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ON THE LOCAL DEGREE OF PLANE ANALYTIC MAPPINGS

by Maciej Sękalski

Abstract. We give an axiomatic characterization of the local degree of
real analytic mappings of R2.

1. Introduction. Let (f1, f2) : (R2, 0) → R2 be a real analytic mapping
of a neighbourhood of zero in R2, which has an isolated zero i.e. such that
(f1(x, y), f2(x, y)) 6= (0, 0) for small (x, y) ∈ R2 \ {(0, 0)}. The local degree
deg0(f1, f2) is defined to be the topological degree of the mapping

Sε 3 (x, y) → (f1(x, y), f2(x, y))
‖(f1(x, y), f2(x, y))‖

∈ S1,

where Sε is a circle centered at (0, 0) with a small radius ε and S1 is a unit
circle. The notion of the local degree is a real counterpart of the multiplicity of
complex holomorphic mappings, see [3], Appendix B. It is well-known that the
multiplicity can be characterized by axioms (see [1]). In [2] the authors have
proved

Theorem. Let us associate with each pair (f, g) of complex holomorphic
functions with isolated zero a natural number µ(f, g) which satisfies the follow-
ing conditions

(i) µ(f, g) = µ(g, f),
(ii) µ(fg, h) = µ(f, h) + µ(g, h),
(iii) µ(f + ag, g) = µ(f, g), for any holomorphic a,
(iv) µ(X, Y ) = 1,

Then µ=multiplicity.

One can show that conditions (iii) and (iv) of the above theorem are valid
for the local degree, i.e. deg0(f + ag, g) = deg0(f, g), for any analytic a, and
deg0(X, Y ) = 1, but it is not difficult to see that the local degree does not
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satisfy properties (i) and (ii). We will show that the local degree satisfies
deg0(f, g) = −deg0(g, f) and

deg0(fg, h) = deg0(f, gh) + deg0(g, fh).

We assume here that each of the pairs (f, g), (g, h), (f, h) has an isolated zero.
In the next section, an axiomatic characterization of the local degree will

be given.

2. Main result. To present the main result we put

(f1, f2) · (g1, g2) = (f1g1 − f2g2, f1g2 + f2g1).

Throughout the paper we also assume that each mapping has an isolated zero.
The following theorem holds

Theorem. Let us associate with each pair (f, g) of plane analytic functions
an integer I0(f, g) satisfying the following conditions:

(1) I0((f1, f2) · (g1, g2)) = I0(f1, f2) + I0(g1, g2),
(2) I0(f + ag, g) = I0(f, g), for any analytic a,
(3) I0(f, g

∑k
i=1 h2

i ) = I0(f, g), for analytic hi, i = 1, . . . , k,
(4) I0(X, Y ) = 1.

Then I0 = deg0.

We will prove the above theorem in the next section. Now let us note a
very useful

Corollary. If I0 satisfies properties (1)–(3) of the theorem then
(a) I0(f, g) = −I0(g, f),
(b) I0(f,−g) = −I0(f, g),
(c) I0(f, gh) + I0(g, hf) + I0(h, fg) = 0.

Proof. From property (1) we get that I0(1, 0) + I0(1, 0) = I0(1, 0), so
I0(1, 0) = 0. Similarly we check that I0(−1, 0) = 0. Thus we have

I0(0, 1) + I0(0, 1) = I0((0, 1) · (0, 1)) = I0(−1, 0) = 0,

hence I0(0, 1) = 0. Using above observations and properties (1) and (3) of the
theorem we get

I0(f, g) + I0(g, f) = I0(0, f2 + g2) = I0(0, 1) = 0,

so (a) follows.
The proof of (b) is similar. Using (1), (3) and (a) we have

I0(f,−g) + I0(f, g) = I0(f2 + g2, 0) = −I0(0, f2 + g2) = I0(0, 1) = 0.
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To prove (c) let us notice, that

I0(f, gh) + I0(g, hf) + I0(h, fg) =
= I0(fg − fgh2, h(f2 + g2)) + I0(h, fg) =
= I0(fg − fgh2, h) + I0(h, fg) = I0(fg, h) + I0(h, fg),

and using (a) we are done.

We end this section with a simple application of the main theorem and
corollary. We will compute the local degree of the mapping

(X, Y ) → (X2 − Y, XY − Y 3)

deg0(X
2 − Y, XY − Y 3) = deg0(X

2 − Y, XY − Y 3 − Y 2(X2 − Y )) =
= deg0(X

2 − Y, XY −X2Y 2) = deg0(X
2 − Y, XY (1−XY )) =

= deg0(X
2 − Y, XY ) =

= −deg0(X, Y (X2 − Y ))− deg0(Y, (X2 − Y )X) =
= −deg0(X,−Y 2)− deg0(Y, X3) = deg0(X, Y ) = 1.

3. Proof of the main theorem. In the first step we prove that the
local degree satisfies conditions (1)–(4), where I0 is replaced by deg0. For
that purpose we will without proof recall the argument principle. If F is an
analytic mapping of the neighbourhood of zero with isolated zero in R2, then
for sufficiently small ε > 0 there exists a differentiable function (the argument
function) φF : [0, 2π] → R such that

F (ε cos t, ε sin t)
‖F (ε cos t, ε sin t‖

= (cos φF (t), sinφF (t)).

With the above symbols the following formula holds

Theorem. (Argument principle)

deg0 F =
1
2π

(φF (2π)− φF (0)).

Let us denote F = (f1, f2) and G = (g1, g2). Using the argument principle
we easily check that

deg0(F ·G) = deg0 F + deg0 G.
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In fact, if φF and φG are the argument functions of the mappings F and G,
respectively, then φF + φG is the argument function of F ·G. Hence

deg0(F ·G) =
1
2π

[(φF + φG)(2π)− (φF + φG)(0)] =

=
1
2π

[φF (2π)− φF (0)] +
1
2π

[φG(2π)− φG(0)] =

= deg0 F + deg0 G.

Equalities (2) and (3) for the local degree can be easily obtained from the
following

Lemma. Let U be a sufficiently small neighbourhood of zero.
If sgn f(x, y) = sgn f̃(x, y) on the set {(x, y) ∈ U : g(x, y) = 0}, then

deg0(f, g) = deg0(f̃ , g).

Proof of the lemma. The mapping

Sε × [0, 1] 3 (x, y, t) → (tf(x, y) + (1− t)f̃(x, y), g(x, y))
‖(tf(x, y) + (1− t)f̃(x, y), g(x, y))‖

∈ S1

is a smooth homotopy between the mappings (f,g)
‖(f,g)‖

∣∣
Sε

and (f̃ ,g)

‖(f̃ ,g)‖

∣∣
Sε

. In fact,
it suffices to show that

(tf(x, y) + (1− t)f̃(x, y), g(x, y)) 6= (0, 0)

for (x, y) ∈ Sε and t ∈ [0, 1]. Let us assume that there exist (x0, y0) ∈ Sε and
t0 ∈ [0, 1] such that g(x0, y0) = 0. Since f(x0, y0) 6= 0 and f̃(x0, y0) 6= 0 have
the same sign and t0 > 0, we have

sgn (t0f(x0, y0) + (1− t0)f̃(x0, y0)) = sgn f(x0, y0) 6= 0.

The lemma follows because homotopic mappings have the same topological
degree.

Property (2) for the local degree follows by taking f̃ = f + ag in the above
lemma.

To prove (3) we use the fact that

deg0(f, g
k∑

i=1

h2
i ) = −deg0(g

k∑
i=1

h2
i , f)

and (3) follows by applying the lemma again.
Property (4) can be checked by using the argument principle. The argument

function of the identity mapping is φ(t) = t, thus deg0(X, Y ) = 1.
Now we are ready to show that deg0(f, g) = I0(f, g) for any pair of ana-

lytic functions with isolated zero. There exist natural numbers k, l such that
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f = Xkf̃ and g = X lg̃ where f̃ , g̃ are analytic functions for which f̃(0, Y ) 6≡ 0
and g̃(0, Y ) 6≡ 0. We apply induction with respect to

min{ord f̃(0, Y ), g̃(0, Y )}.

In the first step let us see that if min{ord f̃(0, Y ), g̃(0, Y )} = 0, then either
f̃(0, 0) 6= 0 or g̃(0, 0) 6= 0. Let us assume the second inequality. By (b) and (3)
we have

I0(f,X lg̃) = sgn g̃(0, 0)I0
(
f,X l

√
sgn g̃(0, 0)g̃

2
)

= sgn g̃(0, 0)I0(f,X l),

so if l is even then according to (3) and (2) we get

I0(f,X l) = I0(f, 1) = I0(0, 1) = 0.

If l is odd, then
I0(f,X l) = I0(f,X) = I0(f(0, Y ), X).

Now let us write f(0, Y ) =
∑∞

i=p fiY
i, fp 6= 0. Then

I0(f(0, Y ), X) = −I0(X, fpY
p
∞∑
i=p

fi

fp
Y i−p) = −I0(X, fpY

p) =

=
{
−I0(X, fpY ) if p is odd,
−I0(X, fp) otherwise =

{
−sgn fp if p is odd,

0 otherwise .

The same equality holds for the local degree deg0. Hence we have proved
that deg0(Xkf̃ , X lg̃) = I0(Xkf̃ , X lg̃) provided g̃(0, 0) 6= 0. Because of the
antysymmetry property, I0(f, g) = −I0(g, f), the same is valid in the case
f̃(0, 0) 6= 0.

In the next induction step let us denote m = ord g̃(0, Y ) and let 0 < m 6
ord f̃(0, Y ). By induction we assume that for all mappings (f ′, g′), such that
min{ord f̃ ′(0, Y ), ord g̃′(0, Y )} < m the equality I0(f ′, g′) = deg0(f ′, g′) holds.
We will show that I0(f, g) = deg0(f, g).

From property (c) of the corollary we have

I0(f,X lg̃) + I0(X l, g̃f) + I0(g̃, fX l) = 0

hence
I0(f, g) = I0(g̃f,X l) + I0(fX l, g̃). (∗)

From the previously proved part we have that I0(g̃f,X l) = deg0(g̃f,X l), hence
it suffices to show that I0(fX l, g̃) = deg0(fX l, g̃). By virtue of the Weierstrass
preparation theorem there exist analytic functions a, r such that fX l = ag̃ + r.
Moreover, r is a polynomial in variable Y of degree less than m. So by applying
property (2) we get

I0(fX l, g̃) = I0(ag̃ + r, g̃) = I0(r, g̃).
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It is easy to see, that if r = Xsr̃ with r̃(0, Y ) 6≡ 0 then

min{ord r̃(0, Y ), ord g̃(0, Y )} 6 ord r̃(0, Y ) 6 degY r 6 m− 1.

From our inductive assumption we have the equality I0(r, g̃) = deg0(r, g̃) and
from property (2) we get I0(fX l, g̃) = deg0(fX l, g̃). Now from equality (*) we
have

I0(f, g) = deg0(g̃f,X l) + deg0(fX l, g̃)
and applying (c) with I0 replaced by the local degree deg0 we get the equality
I0(f, g) = deg0(f, g).
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