Итак, для п. I доказательство теоремы завешено.

II. ГРУППА G содержит неабелеву силовскую 2-подгруппу. Пусть S — некоторая неабелева силовская 2-подгруппа группы G. При доказательстве рассматриваются два случая.

Случай 1: S — конечная группа. По предложению 1 все силовские 2-подгруппы группы G сопряжены, а в силу условия теоремы и ввиду леммы 2 они изоморфны силовской 2-подгруппе либо группы $Sz(2^{2k+1})$, либо группы $U_3(2^n)$. Если любая отличная от S силовская 2-подгруппа тривиально пересекается с S, то теорема верна в силу предложения 14.

Предположим, что найдется такая силовская 2-подгруппа S_1 группы G, что $S_1 \neq S$ и $K = S \cap S_1 \neq \{1\}$. Понятно, что мы можем предполагать, что если M — любая другая силовская 2-подгруппа группы G и $M \neq S$, то $|M \cap S| \leq |K|$.

Если K — элементарная абелева 2-подгруппа, а значит, K содержится в Z(S), то обозначим через t любой элемент порядка 4 из S, для которого $t^2 \in K$. Если же K содержит элемент порядка 4, то через t обозначим любой элемент разности $N_S(K)\setminus K$ со свойством $t^2\in K$ (такой элемент найдется, поскольку в S выполняется нормализаторное условие). Итак, в любом случае $T=\langle K,t\rangle$ — группа периода $4, K \triangleleft T$ и |T/K|=2. Далее, обозначим через t_1 любой элемент из $N_{S_1}(K)\setminus K$, для которого $t_1^2\in K$. Тогда K — нормальная подгруппа индекса 2 в группе $T_1=\langle K,t_1\rangle$. Таким образом, $B=\langle K,t,t_1\rangle$ — конечная группа, содержащая элемент порядка 4.

По условию теоремы и леммы 2 B < L, где L изоморфна либо группе $Sz(2^{2^{k+1}})$, либо группе $U_3(2^n)$. В любом случае различные силовские 2-подгруппы из L имеют тривиальное пересечение. Но тогда 2-подгруппы T и T_1 из L содержатся в одной силовской 2-подгруппе группы L. В частности, B является 2-группой. Если S_2 — силовская 2-подгруппа группы G, содержащая B, то $S_2 \neq S$ ($t_1 \in S_2, t_1 \notin S$), $S_2 \cap S$ содержит T. Но это противоречит выбору подгруппы S_1 .

Итак, S тривиально пересекаются с любой другой силовской 2-подгруппой группы G. Как отмечалось выше, это доказывает теорему.

Случай 2: S — бесконечная группа. Если пересечение двух различных силовских 2-подгрупп группы G тривиально, то теорема верна (предложение 14). Предположим, что $M\cap P\neq \{1\}$, где M, P — различные силовские 2-подгруппы группы G. Так как согласно лемме 3 в группе G все инволюции сопряжены, найдется такой элемент $g\in G$, что $M^g\cap P^g\cap S$ содержит инволюцию i. Хотя бы одна из подгрупп M^g , P^g отлична от S. Обозначим ее через S_1 . Итак, S_1 — силовская 2-подгруппа группы G, и пересечение $S\cap S_1$ содержит инволюцию i. Покажем, что это приводит к противоречию.

Лемма 9. Пусть S — произвольная силовская 2-подгруппа группы G. Тогда все инволюции из S лежат в центре S.

Доказательство. Пусть $1 \neq x \in S$ и $x^2 = 1$, а s — произвольный элемент из S. Если |s| = 2, то $\langle s, x \rangle$ — конечная 2-группа и по условию теоремы sx = xs. Если |s| > 2, то, как показывалось выше, инволюция из $\langle s \rangle$, обозначим ее через s_1 , перестановочна с x. В фактор-группе $C_S(s_1)/\langle s_1 \rangle$ инволюции \bar{x} и \bar{s}_2 , где s_2 — элемент порядка 4 из $\langle s \rangle$, порождают конечную 2-группу $\langle \bar{x}, \bar{s}_2 \rangle$, полный прообраз которой в $C_S(s_1)$ — конечная 2-группа $\langle x, s_2 \rangle$. Следовательно, по условию теоремы $xs_2 = s_2x$. Рассуждая по индукции, получаем, что sx = xs для любого $s \in S$. Лемма доказана.

Лемма 10. Не нарушая общности рассуждений, можно предполагать, что либо $K=S\cap S_1$ содержит элемент порядка 4, либо $|K|\geq 8$.

ДОКАЗАТЕЛЬСТВО. Действительно, пусть K — элементарная абелева группа порядка 2 или 4. Обозначим: i — инволюция из K; b — элемент порядка 4 из S; $l=b^2$; x — элемент группы G, для которого $i=l^x$. Рассмотрим пересечение $S^x\cap S_1=Q$, которое содержит i. Допустим, что снова это пересечение есть элементарная абелева 2-подгруппа порядка ≤ 4 (в противном случае лемма верна). Если $a=b^x$, то $a\in S^x$ и $a^2=i$. Пусть j — любая инволюция из $S_1\setminus S^x$. По лемме 9 j централизует Q. Рассмотрим теперь группу $T=\langle Q,a,j\rangle$. Поскольку T/Q порождается двумя инволюциями aQ и jQ, то T — конечная группа. По условию теоремы и лемме 2 T < L, где L изоморфна либо группе $Sz(2^{2m+1})$, либо группе $U_3(2^s)$.

Так как различные силовские 2-подгруппы из L пересекаются тривиально, 2-подгруппы $\langle Q,a\rangle$ и $\langle Q,j\rangle$ содержатся в одной силовской 2-подгруппе из L. В частности, T является 2-подгруппой. Если S_2 — силовская 2-подгруппа группы G, содержащая T, то $S_2 \neq S^x$ $(j \in T \setminus S^x)$. При этом пересечение $S_2 \cap S^x$ содержит элемент a порядка 4. Это доказывает лемму.

В соответствии с леммой 10 считаем далее, что $K = S \cap S_1$ либо содержит элемент порядка 4, либо $|K| \ge 8$.

Лемма 11. Любые две инволюции из $S \cup S_1$ перестановочны.

Доказательство. Если найдутся две неперестановочные инволюции, то в силу леммы 9 они не содержатся в одной силовской 2-подгруппе группы G. Предположим, что $t \in (S \setminus S_1), \ l \in (S_1 \setminus S), \ |t| = |l| = 2$ и $tl \neq lt$. Обозначим через K_1 подгруппу из K, которая либо циклическая порядка 4, либо элементарная абелева порядка 8, и положим $F = \langle K_1, t, l \rangle$. Заметим, что $K_1 < Z(F)$, а значит, F — конечная группа. Так как подгруппа $\langle K_1, t \rangle$ либо содержит элемент порядка 4, либо является элементарной абелевой порядка 16, по условию теоремы и лемме 2 F < U, где U изоморфна либо группе $Sz(2^{2m+1})$, либо группе $U_3(2^n)$. Отсюда, как и выше, выводим, что F является 2-группой и tl = lt; противоречие. Лемма доказана.

Лемма 12. Пусть a — элемент порядка 4, j — инволюция; $a, j \in (S \cup S_1)$. Тогда aj = ja.

ДОКАЗАТЕЛЬСТВО. Если a, j содержатся в одной силовской 2-подгруппе группы G, то лемма верна в силу леммы 9. Пусть, например, $a \in S, j \in (S_1 \setminus S)$. По лемме $11 \ ja^2 = a^2j$. Тогда $\langle a,j \rangle$ — конечная группа, содержащая нетривиально пересекающиеся 2-подгруппы: $\langle a \rangle, \langle a^2 \rangle \times \langle j \rangle$. В этой ситуации, как доказывалось ранее, $\langle a,j \rangle$ является 2-группой. Следовательно, aj=ja по условию теоремы. Лемма доказана.

Лемма 13. $S_1 \cap S$ содержит все инволюции из $S_1 \cup S$.

Доказательство. Пусть, например, инволюция j содержится в S. В силу лемм 11, 12 j перестановочна со всеми элементами из S_1 , а потому пусть $S_1\langle j\rangle$ — 2-группа. Но S_1 — силовская 2-подгруппа группы G. Значит, $j\in S_1$, т. е. $j\in S\cap S_1$. Лемма доказана.

Лемма 14. SS_1 является 2-подгруппой группы G.

Доказательство. Пусть $x \in S$, $y \in S_1$. Если хотя бы один из этих элементов — инволюция, то xy = yx (лемма 12). Пусть |x| = |y| = 4. Положим $D = \langle x, y \rangle$. Так как x^2 , y^2 содержатся в Z(D), то D — конечная группа, а ее 2-подгруппы $\langle x \rangle$ и $\langle x^2, y^2 \rangle$ имеют нетривиальное пересечение. Но тогда (см. доказательство лемм 10, 11) D есть 2-группа, xy является 2-элементом и

 $xy=y\times z$, где $|z|\leq 2$. Покажем, что $z\in S$. Тогда будет установлено включение $SS_1\subset S_1S$. Действительно, если S_2 — силовская 2-подгруппа группы G, содержащая D, то $S_2\cap S$ содержит элемент x порядка 4. Поэтому для пары (S,S_2) справедливы леммы 11–13, а потому $x\in S$. Аналогично устанавливается включение $S_1S\subset SS_1$. Это доказывает лемму.

Так как S, S_1 — силовские 2-подгруппы группы G, по лемме 14 $S=S_1$; противоречие. Как отмечалось выше, это доказывает теорему.

ЛИТЕРАТУРА

- Шлёпкин А. К. Сопряженно бипримитивно конечные группы, содержащие конечные неразрешимые подгруппы // Третья междунар. конф. по алгебре, 23–28 авг. 1993: Сб. тез. Красноярск, 1993.
- Созутов А. И., Шлёпкин А. К. О некоторых группах с конечной инволюцией, насыщенных конечными простыми подгруппами // Мат. заметки. 2002. Т. 72, № 3. С. 433–447.
- Hall P. Some constructions for locally finite groups // J. London Math. Soc. 1959. V. 34. P. 305–319.
- Филиппов К. А. Группы, насыщенные конечными неабелевыми группами и их расширениями: Лис. канд. физ.-мат. наук. Красноярск, 2006.
- Шунков В. П. О периодических группах с почти регулярной инволюцией // Алгебра и логика. 1972. Т. 11, № 4. С. 470–494.
- Беляев В. В. Локально конечные группы Шевалле // Исследования по теории групп. Свердловск: УНЦ АН СССР, 1984. С. 39—50.
- Боровик А. В. Вложения конечных групп Шевалле и периодические линейные группы // Сиб. мат. журн. 1983. Т. 24, № 6. С. 26–35.
- Hartley B., Shute G. Monomorphisms and direct limits of finite groups of Lie type // Quat. J. Math. 1984. V. 35, N 135. P. 49–71.
- 9. Thomas S. The classification of the simple periodic linear groups // Arch. Math. 1984. V. 41. P. 103–116.
- 10. Горенстейн Д. Конечные простые группы. М.: Мир, 1985.
- **11.** *Мазуров В. Д.* Конечные группы // Алгебра. Топология. Геометрия. М.: ВИНИТИ, 1976. Т. 14. С. 5–56. (Итоги науки и техники).
- **12.** Филиппов К. А., Рубашкин А. Г. О периодических группах, насыщенных $L_2(p^n)$ // Сиб. мат. журн. 2005. Т. 46, № 6. С. 1388–1392.
- Шлёпкин А. К., Рубашкин А. Г. Об одном классе периодических групп // Алгебра и логика. 2005. Т. 44, № 1. С. 110–119.
- **14.** Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. М.: Наука, 1982.
- **15.** Сучков Н. М. О периодических группах с абелевыми централизаторами инволюций // Мат. сб. 2002. Т. 193, № 2. С. 153–160.
- 16. Лыткина Д. В. Строение группы, порядки элементов которой не превосходят числа 4 // Сиб. мат. журн. 2007. Т. 48, № 2. С. 353–358.
- **17.** *Санов И. Н.* Решение проблемы Бернсайда для показателя 4 // Уч. зап. ЛГУ. Сер. мат. 1940. Т. 10. С. 166–170.
- Лыткина Д. В. О группах, насыщенных конечными простыми группами // Алгебра и логика. 2009. Т. 48, № 5. С. 628–653.

Статья поступила 12 января 2012 г.

Филиппов Константин Анатольевич Красноярский гос. аграрный университет, пр. Мира, 90, Красноярск 660049 filippov_kostya@mail.ru