ЦЕНТРАЛИЗАТОРЫ ОБОБЩЕННЫХ КОСЫХ ДИФФЕРЕНЦИРОВАНИЙ ПОЛИЛИНЕЙНЫХ МНОГОЧЛЕНОВ

Э. Албаш, Н. Аржач, В. Де Филиппис

Аннотация. Пусть \mathscr{R} — первичное кольцо характеристики, отличной от 2, \mathscr{Q} — его фактор-кольцо Мартиндейла и \mathscr{C} — его расширенный центроид. Пусть \mathscr{G} — ненулевое обобщенное косое дифференцирование кольца \mathscr{R} и $f(x_1,\ldots,x_n)$ — нецентральный полилинейный многочлен над \mathscr{C} от n некоммутирующих переменных. Пусть $f(\mathscr{R}) = \{f(r_1,\ldots,r_n): r_i \in \mathscr{R}\}$ — множество всех значений $f(x_1,\ldots,x_n)$ в \mathscr{R} , $\mathscr{A} = \{[\mathscr{G}(f(r_1,\ldots,r_n)), f(r_1,\ldots,r_n)]: r_i \in \mathscr{R}\}$ и $C_{\mathscr{R}}(\mathscr{A})$ — централизатор \mathscr{A} в \mathscr{R} , т. е. $C_{\mathscr{R}}(\mathscr{A}) = \{a \in \mathscr{R}: [a,x] = 0 \ \forall x \in \mathscr{A}\}$. Доказывается, что если $\mathscr{A} \neq (0)$, то $C_{\mathscr{R}}(\mathscr{A}) = Z(R)$.

DOI 10.17377/smzh.2017.58.101

Ключевые слова: полиномиальное тождество, обобщенное косое дифференцирование, первичное кольпо.

1. Введение

Пусть \mathscr{R} — первичное кольцо с центром $\mathscr{Z}(\mathscr{R})$, и пусть d — ненулевое дифференцирование \mathscr{R} . Известная теорема Поснера [1] утверждает, что если $[d(x),x]\in\mathscr{Z}(\mathscr{R})$ для всех $x\in\mathscr{R}$, то \mathscr{R} необходимо коммутативно.

В [2] Лански распространил результат Поснера на лиевы идеалы. Более точно, он показал, что если d — ненулевое дифференцирование $\mathscr R$ такое, что $[d(x),x]\in\mathscr Z(\mathscr R)$ для всех x в лиевом идеале $\mathscr L$ кольца $\mathscr R$, то либо $\mathscr L$ централен в $\mathscr R$, либо char $(\mathscr R)=2$ и $\mathscr R$ удовлетворяет стандартному полиномиальному тождеству $S_4(x_1,\ldots,x_4)$ степени 4. Несколько авторов изучали связь между структурой первичного кольца $\mathscr R$ и поведением аддитивного отображения f, удовлетворяющего условию типа Энгеля $[f(x),x]_k=0$. Условие Энгеля состоит в том, что $[f(x),x]_k=[[f(x),x]_{k-1},x]$ для всех $x\in\mathscr R$ и всех k>1.

В [3] доказано, что если $f(x_1,\ldots,x_n)$ — полилинейный многочлен и d — ненулевое дифференцирование кольца $\mathscr R$ такое, что $[d(x),x]_k=0$ для всех $x\in\{f(x_1,\ldots,x_n):x_1,\ldots,x_n\in\mathscr R\}$, то отображение $f(x_1,\ldots,x_n)$ центральнозначно в $\mathscr R$, кроме случая, когда $\mathrm{char}(\mathscr R)=2$ и $\mathscr R$ удовлетворяет условию $S_4(x_1,\ldots,x_4)$. Более того, в [4] этот результат распространен на произвольный многочлен без предположения полилинейности.

В двух недавних статьях [5,6] были рассмотрены другие обобщения. Точнее, в упомянутых статьях дифференцирование *d* заменяется соответственно косым дифференцированием (см. [5]) и обобщенными косыми дифференцированиями (см. [6]). Напомним определение косых дифференцирований кольца \mathscr{R} . Пусть \mathscr{R} — ассоциативное кольцо и α — автоморфизм \mathscr{R} . Аддитивное отображение $d:\mathscr{R} \longrightarrow \mathscr{R}$ называется косым дифференцированием кольца \mathscr{R} , если

$$d(xy) = d(x)y + \alpha(x)d(y)$$

для всех $x, y \in \mathcal{R}$, при этом α называется ассоциированным автоморфизмом дифференцирования d. Аддитивное отображение $\mathcal{G}: \mathcal{R} \longrightarrow \mathcal{R}$ называется обобщенным косым дифференцированием кольца R, если существует косое дифференцирование d кольца \mathcal{R} с ассоциированным автоморфизмом α такое, что

$$\mathscr{G}(xy) = \mathscr{G}(x)y + \alpha(x)d(y)$$

для всех $x,y \in \mathcal{R}$; d называется ассоциированным косым дифференцированием для \mathcal{G} , а α называется ассоциированным автоморфизмом для \mathcal{G} . Определение обобщенного косого дифференцирования — унифицированное понятие косого и обобщенного дифференцирований, рассматриваемых как классические аддитивные отображения неассоциативных алгебр. Оно изучалось разными исследователями с разных точек зрения [7–13].

В настоящей работе продолжим изучение множества

$$\mathscr{A} = \{ [\mathscr{G}(f(x_1, \dots, x_n)), f(x_1, \dots, x_n)] \mid x_1, \dots, x_n \in \mathscr{R} \}$$

для обобщенного косого дифференцирования $\mathscr G$ кольца $\mathscr R$. Один из стандартных подходов к изучению вышеупомянутого множества $\mathscr A$ заключается в исследовании его размера. Разумный критерий для изучения размера $\mathscr A$ состоит в рассмотрении его левого аннулятора и централизатора в $\mathscr R$. В рамках этой линии исследования в [6] было показано, что если $\mathscr A\neq 0$, то его левый аннулятор в $\mathscr R$ равен нулю. Наша цель — доказать, что централизатор $\mathscr A$ в $\mathscr R$ тривиален, т. е. совпадает с центром кольца $\mathscr R$.

В действительности будет доказано следующее утверждение.

Теорема 1. Пусть \mathscr{R} — первичное кольцо характеристики, отличной от 2, \mathscr{Q} — его правое фактор-кольцо Мартиндейла, а \mathscr{C} — его расширенный центро-ид. Предположим, что \mathscr{G} — ненулевое обобщенное косое дифференцирование кольца \mathscr{R} и $f(x_1,\ldots,x_n)$ — нецентральный полилинейный многочлен над \mathscr{C} от n некоммутирующих переменных.

Пусть $f(\mathscr{R})=\{f(r_1,\ldots,r_n):r_i\in\mathscr{R}\}$ — множество всех значений $f(x_1,\ldots,x_n)$ в $\mathscr{R},\,\mathscr{A}=\{[\mathscr{G}(f(r_1,\ldots,r_n)),f(r_1,\ldots,r_n)]:r_i\in\mathscr{R}\}$ и $C_\mathscr{R}(\mathscr{A})$ — централизатор \mathscr{A} в $\mathscr{R},$ т. е. $C_\mathscr{R}(\mathscr{A})=\{a\in\mathscr{R}:[a,x]=0\ \forall x\in\mathscr{A}\}$. Если $\mathscr{A}\neq(0),$ то $C_\mathscr{R}(\mathscr{A})=\mathscr{L}(\mathscr{R}).$

Заметим, что для случая, когда \mathscr{G} есть обычное или обобщенное дифференцирование кольца \mathscr{R} , заключение теоремы 1 следует из результатов работ [14] (где \mathscr{G} — обычное дифференцирование) и [15] (где \mathscr{G} — обобщенное дифференцирование).

В дальнейшем пусть \mathcal{Q} — правое фактор-кольцо Мартиндейла кольца \mathscr{R} и $\mathscr{C} = \mathscr{Z}(\mathscr{Q})$ — центр \mathscr{Q} , который обычно называется расширенным центроидом кольца \mathscr{R} . Если \mathscr{R} первично, то \mathscr{C} — поле. Следует отметить, что \mathscr{Q} — центрально замкнутая первичная \mathscr{C} -алгебра. Определения и свойства этих объектов можно найти в [16].

Хорошо известно, что автоморфизмы, дифференцирования и косые дифференцирования кольца \mathscr{R} могут быть продолжены на \mathscr{Q} . В [7] Чжан распространил определение обобщенного косого дифференцирования на правое фактор-кольцо Мартиндейла \mathscr{Q} кольца \mathscr{R} следующим образом: под (правым) обобщенным косым дифференцированием мы подразумеваем аддитивное отображение

 $\mathscr{G}:\mathscr{Q}\longrightarrow\mathscr{Q}$ такое, что $\mathscr{G}(xy)=\mathscr{G}(x)y+\alpha(x)d(y)$ для всех $x,y\in\mathscr{Q}$, где d — косое дифференцирование \mathscr{R} и α — автоморфизм кольца \mathscr{R} . Более того, существует $\mathscr{G}(1)=a\in\mathscr{Q}$ такое, что $\mathscr{G}(x)=ax+d(x)$ для всех $x\in\mathscr{R}$. Примем следующее обозначение:

$$f(x_1,\ldots,x_n) = x_1x_2\ldots x_n + \sum_{\sigma\in S_n,\,\sigma
eq \mathrm{id}} lpha_\sigma x_{\sigma(1)}x_{\sigma(2)}\ldots x_{\sigma(n)}$$

для некоторых $\alpha_{\sigma} \in \mathscr{C}$. Многочлен $f(x_1, \dots, x_n) \in \mathscr{C}\langle x_1, \dots, x_n \rangle$ называется *нецентральным*, если он имеет нецентральное значение на \mathscr{R} в \mathscr{Q} или, что равносильно, в центральном замыкании $\mathscr{C}\mathscr{R}$ кольца \mathscr{R} . Всегда предполагаем, что $\operatorname{char}(\mathscr{R}) \neq 2$ и $f(x_1, \dots, x_n)$ нецентрально в \mathscr{R} .

2. Случай внутренних обобщенных косых дифференцирований

В данном разделе изучается случай, когда \mathscr{G} — внутреннее косое дифференцирование, индуцированное элементами $b,c\in\mathscr{R}$ и $\alpha\in\mathrm{Aut}(\mathscr{R})$, т. е. $\mathscr{G}(x)=bx+\alpha(x)c$ для всех $x\in\mathscr{R}$. В этом смысле наша цель — доказать следующее утверждение.

Предложение 2.1. Пусть \mathscr{R} — первичное кольцо характеристики, отличной от двух, и пусть $f(x_1,\ldots,x_n)$ — нецентральный полилинейный многочлен над \mathscr{C} от n некоммутирующих переменных. Пусть $0 \neq a,b,c \in \mathscr{R}$ и $\alpha \in \operatorname{Aut}(\mathscr{R})$ таковы, что $\mathscr{G}(x) = bx + \alpha(x)c$ для всех $x \in \mathscr{R}$. Если

$$[a, [bf(r_1, \ldots, r_n) + \alpha(f(r_1, \ldots, r_n))c, f(r_1, \ldots, r_n)]] = 0$$

для всех $r_1, \ldots, r_n \in \mathcal{R}$, то справедливо одно из следующих утверждений:

- (a) $a \in \mathscr{C}$;
- (b) существует $\lambda \in \mathscr{C}$ такое, что $\mathscr{G}(x) = \lambda x$ для всех $x \in \mathscr{R}$;
- (c) существует $\lambda \in \mathscr{C}$ такое, что $\mathscr{G}(x) = bx + xc$ для всех $x \in \mathscr{R}$, где $c b = \lambda$ и $f(x_1, \dots, x_n)^2$ центральнозначен на \mathscr{R} .
- **2.1.** Матричный случай. Сначала рассмотрим случай, когда $\mathscr{R} = \mathscr{M}_m(\mathscr{K})$, где \mathscr{K} поле характеристики, отличной от двух. Заметим, что множество $f(\mathscr{R}) = \{f(r_1, \ldots, r_n) : r_1, \ldots, r_n \in \mathscr{R}\}$ инвариантно относительно действия всех внутренних автоморфизмов кольца \mathscr{R} . Будем писать $r = (r_1, \ldots, r_n) \in \mathscr{R} \times \mathscr{R} \times \cdots \times \mathscr{R} = \mathscr{R}^n$. Тогда для всякого внутреннего автоморфизма φ алгебры $\mathscr{M}_m(\mathscr{K})$ имеем $\underline{r} = (\varphi(r_1), \ldots, \varphi(r_n)) \in \mathscr{R}^n$ и $\varphi(f(r)) = f(\underline{r}) \in f(\mathscr{R})$. Как обычно, обозначаем матрицу, имеющую единицу на месте (i,j) и нули на остальных местах, символом e_{ij} .

Напомним несколько известных результатов.

Лемма 2.2 [15, предложение 1]. Пусть \mathscr{R} — первичное кольцо характеристики, отличной от двух, $f(x_1, \ldots, x_n)$ — нецентральный полилинейный многочлен над \mathscr{C} от n некоммутирующих переменных и $0 \neq a, b, c \in \mathscr{R}$. Если

$$[a, [bf(r_1, \ldots, r_n) + f(r_1, \ldots, r_n)c, f(r_1, \ldots, r_n)]] = 0$$

для всех $r_1, \ldots, r_n \in \mathcal{R}$, то справедливо одно из следующих утверждений:

- (a) $a \in \mathscr{C}$;
- (b) $b, c \in \mathscr{C}$;
- (c) существует $\lambda \in \mathscr{C}$ такое, что $c-b=\lambda$ и $f(x_1,\ldots,x_n)^2$ центральнозначен на $\mathscr{R}.$

Отсюда вытекает

Лемма 2.3. Пусть \mathscr{R} — первичное кольцо характеристики, отличной от двух, $f(x_1,\ldots,x_n)$ — нецентральный полилинейный многочлен над \mathscr{C} от n некоммутирующих переменных и $0 \neq a,b \in \mathscr{R}$. Если

$$[a, [bf(r_1, \ldots, r_n), f(r_1, \ldots, r_n)]] = 0$$

для всех $r_1, \ldots, r_n \in \mathcal{R}$, то либо $a \in \mathcal{C}$, либо $b \in \mathcal{C}$.

Начнем со следующей леммы.

Лемма 2.4 [15, лемма 1]. Пусть \mathcal{H} — бесконечное поле, и пусть $m \geq 2$ — положительное целое число. Если $\mathcal{A}_1, \ldots, \mathcal{A}_k$ не являются скалярными матрицами в $\mathcal{M}_m(\mathcal{H})$, то найдется обратимая матрица $\mathcal{B} \in \mathcal{M}_m(\mathcal{H})$ такая, что у каждой из матриц $\mathcal{B}\mathcal{A}_1\mathcal{B}^{-1}, \ldots, \mathcal{B}\mathcal{A}_k\mathcal{B}^{-1}$ все элементы ненулевые.

Лемма 2.5 [6, лемма 2.8]. Пусть \mathscr{H} — бесконечное поле, $m \geq 2$ — положительное целое число и $\mathscr{R} = \mathscr{M}_m(\mathscr{H})$. Если существуют $b, c, q \in \mathscr{R}$ такие, что q — обратимая матрица и $[bu + quq^{-1}c, u] = 0$ для всех $u \in f(\mathscr{R})$, то справедливо одно из следующих утверждений:

- (a) $q^{-1}c, b+c \in \mathscr{Z}(\mathscr{R});$
- (b) $q, c b \in \mathscr{Z}(\mathscr{R})$ и $u^2 \in \mathscr{Z}(\mathscr{R})$ для всех $u \in f(\mathscr{R})$.

Лемма 2.6. Пусть \mathscr{H} — бесконечное поле характеристики, отличной от двух, $m \geq 2$ — положительное целое число и $\mathscr{R} = \mathscr{M}_m(\mathscr{H})$. Если существуют $0 \neq a,b,c,q \in \mathscr{R}$ такие, что q — обратимая матрица и

$$[a, [bu + quq^{-1}c, u]] = 0$$

для всех $u \in f(\mathcal{R})$, то справедливо одно из следующих утверждений.

- (a) $a \in \mathscr{Z}(\mathscr{R})$;
- (b) $q^{-1}c, b + c \in \mathscr{Z}(\mathscr{R});$
- (c) $q, c b \in \mathscr{Z}(\mathscr{R})$ и $u^2 \in \mathscr{Z}(\mathscr{R})$ для всех $u \in f(\mathscr{R})$.

Доказательство. Предположим, что $a \notin \mathscr{Z}(\mathscr{R})$. Заметим, что если либо $q \in \mathscr{Z}(\mathscr{R})$, либо $q^{-1}c \in \mathscr{Z}(\mathscr{R})$, то результат следует из леммы 2.3. Значит, можно предполагать, что a нецентрален и $q^{-1}c$ и q не являются скалярными матрицами. По лемме 2.4 существует обратимая матрица $\mathscr{B} \in M_m(\mathscr{H})$ такая, что у каждой из матриц $\mathscr{B}a\mathscr{B}^{-1}$, $\mathscr{B}(q^{-1}c)\mathscr{B}^{-1}$, $\mathscr{B}q\mathscr{B}^{-1}$ все элементы ненулевые. Обозначим символом $\varphi(x) = \mathscr{B}x\mathscr{B}^{-1}$ внутренний автоморфизм, индуцированный \mathscr{B} . Будем писать $\varphi(a) = \sum_{hl} a_{hl}e_{hl}$, $\varphi(q) = \sum_{hl} q_{hl}e_{hl}$ и $\varphi(q^{-1}c) = \sum_{hl} c_{hl}e_{hl}$ для $0 \neq a_{hl}, 0 \neq c_{hl} \in \mathscr{H}$. Более того, по лемме из [17] и лемме 2 из [18], поскольку многочлен $f(x_1, \ldots, x_n)$ нецентральнозначен, $e_{ij} \in f(\mathscr{R})$ и

$$[\varphi(a), [\varphi(b)e_{ij} + \varphi(q)e_{ij}\varphi(q^{-1}c), e_{ij}]] = 0.$$

В частности, умножая на e_{ij} одновременно слева и справа, имеем $2a_{ji}q_{ji}c_{ji}=0$; противоречие. \square

Лемма 2.7. Пусть \mathcal{K} — поле характеристики, отличной от двух, $m \geq 2$ — положительное целое число и $\mathcal{R} = \mathcal{M}_m(\mathcal{K})$. В условиях леммы 2.6 справедливо одно из следующих утверждений:

- (a) $a \in \mathscr{Z}(\mathscr{R})$;
- (b) $q^{-1}c, b + c \in \mathscr{Z}(\mathscr{R});$
- (c) $q, c b \in \mathscr{Z}(\mathscr{R})$ и $u^2 \in \mathscr{Z}(\mathscr{R})$ для всех $u \in f(\mathscr{R})$.

Доказательство. Если поле ${\mathscr K}$ бесконечно, утверждение следует из леммы 2.6.

Пусть \mathscr{H} — бесконечное поле, являющееся расширением поля \mathscr{K} , и пусть $\overline{\mathscr{R}} = \mathscr{M}_m(\mathscr{H}) \cong \mathscr{R} \otimes_{\mathscr{K}} \mathscr{H}$. Заметим, что полилинейный многочлен $f(x_1, \ldots, x_n)$ центральнозначен на \mathscr{R} тогда и только тогда, когда он центральнозначен на $\overline{\mathscr{R}}$. Обобщенный многочлен

$$\Phi(x_1, \dots, x_n) = [a, [bf(x_1, \dots, x_n) + qf(x_1, \dots, x_n)q^{-1}c, f(x_1, \dots, x_n)]]$$

является обобщенным полиномиальным тождеством для \mathscr{R} . Более того, $\Phi(x_1,\ldots,x_n)$ полиоднородно полистепени $(2,\ldots,2)$ относительно неизвестных x_1,\ldots,x_n . С другой стороны, полная линеаризация $\Phi(x_1,\ldots,x_n)$ ведет к полилинейному обобщенному многочлену $\Theta(x_1,\ldots,x_n,y_1,\ldots,y_n)$, имеющему вид

$$\Theta(x_1,\ldots,x_n,x_1,\ldots,x_n)=2^n\Phi(x_1,\ldots,x_n).$$

Ясно, что полилинейный многочлен $\Theta(x_1,\ldots,x_n,y_1,\ldots,y_n)$ является обобщенным полиномиальным тождеством для \mathscr{R} и $\overline{\mathscr{R}}$. Так как $\operatorname{char}(\mathscr{K}) \neq 2$, получаем, что $\Phi(r_1,\ldots,r_n)=0$ для всех $r_1,\ldots,r_n\in\overline{\mathscr{R}}$, и утверждение следует из леммы 2.6. \square

Следствие 2.8. Пусть \mathscr{K} — поле характеристики, отличной от двух, $m \geq 2$ — положительное целое число и $\mathscr{R} = \mathscr{M}_m(\mathscr{K})$. Если существуют $0 \neq a,b,c,q \in \mathscr{R}$ такие, что q — обратимая матрица и

$$[a, [bx + qxq^{-1}c, x]] = 0$$

для всех $x \in \mathcal{R}$, то справедливо одно из следующих утверждений:

- (a) $a \in \mathscr{Z}(\mathscr{R})$;
- (b) $q^{-1}c, b + c \in \mathscr{Z}(\mathscr{R}).$

2.2. Доказательство предложения **2.1.** Предположим сначала, что $\alpha-X$ -внутренний автоморфизм кольца \mathscr{R} , т. е. существует обратимый элемент $q\in \mathscr{Q}$ такой, что $\alpha(x)=qxq^{-1}$ для всех $x\in \mathscr{R}$. Следовательно, обобщенный многочлен

$$\Phi(x_1, \dots, x_n) = [a, [bf(x_1, \dots, x_n) + qf(x_1, \dots, x_n)q^{-1}c, f(x_1, \dots, x_n)]]$$

является обобщенным полиномиальным тождеством для \mathscr{R} .

Докажем сначала, что $\Phi(x_1,\ldots,x_n)$ — нетривиальное обобщенное полиномиальное тождество для \mathscr{R} , кроме случая, когда существует $\theta \in \mathscr{C}$ такое, что $bx + qxq^{-1}c = \theta x$ для всех $x \in \mathscr{R}$.

В дальнейшем можно предполагать, что $a \notin \mathcal{C}$, кроме того, либо $q \notin C$, либо $q^{-1}c \notin \mathcal{C}$, иначе все получается снова с помощью лемм 2.2 и 2.3.

Рассмотрим обобщенный многочлен $\Phi(x_1,\ldots,x_n)\in \mathcal{Q}*_{\mathscr{C}}\mathscr{C}\{x_1,\ldots,x_n\}.$ В силу предположения кольцо R удовлетворяет этому обобщенному полиномиальному тождеству. Если B — базис \mathcal{Q} над \mathscr{C} , то любой элемент из $T=\mathcal{Q}*_{\mathscr{C}}\mathscr{C}\{x_1,\ldots,x_n\}$ может быть записан в виде $g=\sum_i \alpha_i m_i.$ В этом разложении коэффициенты α_i из \mathscr{C} , а элементы m_i — B-одночлены, т. е. $m_i=q_0y_1\ldots y_hq_h,$ причем $q_i\in B$ и $y_i\in\{x_1,\ldots,x_n\}.$ В [19] показывается, что обобщенный многочлен $g=\sum_i \alpha_i m_i$ является нулевым элементом T тогда и только тогда, когда все α_i нулевые. Следовательно, пусть $a_1,\ldots,a_k\in \mathcal{Q}$ линейно независимы над \mathscr{C} и $a_1g_1(x_1,\ldots,x_n)+\cdots+a_kg_k(x_1,\ldots,x_n)=0\in T$ для некоторых $g_1,\ldots,g_k\in T.$ Если $g_i(x_1,\ldots,x_n)=\sum_{i=1}^n x_ih_j(x_1,\ldots,x_n)$ для всех i

и $h_j(x_1,\ldots,x_n)\in T$, то $g_1(x_1,\ldots,x_n),\ldots,\ g_k(x_1,\ldots,x_n)$ — нулевые элементы T. То же верно, если $g_1(x_1,\ldots,x_n)a_1+\cdots+g_k(x_1,\ldots,x_n)a_k=0\in T$ и $g_i(x_1,\ldots,x_n)=\sum\limits_{j=1}^nh_j(x_1,\ldots,x_n)x_j$ для некоторых $h_j(x_1,\ldots,x_n)\in T$.

Пишем
$$q^{-1}c = p, \ f(X) = f(x_1, \dots, x_n)$$
 и $\Phi(X) = \Phi(x_1, \dots, x_n)$. Тогда

$$\Phi(X) = abf(X)^{2} + aqf(X)pf(X) - af(X)bf(X) - af(X)qf(X)p - bf(X)^{2}a - qf(X)pf(X)a + f(X)bf(X)a + f(X)qf(X)pa.$$
 (2.1)

Если $\{pa,a,p,1\}$ линейно независимы над \mathscr{C} , то $\Phi(X)\neq 0\in T$. Поэтому можем предполагать, что $a,\ p,\ q$ — нецентральные элементы \mathscr{Q} и $\{pa,a,p,1\}$ линейно независимы над \mathscr{C} .

Если $\{a,p,1\}$ линейно независимы, то существуют $\alpha_1,\alpha_2,\alpha_3\in\mathscr{C}$ такие, что $pa=\alpha_1a+\alpha_2p+\alpha_3.$ В этом случае

$$\Phi(X) = (abf(X) + aqf(X)p - af(X)b + \alpha_3 f(X)q)f(X) - (af(X)qf(X) - \alpha_2 f(X)qf(X))p - (bf(X)^2 + qf(X)pf(X) - f(X)bf(X) - \alpha_1 f(X)qf(X))a.$$
 (2.2)

Так как $\{a,p,1\}$ линейно независимы, $af(X)qf(X)-\alpha_2f(X)qf(X)\neq 0\in T$ и также получаем, что $\Phi(X)\neq 0\in T$.

Если $\{a,p,1\}$ линейно зависимы, то найдутся $\beta_1,\beta_2\in\mathscr{C}$ такие, что $p=\beta_1a+\beta_2$ и $\beta_1\neq 0$, потому что p нецентрален. Кроме того, $pa=\beta_1a^2+\beta_2a$, и в силу (2.1)

$$\Phi(X) = \beta_1 f(X) q f(X) a^2 + (-bf(X)^2 - \beta_1 q f(X) a f(X) - \beta_2 q f(X)^2 + f(X) b f(X) + \beta_2 f(X) q f(X) - \beta_1 a f(X) q f(X)) a (abf(X) + \beta_1 a q f(X) a + \beta_2 a q f(X) - a f(X) b - \beta_2 a f(X) q) f(X).$$
 (2.3)

Если $\{a^2,a,1\}$ линейно независимы, то $\Phi(X)\neq 0\in T$. Если $\{a^2,a,1\}$ линейно зависимы, то найдутся $\lambda,\omega\in\mathscr{C}$ такие, что $a^2=\lambda a+\omega$. В этом случае в силу (2.3) имеем

$$\Phi(X) = \beta_1 \lambda f(X) q f(X) a + \beta_1 \omega f(X) q f(X)
+ (-bf(X)^2 - \beta_1 q f(X) a f(X) - \beta_2 q f(X)^2
+ f(X) b f(X) + \beta_2 f(X) q f(X) - \beta_1 a f(X) q f(X)) a
(abf(X) + \beta_1 a q f(X) a + \beta_2 a q f(X) - a f(X) b - \beta_2 a f(X) q) f(X). (2.4)$$

Поэтому $\Phi(X) = P_1(X) + P_2(X)a$, где

$$P_{1}(X) = abf(X)^{2} + \beta_{1}aqf(X)af(X) + \beta_{2}aqf(X)^{2} - af(X)bf(X) - \beta_{2}af(X)qf(X) + \beta_{1}\omega f(X)qf(X)$$
 (2.5)

И

$$P_2(X) = -a(\beta_1 f(X)qf(X)) - b(f(X)^2) - q(\beta_1 f(X)af(X) + \beta_2 f(X)^2) + f(X)(bf(X) + \beta_1 \lambda qf(X) + \beta_2 qf(X)).$$
 (2.6)

Ясно, что если $\{1,q,a,b\}$ линейно независимы, то $P_2(X) \neq 0 \in T$ и, таким образом, $\Phi(X) \neq 0 \in T$. Предположим, что $\{1,q,a,b\}$ линейно зависимы; тогда

существуют $\mu_1, \mu_2, \mu_3 \in \mathscr{C}$ такие, что $q = \mu_1 a + \mu_2 b + \mu_3$ и $(\mu_1, \mu_2) \neq (0, 0)$, поскольку q нецентрален. Значит, в силу (2.6)

$$P_{2}(X) = a(-\beta_{1}\mu_{1}f(X)af(X) - \beta_{1}\mu_{2}f(X)bf(X) - \beta_{1}\mu_{3}f(X)^{2}$$

$$-\beta_{1}\mu_{1}f(X)af(X) - \beta_{2}\mu_{1}f(X)^{2}) + b(-\beta_{1}\mu_{2}f(X)af(X) - \beta_{2}\mu_{2}f(X)^{2} - f(X)^{2})$$

$$+ (-\beta_{1}\mu_{3}f(X)af(X) - \beta_{2}\mu_{3}f(X)^{2} + f(X)bf(X)$$

$$+ \beta_{1}\mu_{1}\lambda f(X)af(X) + \beta_{1}\mu_{2}\lambda f(X)bf(X) + \beta_{1}\lambda\mu_{3}f(X)^{2}$$

$$+ \beta_{2}\mu_{1}f(X)af(X) + \beta_{2}\mu_{2}f(X)bf(X) + \beta_{2}\mu_{3}f(X)^{2}). \quad (2.7)$$

Если $\{1,a,b\}$ линейно независимы, то $P_2(X) \neq 0 \in T$, так что $\Phi(X) \neq 0 \in T$. Поэтому можно предполагать, что существуют $\mu_1,\mu_2,\mu_3 \in \mathscr{C}$ такие, что $\mu_1 a + \mu_2 b + \mu_3 = 0$, где $\mu_2 \neq 0$, так как $a \notin \mathscr{C}$. Значит, можем записать $b = \gamma_1 a + \gamma_2$ для подходящих $\gamma_1, \gamma_2 \in \mathscr{C}$.

Мы доказали, что

$$a^2=\lambda a+\omega,\quad p=eta_1a+eta_2,\quad b=\gamma_1a+\gamma_2.$$

Поскольку $q = \mu_1 a + \mu_2 b + \mu_3$, таким образом, пишем $q = \nu_1 a + \nu_2$ для некоторых $\nu_1, \nu_2 \in \mathscr{C}$. Более того, $\beta_1 \neq 0$ и $\nu_1 \neq 0$. Вычисляя, получаем

$$bx + qxp = (\gamma_1 + \nu_1\beta_2)ax + (\gamma_2 + \nu_2\beta_2)x + (\nu_2\beta_1)xa + (\nu_1\beta_1)axa$$

и для ясности пишем

$$bx + qxp = \eta_1 ax + \eta_2 x + \eta_3 xa + \eta_4 axa, \quad \eta_1, \eta_2, \eta_3, \eta_4 \in \mathscr{C}, \ \eta_4 \neq 0.$$

Значит, (2.1) сводится к

$$\Phi(X) = \eta_1(\lambda a + \omega)f(X)^2 + (\eta_3 - \eta_1)af(X)af(X) + \eta_4(\lambda a + \omega)f(X)af(X)
- \eta_3 af(X)^2 a - 2\eta_4 af(X)af(X)a - \eta_1 af(X)^2 a + (\eta_1 - \eta_3)f(X)af(X)a
+ \eta_3 f(X)^2(\lambda a + \omega) + \eta_4 f(X)af(X)(\lambda a + \omega),$$
(2.8)

т. е.

$$\Phi(X) = a(\eta_1 \lambda f(X)^2 + (\eta_3 - \eta_1) f(X) a f(X) + \eta_4 \lambda f(X) a f(X)
- \eta_3 f(X)^2 a - 2\eta_4 f(X) a f(X) a - \eta_1 f(X)^2 a)
+ (\eta_1 \omega f(X)^2 + \eta_4 \omega f(X) a f(X) + (\eta_1 - \eta_3) f(X) a f(X) a
+ \eta_3 f(X)^2 (\lambda a + \omega) + \eta_4 f(X) a f(X) (\lambda a + \omega)).$$
(2.9)

Поскольку $a \notin \mathcal{C}$, либо (2.9) — нетривиальный обобщенный многочлен, либо

$$(\eta_1 \omega f(X) + 2\eta_4 \omega f(X)a + \eta_3 \omega f(X))f(X) + ((\eta_1 - \eta_3)f(X)af(X) + \eta_3 \lambda f(X)^2 + \eta_4 \lambda f(X)af(X))a = 0 \in T.$$
 (2.10)

В этом последнем случае из (2.10) следует, что

$$(\eta_1 + \eta_3)\omega f(X)^2 + 2\eta_4 \omega f(X) a f(X) = 0 \in T.$$
 (2.11)

Так как $\eta_4 \neq 0$, то $\omega = 0$, так что (2.10) сводится к

$$(\eta_1 - \eta_3 + \eta_4 \lambda) f(X) a f(X) a + \eta_3 \lambda f(X)^2 a = 0 \in T, \tag{2.12}$$

поэтому либо $\lambda = 0$ и $\eta_1 - \eta_3 = 0$, либо $\eta_3 = 0$ и $\eta_1 + \lambda \eta_4 = 0$.

Для $\lambda = 0$ и $\eta_1 - \eta_3 = 0$ в силу (2.9) имеем

$$\Phi(X) = -2a(\eta_4 f(X)af(X)a + \eta_1 f(X)^2 a) = 0 \in T, \tag{2.13}$$

откуда $\eta_1 = \eta_4 = 0$; противоречие.

С другой стороны, если $\eta_3 = 0$ и $\eta_1 + \lambda \eta_4 = 0$, снова в силу (2.9) имеем

$$\Phi(X) = \eta_4(-\lambda^2 a f(X)^2 + 2\lambda a f(X) a f(X) - 2a f(X) a f(X) a + \lambda a f(X)^2 a). \quad (2.14)$$

Поскольку $\eta_4 \neq 0$, ввиду (2.14) \mathscr{R} удовлетворяет равенству

$$\Phi(X) = (-\lambda^2 a f(X)^2 + 2\lambda a f(X) a f(X)) + (-2a f(X) a f(X) + \lambda a f(X)^2) a. \quad (2.15)$$

Так как $a \notin \mathscr{C}$, то $2af(X)af(X) - \lambda af(X)^2$ — нетривиальное обобщенное полиномиальное тождество для \mathscr{R} , т. е. $\Phi(X) \neq 0 \in T$, как и требовалось.

Из [19] вытекает, что $\Phi(x_1,\ldots,x_n)$ — нетривиальное обобщенное полиномиальное тождество для \mathscr{Q} . Согласно известной теореме Мартиндейла [20] \mathscr{Q} — примитивное кольцо с ненулевым цоколем, у которого поле \mathscr{C} является ассоциированным кольцом частных. Ввиду [21, с. 75] \mathscr{Q} изоморфно плотному подкольцу кольца линейных преобразований векторного пространства \mathscr{V} над \mathscr{C} , содержащему ненулевые линейные преобразования конечного ранга. Предположим сначала, что $\dim_{\mathscr{C}}\mathscr{V}=\infty$. Как и в лемме 2 из [22], множество $f(\mathscr{R})=\{f(r_1,\ldots,r_n)\mid r_i\in\mathscr{R}\}$ плотно в \mathscr{R} . В силу того факта, что $\Phi(r_1,\ldots,r_n)=0$ — обобщенное полиномиальное тождество кольца \mathscr{R} , знаем, что \mathscr{R} удовлетворяет обобщенному полиномиальному тождеству $[a,[bx_1+qx_1q^{-1}c,x_1]]$. Пусть $y_0\in\mathscr{R}$. По теореме Литоффа (см. теорему 4.3.11 в [16]) существует идемпотентный элемент $e\in\mathscr{R}$ такой, что $y_0,a,b,c,q,q^{-1}\in\mathscr{eR}e\cong M_k(\mathscr{C})$ для некоторого целого k. Разумеется,

$$[a, [br + qrq^{-1}c, r]] = 0 \quad \forall r \in e \mathscr{R}e.$$

Таким образом, по следствию 2.8 либо $a \in \mathscr{C}e$ и $[a, y_0] = 0$, либо $q^{-1}c \in \mathscr{C}e$ и $[q^{-1}c, y_0] = 0$.

Это означает, что для всех $y \in \mathcal{R}$ либо [a,y]=0, либо $[q^{-1}c,y]=0$. Поэтому каждый элемент \mathcal{R} принадлежит одному из множеств $S_1=\{x\in \mathcal{R}: [a,x]=0\}$ или $S_2=\{x\in \mathcal{R}: [q^{-1}c,x]=0\}$. Другими словами, \mathcal{R} есть объединение своих аддитивных подгрупп S_1 и S_2 . Тем не менее группа не может быть объединением двух собственных подгрупп, так что либо $\mathcal{R}=S_1$, либо $\mathcal{R}=S_2$. Значит, либо [a,x]=0 для всех $x\in \mathcal{R}$, либо $[q^{-1}c,x]=0$ для всех $x\in \mathcal{R}$, т. е. либо $a\in \mathcal{C}$, либо $bx+qxq^{-1}c=(b+c)x$ для любого $x\in \mathcal{R}$, и все доказано в силу леммы 2.3.

С другой стороны, если $\dim_{\mathscr{C}}\mathscr{V}=k\geq 2$ — конечное положительное число, то $\mathscr{Q}\cong\mathscr{M}_k(\mathscr{C})$, и утверждение следует из леммы 2.7.

Поэтому можно предполагать, что α является X-внешним. Ввиду [23] \mathscr{R} и \mathscr{Q} удовлетворяют тому же обобщенному полиномиальному тождеству с автоморфизмами. Поэтому

$$\Phi(x_1, ..., x_n) = [a, [bf(x_1, ..., x_n) + \alpha(f(x_1, ..., x_n))c, f(x_1, ..., x_n)]]$$

тоже выполнено для \mathscr{Q} . Более того, \mathscr{Q} — центральнозамкнутая первичная \mathscr{C} -алгебра. Заметим, что если c=0, то все получается по лемме 2.3. Предположим, что $c\neq 0$ и $a\neq 0$. В этом случае из основной теоремы в [24] вытекает, что $\Phi(x_1,\ldots,x_n)$ — нетривиальное обобщенное тождество для \mathscr{R} и для \mathscr{Q} . В силу теоремы 1 из [25] получаем, что $\mathscr{R}\mathscr{C}$ имеет ненулевой цоколь и \mathscr{Q} примитивно. Так как α — внешний автоморфизм и любая $(x_i)^{\alpha}$ -словесная степень в

 $\Phi(x_1,\ldots,x_n)$ равна 1, по теореме 3 из [24] в $\mathcal Q$ выполнено обобщенное полиномиальное тождество

$$[a, [bf(x_1, \ldots, x_n) + f(y_1, \ldots, y_n)c, f(x_1, \ldots, x_n)]].$$

В частности, \mathcal{Q} (и потому также \mathscr{R}) удовлетворяет обобщенному полиномиальному тождеству

$$[a, [bf(x_1, \ldots, x_n) + f(x_1, \ldots, x_n)c, f(x_1, \ldots, x_n)]].$$

Требуемые заключения следуют из леммы 2.2.

3. Доказательство теоремы 1

Напомним сначала следующее утверждение.

Лемма 3.1 [15]. Пусть \mathscr{R} — первичное кольцо характеристики, отличной от двух, \mathscr{Q} — его правое фактор-кольцо Мартиндейла и \mathscr{C} — его расширенный центроид. Пусть δ — ненулевое обобщенное дифференцирование кольца \mathscr{R} и $f(x_1,\ldots,x_n)$ — нецентральный полилинейный многочлен над \mathscr{C} от n некоммутирующих переменных. Если существует элемент $a \in \mathscr{R}$ такой, что

$$[a, [\delta(f(r_1, \ldots, r_n)), f(r_1, \ldots, r_n)]] = 0$$

для всех $r_1, \ldots, r_n \in \mathcal{R}$, то справедливо одно из следующих утверждений:

- (a) $a \in \mathscr{C}$;
- (b) существует $\lambda \in \mathscr{C}$ такое, что $\delta(x) = \lambda x$ для всех $x \in \mathscr{R}$;
- (c) найдутся $q \in \mathcal{U}$ и $\lambda \in \mathcal{C}$ такие, что $\delta(x) = (q + \lambda)x + xq$ для всех $x \in \mathcal{R}$ и $f(x_1, \dots, x_n)^2$ центральнозначен на \mathcal{R} .
- **Лемма 3.2.** Пусть \mathscr{R} первичное кольцо, \mathscr{D} X-внешнее косое дифференцирование кольца \mathscr{R} , и пусть α X-внешний автоморфизм кольца \mathscr{R} . Если $\Phi(x_i,\mathscr{D}(x_i),\alpha(x_i))$ обобщенное полиномиальное тождество для \mathscr{R} , то \mathscr{R} также удовлетворяет обобщенному полиномиальному тождеству $\Phi(x_i,y_i,z_i)$, где x_i,y_i и z_i различные неизвестные [26, теорема 1].
- **3.1.** Доказательство теоремы **1.** Как указано во введении, можно записать $\mathscr{G}(x) = bx + d(x)$ для всех $x \in \mathscr{R}$, где $b \in \mathscr{Q}$ и d косое дифференцирование кольца \mathscr{R} (см. [7]). Полагаем $f(x_1,\ldots,x_n) = \sum_{\sigma \in S_n} \gamma_\sigma x_{\sigma(1)} \cdot x_{\sigma(2)} \ldots x_{\sigma(n)}$, где $\gamma_\sigma \in \mathscr{C}$. Согласно теореме 2 из [26] \mathscr{R} и \mathscr{Q} удовлетворяют одним и тем же обобщенным полиномиальным тождествам с одним косым дифференцированием. Таким образом, \mathscr{Q} удовлетворяет соотношению

$$\Phi(x_1,\ldots,x_n,d(x_1),\ldots,d(x_n)) = [a,[bf(x_1,\ldots,x_n)+d(f(x_1,\ldots,x_n)),f(x_1,\ldots,x_n)]].$$

Покажем, что либо $a \in \mathscr{C}$, либо $\mathscr{A} = \{ [\mathscr{G}(f(r_1, \ldots, r_n)), f(r_1, \ldots, r_n)] : r_i \in \mathscr{R} \} = (0)$. Более точно, в последнем случае справедливо одно из следующих утверждений:

- (a) существует $\lambda \in \mathscr{C}$ такое, что $\mathscr{G}(x) = \lambda x$ для всех $x \in \mathscr{R}$;
- (b) существует $\lambda \in \mathscr{C}$ такое, что $\mathscr{G}(x) = bx + xc$ для всех $x \in \mathscr{R}$, где $c b = \lambda$ и $f(x_1, \dots, x_n)^2$ центральнозначен на \mathscr{R} .

Если дифференцирование d X-внутреннее, то существуют $c \in \mathcal{Q}$ и $\alpha \in \operatorname{Aut}(\mathcal{Q})$ такие, что $d(x) = cx + \alpha(x)c$ для всех $x \in \mathscr{R}$. В этом случае $\mathscr{G}(x) =$

 $(b+c)x+\alpha(x)c$, и по предложению 2.1 либо $a\in\mathscr{C}$, либо $\mathscr{G}(x)=\lambda x$ для некоторого $\lambda\in\mathscr{C}$, либо $f(x_1,\ldots,x_n)^2$ центральнозначен на \mathscr{R} и $\mathscr{G}(x)=(b+c)x+xc$ для всех $x\in\mathscr{R}$, где $b\in\mathscr{C}$.

Предположим, что d-X-внешнее дифференцирование и $\alpha\in {\rm Aut}(\mathcal{Q})$ — ассоцированный автоморфизм дифференцирования d. Если α — тождественное отображение на \mathscr{R} , то d — обычное дифференцирование кольца \mathscr{R} . Значит, \mathscr{G} становится обобщенным дифференцированием кольца \mathscr{R} . В этом случае требуемые заключения следуют из леммы 3.1. Поэтому в дальнейшем всегда будем предполагать, что $1_{\mathscr{R}} \neq \alpha \in {\rm Aut}(\mathscr{R})$. Обозначим через $f^d(x_1,\ldots,x_n)$ многочлен, полученный из $f(x_1,\ldots,x_n)$ заменой каждого коэффициента γ_{σ} на $d(\gamma_{\sigma})$. Так как

$$d(\gamma_{\sigma} \cdot x_{\sigma(1)} \cdot x_{\sigma(2)} \dots x_{\sigma(n)}) = d(\gamma_{\sigma}) x_{\sigma(1)} \cdot x_{\sigma(2)} \dots x_{\sigma(n)} + \alpha(\gamma_{\sigma}) \sum_{i=0}^{n-1} \alpha(x_{\sigma(1)} \cdot x_{\sigma(2)} \dots x_{\sigma(j)}) d(x_{\sigma(j+1)}) x_{\sigma(j+2)} \dots x_{\sigma(n)},$$

имеем

$$d(f(x_1, \dots, x_n)) = f^d(x_1, \dots, x_n)$$

$$+ \sum_{\sigma \in S_n} \alpha(\gamma_\sigma) \sum_{j=0}^{n-1} \alpha(x_{\sigma(1)} \cdot x_{\sigma(2)} \dots x_{\sigma(j)}) d(x_{\sigma(j+1)}) x_{\sigma(j+2)} \dots x_{\sigma(n)}.$$

Поскольку $\mathcal Q$ удовлетворяет $\Phi(x_1,\ldots,x_n,d(x_1),\ldots,d(x_n)),$ для него также выполнено

$$[a, [bf(x_1, \dots, x_n) + f^d(x_1, \dots, x_n), f(x_1, \dots, x_n)]] + \left[a, \left[\sum_{\sigma \in S_n} \alpha(\gamma_\sigma) \times \sum_{j=0}^{n-1} \alpha(x_{\sigma(1)} \cdot x_{\sigma(2)} \dots x_{\sigma(j)}) d(x_{\sigma(j+1)}) x_{\sigma(j+2)} \dots x_{\sigma(n)}, f(x_1, \dots, x_n)\right]\right].$$

По теореме 1 из [26] отсюда следует, что \mathcal{Q} удовлетворяет $\Phi(x_1,\ldots,x_n,y_1,\ldots,y_n)$, т. е.

$$[a, [bf(x_1, \dots, x_n) + f^d(x_1, \dots, x_n), f(x_1, \dots, x_n)]] + \left[a, \left[\sum_{\sigma \in S_n} \alpha(\gamma_\sigma) \times \sum_{j=0}^{n-1} \alpha(x_{\sigma(1)} \cdot x_{\sigma(2)} \dots x_{\sigma(j)}) y_{\sigma(j+1)} x_{\sigma(j+2)} \dots x_{\sigma(n)}, f(x_1, \dots, x_n)\right]\right].$$

В частности, \mathcal{Q} для каждого $i=1,\ldots,n$ удовлетворяет соотношению

$$\left[a, \left[\sum_{\sigma \in S_n} \alpha(\gamma_\sigma)\alpha(x_{\sigma(1)} \cdot x_{\sigma(2)} \dots x_{\sigma(i-1)})y_{\sigma(i)}x_{\sigma(i+1)} \dots x_{\sigma(n)}, f(x_1, \dots, x_n)\right]\right]. (3.1)$$

Рассмотрим сначала случай, когда α — внутренний автоморфизм \mathscr{R} . Тогда существует обратимый элемент $q \in \mathscr{Q}$ такой, что $\alpha(x) = qxq^{-1}$ для всех $x \in \mathscr{R}$. Так как $1_{\mathscr{R}} \neq \alpha \in \operatorname{Aut}(\mathscr{R})$, можно полагать, что $q \notin \mathscr{C}$. Более того, $\alpha(\gamma_{\sigma}) = \gamma_{\sigma}$ для всех коэффициентов, участвующих в $f(x_1, \ldots, x_n)$. Заменяя каждый $y_{\sigma(i)}$ на $qx_{\sigma(i)}$ в (3.1), получаем, что \mathscr{Q} удовлетворяет тождеству

$$\left[a, \left[q \sum_{\sigma \in S_n} \gamma_{\sigma} x_{\sigma(1)} \cdot x_{\sigma(2)} \dots x_{\sigma(i-1)} x_{\sigma(i)} x_{\sigma(i+1)} \dots x_{\sigma(n)}, f(x_1, \dots, x_n)\right]\right],$$

т. е.

$$[a, [qf(x_1, \ldots, x_n), f(x_1, \ldots, x_n)]].$$

Заметим, что $q \notin \mathcal{C}$ и $f(x_1, \dots, x_n)$ нецентральнозначен на \mathcal{Q} . Поэтому в силу леммы $2.2 \ a \in \mathcal{C}$.

Предположим, что α X-внешнее. В свете леммы 3.2 и соотношения (3.1) $\mathcal Q$ удовлетворяет обобщенному полиномиальному тождеству

$$\left[a, \left[\sum_{\sigma \in S_n} \alpha(\gamma_\sigma) z_{\sigma(1)} \cdot z_{\sigma(2)} \dots z_{\sigma(i-1)} y_{\sigma(i)} x_{\sigma(i+1)} \dots x_{\sigma(n)}, f(x_1, \dots, x_n)\right]\right]$$
(3.2)

для всех $i=1,\ldots,n$. В частности, выберем

- $y_{\sigma(i)} = 0$ для всех $i \ge 2$,
- $z_{\sigma(i-1)} = 0$ для всех $i \ge 2$.

В силу (3.2) \mathcal{Q} удовлетворяет обобщенному полиномиальному тождеству

$$\left[a, \left[y_1 \sum_{\sigma \in S_{n-1}} \alpha(\gamma_\sigma) x_{\sigma(2)} \dots x_{\sigma(n)}, f(x_1, \dots, x_n)\right]\right]. \tag{3.3}$$

Здесь обозначено $\sum\limits_{\sigma\in S_{n-1}}lpha(\gamma_\sigma)x_{\sigma(2)}\dots x_{\sigma(n)}=t_1(x_2,\dots,x_n)$. Тогда ${\mathscr Q}$ удовлетво-

ряет обобщенному полиномиальному тождеству

$$[a, [y_1t_1(x_2, \dots, x_n), f(x_1, \dots, x_n)]]. \tag{3.4}$$

Ввиду теоремы 6 из [4] и тождества (3.4) для $a \notin \mathscr{C}$ получаем, что

$$[y_1t_1(x_2,\ldots,x_n),f(x_1,\ldots,x_n)]$$

— центральный многочлен для \mathscr{Q} . Поэтому найдутся подходящее поле \mathscr{K} и целое число $t \geq 1$ такие, что \mathscr{Q} и матричное кольцо $\mathscr{M}_t(\mathscr{K})$ удовлетворяют одним и тем же полиномиальным тождествам. Так как $f(x_1,\ldots,x_n)$ нецентральнозначен на \mathscr{Q} , можно предполагать, что $t \geq 2$. В таком случае в силу леммы из [17] и леммы 2 из [18] для всех $i \neq j$ существуют $r_1,\ldots,r_n \in \mathscr{M}_t(\mathscr{K})$ такие, что $f(r_1,\ldots,r_n)=e_{ij}\neq 0$ и

$$[y_1t_1(r_2,\ldots,r_n),e_{ij}]$$
 (3.5)

централен в $\mathcal{M}_t(\mathcal{K})$ для всех $y_1 \in \mathcal{M}_t(\mathcal{K})$. В силу (3.5) для $y_1 = e_{ii}X$ и для произвольного $X \in \mathcal{M}_t(\mathcal{K})$ имеем $e_{ii}Xt_1(r_2,\ldots,r_n)e_{ij} = 0$, т. е. $t_1(r_2,\ldots,r_n)e_{ij} = 0$. Ввиду (3.5) получаем, что

$$y_1t_1(r_2,\ldots,r_n)e_{ij}-e_{ij}y_1t_1(r_2,\ldots,r_n)=-e_{ij}y_1t_1(r_2,\ldots,r_n)$$

централен в $\mathcal{M}_t(\mathcal{K})$, откуда следует, что $t_1(r_2,\ldots,r_n)=0$.

Заметим также, что если через $f^{\alpha}(x_1,\ldots,x_n)$ обозначить многочлен, полученный из $f(x_1,\ldots,x_n)$ заменой каждого коэффициента γ_{σ} на $\alpha(\gamma_{\sigma})$, то $f^{\alpha}(r_1,\ldots,r_n)\neq 0$.

Снова начнем с (3.2) и зафиксируем индекс $j \in \{1, \dots, n\}$. Выберем

- $y_{\sigma(i)} = 0$ для всех $i \neq j$,
- $z_{\sigma(i)} = 0$ для всех $i \neq j$.

Поэтому в силу (3.2) ${\mathcal Q}$ удовлетворяет обобщенному полиномиальному тождеству

$$\left[a, \left[y_j \sum_{\sigma \in S_{n-1}} \alpha(\gamma_\sigma) x_{\sigma(1)} \dots x_{\sigma(j-i)} x_{\sigma(j+1)} \dots x_{\sigma(n)}, f(x_1, \dots, x_n)\right]\right]. \tag{3.6}$$

Окончательно запишем

$$\sum_{\sigma \in S_{n-1}} \alpha(\gamma_{\sigma}) x_{\sigma(1)} \dots x_{\sigma(j-i)} x_{\sigma(j+1)} \dots x_{\sigma(n)} = t_j(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n).$$

Таким образом, $\mathcal Q$ удовлетворяет обобщенному полиномиальному тождеству

$$[a, [y_i t_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n), f(x_1, \ldots, x_n)]].$$

Кроме того, известно, что существуют $r_1, \ldots, r_n \in \mathcal{M}_t(\mathcal{K})$ такие, что $f(r_1, \ldots, r_n) = e_{ij} \neq 0$. Используя те же рассуждения, что и выше, получаем, что $t_j(r_1, \ldots, r_{j-1}, r_{j+1}, \ldots, r_n) = 0$. Наконец, заметим, что

$$f^lpha(x_1,\ldots,x_n) = \sum_j x_j t_j(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n),$$

где каждый t_j — полилинейный многочлен степени n-1 и x_j никогда не появляется ни в одном мономе от t_j . Это ведет к противоречию: $f^{\alpha}(r_1,\ldots,r_n)=0$.

Благодарности. Авторы выражают благодарность рецензенту за внимательное чтение работы и проницательные комментарии и предложения, которые значительно помогли улучшить окончательный вид статьи.

ЛИТЕРАТУРА

- 1. Posner E. C. Derivations in prime rings // Proc. Amer. Math. Soc. 1957. V. 8. P. 1093-1100.
- Lanski C. Differential identities, Lie ideals and Posner's theorems // Pacific J. Math. 1988.
 V. 134, N 2. P. 275–297.
- 3. Lee P.-H., Lee T.-K. Derivations with Engel conditions on multilinear polynomials // Proc. Amer. Math. Soc. 1996. V. 124. P. 2625–2629.
- 4. Lee T.-K. Derivations with Engel conditions on polynomials // Algebra Colloq. 1998. V. 5. P. 13–24.
- De Filippis V., Wei F. Posner's second theorem for skew derivations on multilinear polynomials on left ideals // Houston J. Math. 2012. V. 38. P. 373–395.
- De Filippis V., Wei F. Posner's second theorem and annihilator conditions with generalized skew derivations // Collect. Math. 2012. V. 129, N 1. P. 61–74.
- 7. Chang J.-C. On the identity h(x) = af(x) + g(x)b // Taiwanese J. Math. 2003. V. 7. P. 103–113.
- Chang J.-C. Generalized skew derivations with annihilating Engel conditions // Taiwanese J. Math. 2009. V. 12. P. 1641–1650.
- Chang J.-C. Generalized skew derivations with nilpotent values on Lie ideals // Monatsh. Math. 2010. V. 161. P. 155–160.
- Chang J.-C. Generalized skew derivations with power central values on Lie ideals // Commun. Algebra. 2011. V. 39. P. 2241–2248.
- Cheng H.-W., Wei F. Generalized skew derivations of rings // Adv. Math. (China). 2006.
 V. 35. P. 237–243.
- 12. Lee T.-K. Generalized skew derivations characterized by acting on zero products // Pacific J. Math. 2004. V. 216. P. 293–301.
- 13. Liu K.-S. Differential identities and constants of algebraic automorphisms in prime rings: Ph. D. Thesis. National Taiwan Univ., 2006.
- De Filippis V., Di Vincenzo O. M. Posner's second theorem, multilinear polynomials and vanishing derivations // J. Austral. Math. Soc. 2004. V. 76. P. 357–368.
- De Filippis V., Di Vincenzo O. M. Vanishing derivations and centralizers of generalized derivations on multilinear polynomials // Commun. Algebra. 2012. V. 40. P. 1918–1932.
- **16.** Beidar K. I., Martindale, III W. S., Mikhalev A. V. Rings with generalized identities. New York: Marcel Dekker, 1996. (Pure Applied Math.).
- 17. Lee T.-K. Derivations with invertible values on a multilinear polynomial // Proc. Amer. Math. Soc. 1993. V. 119. P. 1–5.
- Leron U. Nil and power central polynomials in rings // Trans. Amer. Math. Soc. 1975. V. 202. P. 97–103.

- Chuang C.-L. GPIs having coefficients in Utumi quotient rings // Proc. Amer. Math. Soc. 1988. V. 103. P. 723–728.
- 20. Martindale, III W. S. Prime rings satisfying a generalized polynomial identity // J. Algebra. 1969. V. 12. P. 576–584.
- 21. Jacobson N. Structure of rings. Providence, RI: Amer. Math. Soc., 1964.
- 22. Wong T.-L. Derivations with power central values on multilinear polynomials // Algebra Colloq. 1996. V. 3. P. 369–378.
- Chuang C.-L. Differential identities with automorphisms and antiautomorphisms. I // J. Algebra. 1992. V. 149. P. 371–404.
- **24.** Chuang C.-L. Differential identities with automorphisms and antiautomorphisms. II // J. Algebra. 1993. V. 160. P. 130–171.
- **25.** Харченко В. К. Обобщенные тождества с автоморфизмами // Алгебра и логика. 1975. Т. 14, № 2. С. 215–237.
- 26. Chuang C.-L., Lee T.-K. Identities with a single skew derivation // J. Algebra. 2005. V. 288. P. 59–77.

Статья поступила 11 мая 2015 г.

Emine Albaş (Албаш Эмине), Nurcan Argaç (Аржач Нуркан) Department of Mathematics, Science Faculty, Ege University, 35100, Bornova, Izmir, Turkey emine.albas@ege.edu.tr, nurcan.argac@ege.edu.tr

Vincenzo de Filippis (Де Филиппис Винченцо) Department of Mathematics and Computer Science, University of Messina, viale S. D'Alcontres, 98166, Messina, Italy defilippis@unime.it