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THE OPTIMIZATION OF EIGENVALUE PROBLEMS

INVOLVING THE p-LAPLACIAN

by Wac law Pielichowski

Abstract. Given a bounded domain Ω ⊂ Rn and numbers p > 1, α ≥ 0,
A ∈ [0, |Ω|], consider the following optimization problem: find a sub-
set D ⊂ Ω, of measure A, for which the first eigenvalue of the operator
−∆p + α χD ϕp with the Dirichlet boundary condition is as small as possi-
ble. We prove the existence of optimal solutions and study their qualitative
properties. We also obtain the radial symmetry of optimal solutions in the
case when Ω is a ball.

1. Introduction. Let Ω be a bounded domain in the space Rn (n ≥ 1)
with the closure Ω and boundary ∂Ω. We denote by |Ω| the Lebesgue measure
of Ω. Given numbers p > 1, α ≥ 0 and a measurable subset D of Ω, we shall
be concerned with the eigenvalue problem of the form

(1)

{
−∆p(u) + α χD ϕp(u) = λ ϕp(u) in Ω,
u = 0 on ∂Ω,

where ∆p is the p -Laplacian, χD is the characteristic function of D, while ϕp

is a function defined by

ϕp(u) :=

{
|u|p−2u, if u 6= 0,
0, if u = 0.

We also remind that the p -Laplacian is a nonlinear differential operator of the
form

∆p(u) = div(|∇u|p−2∇u) = div(ϕp(∇u)),

which coincides with the Laplacian ∆ for p = 2.



110

In this paper we deal with real function spaces only. For brevity, we intro-
duce the following notation:

Lp := Lp(Ω), W 1,p := W 1,p(Ω), W 1,p
0 := W 1,p

0 (Ω).

Here W 1,p(Ω) and W 1,p
0 (Ω), with 1 < p < ∞, are standard Sobolev spaces

(see, e.g., [1] for more details). It is customary to use solutions of (1) in a
weak sense. In particular, any nontrivial function u : Ω → R is said to be an
eigenfunction of problem (1) if and only if u ∈ W 1,p

0 and

(2)
∫

Ω
ϕp(∇u)∇v + α

∫
Ω

χD ϕp(u) v = λ

∫
Ω

ϕp(u) v, ∀ v ∈ W 1,p
0 .

Let λ(α, D) stand for the lowest eigenvalue λ of problem (1). It is well known
that λ(α, D) is positive and its eigenfunction is unique up to a scalar multiple
(see for instance [5], [10]). Let us fix A ∈ [0, |Ω|] and define

(3) Λ(α, A) := inf {λ(α, D) : D ⊂ Ω, |D| = A }.
Any minimizer in (3) is called an optimal configuration. If u is an eigenfunction
of problem (1) with λ = Λ(α, A) and with an optimal configuration D, then
(u, D) is said to be an optimal pair (or optimal solution).

This paper has been inspired by that of S. Chanilo et al. [3], in which the
linear case p = 2 was extensively studied. The authors addressed the ques-
tion of existence and uniqueness of optimal solutions. They obtained various
results on qualitative properties of optimal configurations. In this paper we
are interested in obtaining similar results for the p -Laplacian with arbitrary
p > 1. Our terminology follows that of [3].

2. Some auxiliary results. Let us begin with well-known results con-
cerning the eigenvalue problem (1). They can be found, e.g., in [5] or [10].
If u is an eigenfunction corresponding to the first eigenvalue of problem (1),
then u does not change sign in Ω. From now on it will be chosen positive in
Ω. Unless otherwise stated, we shall always assume that the eigenfunction u
is normalized in such a way that ∫

Ω
|u|p = 1,

which is possible according to uniqueness up to a scalar multiple. Using the
Rayleigh quotient

R(u, α, D) :=

∫
Ω |∇u|p + α

∫
Ω χD |u|p∫

Ω |u|p
,

the first eigenvalue of problem (1) may be characterized by

λ(α, D) = inf
{
R(u, α, D) : u ∈ W 1,p

0 r {0}
}
.
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Consequently,

(4) Λ(α, A) = inf
{
R(u, α, D) : |D| = A, u ∈ W 1,p

0 r {0}
}
.

In what follows we shall use an estimate of the L∞-norm of eigenfunctions
of problem (1) provided by the following lemma.

Lemma 1. There exists a constant C > 0 which depends on Ω, p, α, λ only
and stays bounded for α, λ bounded, such that

(5) ‖u‖
L∞

≤ C ‖u‖
L

p

for any eigenfunction of problem (1).

Proof. It is known that the eigenfunctions corresponding to problem (1)
are essentially bounded. More precisely, there exist constants C0 > 0 and q > p
(which depend on Ω, p, α, λ only and stay bounded for α, λ bounded) such that

(6) ‖u‖
L∞

≤ C0 ‖u‖L
q

for such eigenfunctions. In this connection refer to [5] and [11]. We now apply
standard arguments involving the interpolation inequality (see [7], Section 7.1).
Taking p < q < 2q and µ = q−p

2pq2 , by (6) we get the estimate

(7) ‖u‖
L∞

≤ C0

(
ε ‖u‖

L
2q + ε−µ‖u‖

L
p

)
,

which holds for any ε > 0. Further, since the embedding L∞ ↪→ L2q is contin-
uous, there is a constant C1 > 0 such that

(8) ‖u‖
L

2q ≤ C1 ‖u‖L∞
, ∀u ∈ L∞.

It follows from (7) and (8) that

‖u‖
L∞

≤ C0 C1 ε ‖u‖
L∞

+ C0 ε−µ‖u‖
L

p .

Choosing ε so that C0 C1 ε = 1
2 , we find that

‖u‖
L∞

≤ 2 C0 ε−µ‖u‖
L

p ,

which is the desired result (with C = (2 C0)µ+1Cµ
1 ).

3. Main properties of optimal pairs. The following theorems are anal-
ogous to those of [3]. We recall that Ω is any bounded domain in Rn and
p ∈ (1,∞).

Theorem 1. For any α ≥ 0 and A ∈ [0, |Ω|] there exists an optimal pair.
Every optimal pair (u, D) has the following properties:

(a) u ∈ W 1,p
0 ∩ L∞ and ∇u is locally Hölder continuous, i.e., for every

compact K ⊂ Ω there exists β ∈ (0, 1) such that ∇u ∈ C0,β(K),
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(b) there is a number t ≥ 0 such that

{u < t } ⊂ D ⊂ {u ≤ t }.

Here we write {u < t } instead of {x ∈ Ω: u(x) < t } and similarly we put
{u ≤ t } := {x ∈ Ω: u(x) ≤ t }.

Remark. In the classical case p = 2, assertion (b) gets a stronger form

D = {u ≤ t }

(see [3], Theorem 1). Although we conjecture that the same is true for arbitrary
p > 1, we have not been able to prove such a result.

Proof of Theorem 1. The regularity properties of eigenfunctions, stated
in assertion (a), are rather well known. By Lemma 1, any eigenfunction of
problem (1) belongs to W 1,p

0 ∩ L∞. The local Hölder continuity of ∇u was
proved, e.g., by DiBenedetto [4].

We now prove the existence of optimal pairs. Let us fix numbers α ≥ 0
and A ∈ [0, |Ω|]. For shortness, we set

Λ := Λ(α, A) and λ(D) := λ(α, D).

Following [3], we let {Dj} be a minimizing sequence in the sense that

(9) λ(Dj) → Λ as j →∞.

Let uj ∈ W 1,p
0 be the Lp-normalized positive eigenfunction corresponding to

λ(Dj) so that, according to (2),

(10)
∫

Ω
ϕp(∇uj)∇v+α

∫
Ω

χDj ϕp(uj) v = λ(Dj)
∫

Ω
ϕp(uj) v, ∀ v ∈ W 1,p

0 .

Substituting v = uj into (10) we infer that

(11)
∫

Ω
|∇uj |p + α

∫
Ω

χDj |uj |p = λ(Dj), ∀ j ∈ N.

By (9), the sequence {λ(Dj)} is bounded and therefore the sequence {uj} is
bounded in W 1,p

0 , by (11). Next, {χDj} is a sequence bounded in L∞ = (L1)∗.
Thus, by the Banach-Alaoglu theorem (see for instance [12], Theorem 3.17),
we may choose subsequences, again denoted by {uj}, {χDj}, and functions
u ∈ W 1,p

0 , η ∈ L∞ such that uj ⇀ u in W 1,p
0 (weak convergence) and χDj

∗
⇀ η

in L∞ (weak* convergence). The compactness of the embedding W 1,p
0 ↪→ Lp

implies that uj → u (strongly) in Lp. Since |Dj | = A and χDj

∗
⇀ η in L∞, we

see that ∫
Ω

η = lim
j→∞

∫
Ω

χDj = A.
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We may also assume that

(12)
∫

Ω
χDj |uj |p →

∫
Ω

η |u|p as j →∞.

To see this, note that |uj |p → |u|p in L1, because uj → u in Lp. Consequently,∫
Ω

χDj |uk|p →
∫

Ω
χDj |u|p as k →∞ (j = 1, 2, . . . ).

Moreover, the weak* convergence χDj

∗
⇀ η in L∞ implies∫

Ω
χDj |u|p →

∫
Ω

η |u|p as j →∞.

Now we can use a standard diagonal argument to deduce that (12) holds for
an appropriate subsequence.

Next, note that, by convexity, the functional W 1,p
0 3 v 7→

∫
Ω |∇v|p ∈ R is

weakly lower semicontinuous and hence

(13)
∫

Ω
|∇u|p ≤ lim inf

j→∞

∫
Ω
|∇uj |p.

On the other hand, we see by (9), (11) and (12) that

(14) lim
j→∞

∫
Ω
|∇uj |p = Λ− α

∫
Ω

η |u|p.

It follows from (13) and (14) that

(15)
∫

Ω
|∇u|p + α

∫
Ω

η |u|p ≤ Λ.

Since 0 ≤ χDj ≤ 1 for j ∈ N and χDj

∗
⇀ η in L∞, we conclude that

0 ≤ η ≤ 1 a.e. in Ω.

Hence the function η in inequality (15) can be replaced by a characteristic
function. Indeed, it follows from the “bathtub principle”, Theorem 1.18 of [9],
that the minimization problem

inf

{∫
Ω

η |u|p : 0 ≤ η ≤ 1,

∫
Ω

η = A

}
has a solution χD, where D is any set such that |D| = A and

{u < t } ⊂ D ⊂ {u ≤ t },

where

(16) t := sup { s : |{u < s}| ≤ A }.
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Therefore, in view of (15), we get the inequality∫
Ω
|∇u|p + α

∫
Ω

χD |u|p ≤ Λ.

Taking into account that
∫
Ω |u|

p = 1, we see by (4) that this must actually be
an equality, and so the pair (u, D) is an optimal solution.

It remains to prove statement (b). Let (u, D) be any optimal pair (with
u > 0 in Ω and

∫
Ω |u|

p = 1). Let us define the number t by formula (16). We
now claim that

(17) {u < t } ⊂ D

and

(18) D ⊂ {u ≤ t }

(up to a set of measure zero). If the inclusion (17) did not hold, then it would be
possible to reduce the integral

∫
Ω χD |u|p by shifting a part of D from {u ≥ t }

to {u < t }. Similarly, if the inclusion (18) was not true, then we could reduce∫
Ω χD |u|p by shifting a part of D from {u > t } to {u ≤ t }. Both cases lead

to a contradiction with variational property (4). This completes the proof.

Next, let us denote by µ0 the first eigenvalue of the problem{
−∆p(u) = µϕp(u) in Ω,
u = 0 on ∂Ω.

We proceed to study the dependence of the optimal eigenvalue Λ(α, A) on
parameters α and A.

Theorem 2. Let Λ(α, A) be the optimal eigenvalue defined by (3). Then
the following assertions hold:

(a) The function (α, A) 7→ Λ(α, A) is Lipschitz continuous, uniformly on
bounded sets. More precisely, for any α, α′ ≥ 0 and A,A′ ∈ [0, |Ω|] the
inequality

(19) |Λ(α, A)− Λ(α′, A′)|

≤ |α− α′| max{A,A′}
|Ω|

+ |A−A′| min{α, α′}Cmax{α,α′}

holds, with Cm bounded for m bounded.
(b) Λ(α, A) is strictly increasing in A for fixed α > 0 and strictly increasing

in α for fixed A > 0.
(c) Λ(α, A)− α is strictly decreasing in α for fixed A < |Ω|.
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(d) If A < |Ω|, then there is the unique value α = α(A) such that

(20) Λ(α(A), A) = α(A).

The function A 7→ α(A) is continuous and strictly increasing, α(0) = µ0

and

(21) α(A) →∞ as A → |Ω|.

Proof. To prove statements (a) and (b), we can argue in almost the same
way as in the proof of Proposition 10 in [3]. Namely, letting (u, D) and (u′, D′)
be minimizers for Λ(α, A) and Λ(α′, A′) respectively, we may assume that
u, u′ > 0 in Ω and

∫
Ω up =

∫
Ω(u′)p = 1, so that according to (4) there is

Λ(α, A) =
∫

Ω
|∇u|p + α

∫
D

up, |D| = A,

and similarly

Λ(α′, A′) =
∫

Ω
|∇u′|p + α′

∫
D′

(u′)p, |D′| = A′.

By symmetry of (19) we may assume that A′ ≥ A. If A′ = 0, inequality (19)
is obvious. Now let us fix A′ > 0. We choose a set D1 ⊂ D′ in such a way that
|D1| = A. Next, we choose a set D′

1 ⊃ D so that |D′
1| = A′ and

{u < s } ⊂ D′
1 ⊂ {u ≤ s }

for a suitable number s > 0. Observe that∫
D′

1
up

|D′
1|

≤
∫
Ω up

|Ω|
(like in the case of p = 2 and D′

1 = {u ≤ s }, which was treated in [3]). By
Lemma 1, we can adapt the proof of Proposition 10 in [3] to our situation,
replacing the exponent 2 by p. We omit the lengthy details here.

Our next aim is to prove statements (c) and (d). Let

(22) 0 ≤ α < α′

and let (u, D) be a minimizer for Λ(α, A) (with u > 0 in Ω and
∫
Ω up = 1).

Note that

Λ(α, A)− α =
∫

Ω
|∇u|p + α

∫
Ω

χD up − α

=
∫

Ω
|∇u|p − α

∫
Ω
(1− χD) up.

(23)

Since |D| = A < |Ω| by assumption, we see that 1− χD 6≡ 0 and hence

(24)
∫

Ω
(1− χD) up > 0.
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It follows from (22), (23) and (24) that

(25) Λ(α, A)− α >

∫
Ω
|∇u|p − α′

∫
Ω
(1− χD) up ≥ Λ(α′, A′)− α′,

and thus statement (c) is proved. Next, by (24) and (25) we find that

lim
α→∞

[Λ(α, A)− α] = −∞.

On the other hand, Λ(0, A) = µ0 > 0. By continuity and monotonicity, there
is the unique value α = α(A) such that (20) holds. Moreover, it is clear by
(a) and (b) that the function A 7→ α(A) is continuous and strictly increasing.
Now, let us suppose that property (21) is not satisfied, and so there exists a
constant M such that

(26) α(A) ≤ M, ∀A < |Ω|.

Let (u, D) be a minimizer for Λ(α(A), A) = α(A), with a positive eigenfunc-
tion u normalized this time in such a way that

(27)
∫

Ω
|∇u|p = 1.

Since, in view of (4),

α(A) =

∫
Ω |∇u|p + α(A)

∫
Ω χD up∫

Ω up
,

we see that ∫
Ω
|∇u|p + α(A)

∫
Ω

χD up = α(A)
∫

Ω
up,

or equivalently

(28) α(A)
∫

Ω
(1− χD) up =

∫
Ω
|∇u|p = 1.

We now claim that

(29)
∫

Ω
(1− χD) up =

∫
ΩrD

up → 0 as A → |Ω|.

To see this, note that by Lemma 1∫
ΩrD

up ≤ |Ω r D| sup
Ω

up = (|Ω| −A) sup
Ω

up ≤ (|Ω| −A) C ‖u‖p
L

p ,(30)

where C is a constant independent of A, by (26). Moreover, since the embed-
ding W 1,p

0 ↪→ Lp is continuous,

(31) ‖u‖p
L

p ≤ C ′ ‖u‖p

W 1,p
0

, ∀u ∈ W 1,p
0 .
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By virtue of the Poincaré inequality (see for instance [1], Section 6.26), we
obtain the estimate

(32) ‖u‖p

W 1,p
0

≤ C ′′
∫

Ω
|∇u|p, ∀u ∈ W 1,p

0 .

Combining (30)–(32) with (27), we conclude that∫
ΩrD

up ≤ (|Ω| −A) C̃,

where C̃ = C C ′C ′′ is a constant independent of A. This gives (29). Now (26)
and (29) contradict (28), and hence assertion (d) follows.

The following result is an easy consequence of Theorems 1 and 2.

Theorem 3. Fix α > 0, A > 0, and let D be an optimal configuration.
Then

(a) D contains a tubular neighbourhood of the boundary ∂Ω,
(b) if α < α(A), then every connected component D0 of the interior of D

hits the boundary, i.e.,

D0 ∩ ∂Ω 6= ∅.
In particular, if Ω is simply connected, then D is connected.

Proof. Statement (a) is an immediate consequence of Theorem 1. Next,
let us fix an optimal pair (u, D) (with u > 0 in Ω) and suppose that assertion
(b) is false. Then we can find such a connected component D0 of IntD that

(33) D0 ∩ ∂Ω = ∅.
By Theorem 1 (b),

(34) D0 ⊂ D ⊂ {u ≤ t },
and, consequently, ∂D0 ⊂ {u = t } ∪ ∂Ω, because {u < t } ⊂ IntD by conti-
nuity of u. Now (33) shows that, actually, ∂D0 ⊂ {u = t }. By assumption,
α < α(A), which implies that Λ(α, A) − α > 0, by assertions (c) and (d) of
Theorem 2. Thus it follows that

(35) −∆p(u) = (Λ(α, A)− α χD) ϕp(u) > 0 in D0.

If we let v := u− t, then{
−∆p(v) = −∆p(u) > 0 in D0,

v = 0 on ∂D0.

We thus conclude from the maximum principle (see for instance [6], Theorem
2) that v ≥ 0 in D0. This means that u ≥ t in D0, which together with (34)
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shows that u ≡ t in D0 and hence ∆p(u) ≡ 0 in D0, contrary to (35). This
proves (b).

4. Symmetry. In this section we address the questions of symmetry and
uniqueness of optimal configurations. In the case p = 2 more general results
were obtained in [3], including a reflection symmetry in the presence of the
domain convexity. The Steiner symmetrization played a key role in this case.
Using general ideas from Theorem 4 of [3] and the Schwarz symmetrization,
we obtain the following theorem on radial symmetry in the case of p > 1.

Theorem 4. Let Ω be a ball, Ω = {x ∈ Rn : |x| < R }. Given any
A ∈ [0, |Ω|] and α ≥ 0 such that α 6= α(A), there exists the unique optimal
configuration D, and D is an annular region of the form

D = {x ∈ Rn : r(A) < |x| < R }.

Moreover, if (u, D) is an optimal pair with u > 0 in Ω, then the eigenfunction u
is radially symmetric and strictly decreasing in |x|.

Proof. To begin with, we recall some properties of the Schwarz sym-
metrization (radially symmetric decreasing rearrangement) u 7→ u∗. They can
be found, e.g., in [8] and [9]. We remind that Ω is now a ball centered at 0.
First, let us recall that for u ∈ Lp (with 1 ≤ p ≤ ∞)

(|u|p)∗ = (u∗)p,(36)

and hence

‖u‖
L

p = ‖u∗‖
L

p .(37)

Secondly, if u ∈ W 1,p
0 then u∗ ∈ W 1,p

0 and

(38)
∫

Ω
|∇u∗|p ≤

∫
Ω
|∇u|p.

Moreover, for f, g ≥ 0 in Ω, there is

(39)
∫

Ω
f g ≤

∫
Ω

f∗g∗.

Now fix any α ≥ 0 and A ∈ [0, |Ω|]. Let (u, D) be an optimal pair (with u > 0
in Ω). We define D∗ by

χD∗ := 1− (χDc )∗.

It is easy to see that D∗ is (up to a set of measure zero) an annulus of the form

D∗ = {x ∈ Rn : r(A) < |x| < R }.
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We claim that

(40)
∫

Ω
χD∗(u

∗)p ≤
∫

Ω
χD up.

To see this, observe that∫
Ω

χD up =
∫

Ω
(1− χDc) up =

∫
Ω

up −
∫

Ω
χDc up

≥
∫

Ω
up −

∫
Ω
(χDc)∗(up)∗ =

∫
Ω
(up)∗ −

∫
Ω
(χDc)∗(up)∗ =

=
∫

Ω
(1− (χDc)∗) (up)∗ =

∫
Ω

χD∗(u
∗)p,

by (39), (37) and (36) respectively. It now follows from (37), (38) and (40)
that

R(u∗, α,D∗) =

∫
Ω |∇u∗|p + α

∫
Ω χD∗ |u∗|p∫

Ω |u∗|p

≤
∫
Ω |∇u|p + α

∫
Ω χD |u|p∫

Ω |u|p
= Λ(α, A).

(41)

Thus, from the equality |D∗| = |D| and variational property (4), we conclude
that (u∗, D∗) is another optimal pair and therefore

(42) −∆p(u∗) = (Λ(α, A)− α χD∗) ϕp(u∗) in Ω.

Since u > 0 in Ω, there is u∗ ≥ 0 in Ω, and consequently u∗ > 0 in Ω, by the
Harnack type inequality of Trudinger ([14], Theorem 1.1).

We can write u∗ in the form

(43) u∗(x) = ũ(r), where r = |x|.

It is easy to check that the function ũ is strictly decreasing in the interval
[0, R). Indeed, ũ is decreasing by the definition of ũ. As a result, if

(44) ũ(r1) = ũ(r2) for some 0 ≤ r1 < r2 < R,

then ũ ≡ const in (r1, r2), and so u∗ ≡ const in the annulus

P := {x ∈ Rn : r1 < |x| < r2 }.

Thus
∆p(u∗) ≡ 0 in P.

However, the right-hand side of (42) is different from zero at any point, be-
cause Λ(α, A) > 0, Λ(α, A) − α 6= 0 by assumption, and u∗ > 0 in Ω. This
contradiction shows that (44) is impossible.
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We now proceed to show that u = u∗. First, note that in view of (41)
there is ∫

Ω
|∇u∗|p =

∫
Ω
|∇u|p.

By Theorem 1.1 of Brothers and Ziemer [2], the above equality implies that
u = u∗, provided the set

{x ∈ Ω: ∇u∗(x) = 0 }

has measure zero. By (43) it suffices to prove that

(45) |{ r ∈ (0, R) : ũ′(r) = 0 }| = 0.

To this end, we recall that

rn−1∆p(u∗) =
(
rn−1 ϕp

(
ũ′(r)

))′
(see for instance [13]). It now follows from (42) that

(46) −
(
rn−1 ϕp

(
ũ′(r)

))′ = rn−1 (Λ(α, A)− α χE) ϕp(ũ(r)),

where E := (r(A), R). Let us put

g(r) := rn−1 ϕp

(
ũ′(r)

)
, ∀ r ∈ (0, R).

Obviously,
g(r) = 0 ⇐⇒ ũ′(r) = 0, ∀ r ∈ (0, R).

From (46) there follows that the function g : (0, R) → R satisfies the equation

(47) − g′(r) = rn−1 (Λ(α, A)− α χE) ϕp(ũ(r)).

Suppose that (45) is false. Then the set { g = 0 } has positive measure and we
deduce by Lemma 7.7 of [7] that g′(r) = 0 for almost all r ∈ { g = 0 }. This
contradicts equation (47), because the right-hand side is again different from
zero, and the proof is complete.

5. A related eigenvalue problem. We now state another eigenvalue
problem, which is closely related to the original problem (1). In the case
p = 2, it corresponds to the problem of building a body of prescribed shape
out of given materials (of varying densities) in such a way that the body has
a prescribed mass and so that the basic frequency of the resulting membrane
with fixed boundary is as small as possible, as indicated in [3].

Given 0 ≤ h < H and M ∈ [h |Ω|,H |Ω|], consider measurable “density
functions” % : Ω → R satisfying conditions

h ≤ % ≤ H and
∫

Ω
% = M.
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Then the objective is to find % and u which realize the minimum of the form

(48) Θ(h, H,M) := inf

{∫
Ω |∇u|p∫
Ω % |u|p

: u ∈ W 1,p
0 r {0}, h ≤ % ≤ H,

∫
Ω % = M

}
.

The corresponding eigenvalue problem is

(49)

{
−∆p(u) = Θ(h, H,M) % ϕp(u) in Ω,

u = 0 on ∂Ω.

Eigenvalue problem (49) seems to be worth considering, even though it is not
exactly the vibrating membrane equation. Eigenvalue problems (1), (49) and
their optimization are mutually related in the following way:

Theorem 5. Let us fix p ∈ (1,∞).
(a) If (u, %) is a minimizer for problem (49), then the function % has the

form
%D = h χD + H χDc ,

where D is a set satisfying {u < t } ⊂ D ⊂ {u ≤ t } with some t ≥ 0.
(b) The pair (u, %D) is a minimizer for problem (49), with parameter values

(h, H,M), if and only if (u, D) is an optimal pair for problem (1), with
parameter values (α, A) given by

α = (H − h) Θ(h, H,M), A =
H |Ω| −M

H − h
.

The optimal eigenvalues are related by

Λ(α, A) = H Θ(h, H,M).

(c) The values of (α, A) that occur when (h, H,M) vary are precisely those
satisfying

A ∈ [0, |Ω|), 0 ≤ α ≤ α(A)

or

A = |Ω|, 0 < α < ∞,

where α(A) is defined by (20). In particular, α = α(A) corresponds to
h = 0.

The proof of Theorem 5 is essentially the same as of Theorem 13 in [3],
with obvious modifications. Therefore we omit the proof.
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