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On Finite Difference Scheme for One Integro-Differential Model
with Source Terms Based on Maxwell System
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Finite difference scheme for one system of nonlinear partial integro-differential equations is
studied. Mentioned system is obtained by adding the source terms to the resulting model
which is derived after reduction of well-known Maxwell system to the system of nonlinear
integro-differential equations. Class of nonlinearity is widened than one has been studied
before.

Keywords: System of nonlinear partial differential equations, Source terms, Finite
difference scheme, Convergence.

AMS Subject Classification: 35K55, 45K05, 65N06.

1. Introduction

In mathematical simulation of many diffusive processes the non-stationary, non-
linear partial differential and integro-differential equations and systems of those
equations are obtained very often. Problems connected to the nonlinearity signifi-
cantly complicates the investigation of such models.

The purpose of this note is to study the finite difference scheme for one diffu-
sion system of nonlinear partial integro-differential equations that is obtained by
adding the source terms to the resulting model which is derived after reduction of
well-known Maxwell equations [20], describing process of penetration of an elec-
tromagnetic field into a substance, to the system of nonlinear integro-differential
equations. At first such reduction to the integro-differential model was made in
[6] and [7]. Later, a number of scientists studied proposed in the works above
integro-differential models for different cases of magnetic field and different kinds
of diffusion coefficient (see, for example, [1] - [19], [21] - [25] and references therein).

Let us study the system which is obtained from the above-described integro-
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differential model with source terms in case of the two-component magnetic field:
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where 0 < p <1, ¢ > 2 and f;, fo are given functions.
In the domain [0, 1] x [0, 00) for the system (1) let us consider the following initial-
boundary value problem with the homogeneous Dirichlet boundary conditions:

U0,t) = U(L,t) = V(0,t) = V(1,¢) =0, ¢>0,

(2)

U(x,0) =Uy(z), V(z,0)=Vy(z), xe€]l0,1],

3)

where Uy = Up(x) and Vp = Vp(x) are given functions.
Our purpose is to study the convergence of the finite difference scheme for prob-
lem (1) - (3).

2. Finite difference scheme and convergence theorem

In the rectangle Q7 = [0, 1] x [0, T], where T is a positive constant, let us construct
the finite difference scheme for problem (1) - (3). On Q7 let us introduce a net with
mesh points denoted by (z;,t;) = (ih,j7), where i = 0,1,...,M; j = 0,1,...,N
with h = 1/M, 7 = T/N. The initial line is denoted by j = 0. The discrete

approximation at (z;,t;) is designed by (u], v]) and the exact solution to the
problem (1) - (3) by (U}, V). We will use the following well-known notations [26]:
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Introduce the inner products and norms:
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For the problem (1) - (3) let us consider the following finite difference scheme:
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The following statement takes place.

Theorem 2.1: If problem (1) - (3) has a sufficiently smooth solution and 0 <
p < 1, ¢ > 2, then the difference scheme (4) - (6) is stable, its approzimation
error on problem (1) - (3) is O(T + h) and its solution converges to the solution
of continuous problem (1) - (3) as T — 0, h — 0 and the following estimates are
true:

lw/ —U7|| < C(r+h), |[v/ =V <C(r+h).

Here and below C' is a positive constant independent from 7 and h.

Proof: Let us multiply equations in (4) scalarly by ugﬂ and U{ + respectively.
Using the discrete analog of the formula of integration by parts and the relation
(1+ S)P > 1 it is not difficult to get the validity of the following inequalities:

n n
[u>+ > d)Pr < G foP+ ) IwilPr <€, n=1,2,.,N. (1)
j=1 j=1

The a priori estimates (7) guarantee the stability of the scheme (4) - (6). Note,
that applying the technique as we prove the convergence theorem, it is not difficult
to prove the uniqueness of the solution of scheme (4) - (6) too.

Let us introduce the differences 2] = u! — U/ and w] = vlj — Vij to get the
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following relations:
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where

Li=0(r+h), k=12

Multiplying the first equation of the system (8) scalarly by 72771
- (Z{+1 j+1 j+1

%y ,...,2y_q ) and using again the discrete analogue of the formula of

integration by parts we get
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Analogously,
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Adding these two equalities and taking into account monotonicity of the function
g(r) = |r|972r, from these two equalities we have
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from the previous equality we have
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from (10) we have
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Summing (13) from j =0 to j = n — 1 we arrive at
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