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ASYMPTOTIC STABILITY OF THE EXTENDED TJON–WU

MODEL

by Sebastian J. Kaim

Abstract. We consider the generalized Tjon–Wu model. It describes the
energy of a particle in an ideal gas colliding simultaneously with other
particles of the same kind. Using the Zolotarev metric, the stability and
asymptotic behaviour of stationary solutions are studied.

1. Introduction. The classical version of the Tjon–Wu model has the
form

(1)
{

∂u(t,x)
∂t + u(t, x) = (P0u)(t, x)

u(0, x) = u0(x)
for t ≥ 0, x ≥ 0.

The operator P0 is defined by

(2) (P0v)(x) =
∫ +∞

x

dy

y

∫ y

0
v(y − z)v(z)dz, x ≥ 0,

where v is the density function of an arbitrary distribution.
Problem (1), (2) was studied by Bobylev [1], Krook and Wu [3], as well as

Tjon and Wu [11]. The problem stemmed from the theory of the Boltzmann
equation and has a simple physical interpretation. Given arbitrary nonnegative
t, the function u(t, ·) : [0,+∞) → [0,+∞) is the probability density function of
the energy of a particle in an ideal gas. Due to the physical interpretation we
assume that u satisfies the following conservation law with respect to energy∫ +∞

0
xu(t, x)dx = 1.

1991 Mathematics Subject Classification. Primary: 34G20; Secondary: 34D20, 35B35.
Key words and phrases. Weak convergence of measures, Boltzmann equation, Tjon–Wu

equation, asymptotic stability, probability metrics, Zolotarev metric.



156

Assume that ξ1 and ξ2 are independent identically distributed random
variables with the density function u. Further assume that η is a random
variable uniformly distributed over the interval [0, 1] and independent of the
vector (ξ1, ξ2). Then P0u is the density function of the random variable

(3) η · (ξ1 + ξ2).

Physically, the random variables ξ1 and ξ2 represent the energy of two
particles before the collision. Random variable (3) describes the energy of
either particle after the impact. The random factor η defines the part of the
total energy carried by the particle after the collision.

Most of the generalizations of classic problem (1), (2) refer to the varia-
tions of the operator P0 with equations (1) kept intact. Lasota and Traple [7]
proposed the operator P+

h of the form

(4) (P+
h v)(x) =

∫ +∞

x
h

(
x

y

)
dy

y

∫ y

0
v(y − z)v(z)dz,

where v is the density function of an arbitrary distribution. They replaced
the uniform distribution with an arbitrary one represented by the density h.
However, to keep the physical interpretation valid it was natural to assume
that h is supported on [0,+∞).

In this paper we will study problem (1) for the distributions supported on
the entire real line, which will be a mathematical improvement of the original
physical phenomenon. Let X = [0,+∞) or X = R. Define the Banach space

L1.1 =
{
v ∈ L1(X) : ‖v‖1.1 < +∞

}
,

where

‖v‖1.1 =
∫

X
|v(x)|dx+

∫
X
|x||v(x)|dx.

Fix s > 1 and denote

D1 =
{
v ∈ L1.1(X) :

∫
X
v(x)dx =

∫
X
xv(x)dx = 1, v(x) ≥ 0 for x ∈ X

}
and

D1.s =
{
v ∈ D1 :

∫
X
|x|sv(x)dx < +∞

}
.

In [7, 8] the authors proposed the following asymptotic stability result for
problem (1), (4) for the densities supported on the positive half-line.
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Theorem 1.1. Fix s > 1 and assume that a function h : [0,+∞) →
[0,+∞) satisfies the following conditions∫ +∞

0
h(x)dx = 2

∫ +∞

0
xh(x)dx = 1,(5) ∫ +∞

0
xsh(x)dx <

1
2
,(6)

sup {xh(x) : x ≥ 0} < +∞.(7)

Then operator (4) has a unique fixed point u∗ in the set D1. Moreover, for
every initial function u0 ∈ D1 there exists a unique solution u : [0,+∞) → D1

to equation (1) and

(8) lim
t→+∞

‖u(t)− u∗‖1.1 = 0.

We introduce some notations. Let B denote the σ-algebra of Borel subsets
of R and M denote the family of all finite Borel measures on R. By Mprob ⊂
M, denote the subfamily of probabilistic measures – distributions. Fix µ, ϕ ∈
Mprob. Let µ ∗ ϕ denote the convolution of µ and ϕ given by∫

R
f(z)(µ ∗ ϕ)(dz) =

∫
R

∫
R
f(x+ y)µ(dx)ϕ(dy)

for every real Borel measurable function f such that the mapping (x, y) →
f(x+ y) is µ⊗ ϕ-integrable. Analogously, let µ ◦ ϕ denote the measure given
by ∫

R
f(z)(µ ◦ ϕ)(dz) =

∫
R

∫
R
f(xy)µ(dx)ϕ(dy)

for every real Borel measurable function f such that the mapping (x, y) →
f(xy) is µ⊗ ϕ-integrable.

Define operators P∗n, P◦ϕ, P
ϕ
∗n : Mprob →Mprob. Let ξi (i ∈ N) and ηj (j ∈

N) be independent random variables with distributions µ and ϕ, respectively.
Then

• operators P∗n (n ∈ N) are defined by the following recurrence formulae

(9) P∗1µ = µ, P∗(n+1)µ = µ ∗ P∗nµ.

The measure P∗nµ is the distribution of the random variable ξ1 + ξ2 +
. . .+ ξn;

• operators Pn
∗ϕ (n ∈ N0 = N ∪ {0}) are defined by the formulae

(10) P 0
∗ϕµ = µ, P 1

∗ϕµ = ϕ ∗ µ, Pn+1
∗ϕ µ = ϕ ∗ Pn

∗ϕµ.

The measure Pn
∗ϕµ is the distribution of the random variable η1 + η2 +

. . .+ ηn + ξ1;
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• operator P◦ϕ is defined by the formula

(11) P◦ϕµ = ϕ ◦ µ.
The measure P◦ϕµ is the distribution of the random variable η1 · ξ1.

Problem (1), stated originally in terms of probability densities, was trans-
lated into the language of the probabilistic measures in [6, 8]. Fix N ∈ N.
The authors studied the asymptotics and stability of solutions to the equation

(12)
dµ

dt
+ µ = PNµ for t ≥ 0.

Here µ : [0,+∞) → Mprob is an unknown function. Given distributions ϕn

(n = 1, 2, . . . N), an operator PN : Mprob →Mprob is defined by

(13) PNµ =
N∑

n=1

pnP◦ϕnP∗nµ

for positive reals pn (n = 1, 2, . . . N) such that
∑N

n=1 pn = 1.
Problem (12), (13) was also analyzed in the infinite case of N = +∞

(see [8]). However, the investigators narrowed their study to the distributions
supported on the positive half-line.

The object of this paper is to study the asymptotics and stability of the
Cauchy problem

(14)
dµ

dt
+ µ = Pµ, µ(0) = µ0

on the subsets of the space of probability measures. We start with a generalized
equation with the operator P given by

(15) Pµ = P∞µ =
+∞∑
n=1

pnP◦ϕnP∗nµ

for positive reals pn (n ∈ N) such that
∑+∞

n=1 pn = 1. Certain progress is made
in this paper. We analyze the asymptotic behaviour of the stationary solutions
in a wider set of initial conditions. Previously the authors have assumed the
existence of the second moment of the initial measure. In our investigation we
assume the existence of the s-th (1 < s ≤ 2) moment of the initial measure
and of the distributions ϕn (n ∈ N), yet keeping main results valid.

The outline of the paper is as follows. In Section 2, we recall some known
results concerning the properties of the Zolotarev probability metric. In Sec-
tion 3, we study the topological properties of the Zolotarev metric. The con-
nections between the weak convergence of measures and the convergence in the
Zolotarev metric are analyzed. Then we show that certain subsets of Mprob

equipped with the Zolotarev metric are complete. In Section 4, we deal with
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the operators P∗n, P◦ϕ, Pn
∗ϕ and prove some inequalities involving these op-

erators. In Section 5, we formulate and prove some results concerning the
asymptotic stability of solutions to equation (14) with the operator P∞ given
by (15). These results are used to prove a generalization of Theorem 1.1.

2. Zolotarev probability metrics. Denote
• B = B(R) – the σ-field of Borel subsets of R;
• M = M(R) – the family of finite Borel measures on R;
• Msig = Msig(R) – the vector space of signed measures on R

Msig = {µ1 − µ2 : µ1, µ2 ∈M} ;

• Mprob = Mprob(R) – the family of probability measures on R.
We will use the notation

〈f, µ〉 = 〈f(·), µ〉 =
∫

R
f(x)µ(dx), µ ∈Msig.

For µ ∈Msig and k ≥ 0, let mk(µ) = 〈(·)k, µ〉 and |m|k(µ) = 〈| · |k, |µ|〉 denote
the k-th moment and the k-th absolute moment, respectively. Here |µ| stands
for the total variation of a measure µ.

Fix s > 0. We will use the following decomposition of s into integer and
fractional part

(16) s = l + α, where l ∈ N0 and α ∈ (0, 1].

Fix r ∈ R and (l + 1)-tuple r = (r1, . . . , rl; rs) ∈ Rl × R+. Denote
• Ms = {µ ∈Mprob : |m|s(µ) < +∞};
• Mr

1 = {µ ∈Mprob : m1(µ) = r};
• Msig,s = {µ ∈Msig : |m|s(µ) < +∞};
• M0

sig,s = {µ ∈Msig : mi(µ) = 0, i = 0, 1, . . . , l, |m|s(µ) < +∞};
• Mr = {µ ∈Mprob : mi(µ) = ri, i = 1, 2, . . . , l, |m|s(µ) ≤ rs}.

Throughout the paper, we will assume the set Mr to be nonempty.
Let Fs denote the family of l-times differentiable functions satisfying the

inequality ∣∣∣f (l)(x)− f (l)(y)
∣∣∣ ≤ |x− y|α for every x, y ∈ R.

Now we can equip the vector space M0
sig,s with the norm based on the family

Fs

(17) ‖µ‖s = sup {|〈f, µ〉| : f ∈ Fs} , µ ∈M0
sig,s.

The norm ‖·‖s generates the following metric ζs, introduced and studied by
Zolotarev [12, 13]

(18) ζs(µ1, µ2) = ‖µ1 − µ2‖s , µ1, µ2 ∈Mr.
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Let c ∈ R and let δc denote the Dirac measure δc({c}) = 1. The Zolotarev
metric ζs is the ideal metric of the order s. It means that for arbitrary µ1, µ2 ∈
Mr the following inequalities are satisfied

ζs(µ1 ∗ ϕ, µ2 ∗ ϕ) ≤ ζs(µ1, µ2) for every ϕ ∈Mr,(19)

ζs(δc ◦ µ1, δc ◦ µ2) ≤ |c|sζs(µ1, µ2) for every c ∈ R.(20)

3. Topological properties of the Zolotarev metric. We will examine
the connections between the convergence in the Zolotarev metric and the weak
convergence of distributions. Recall that a sequence of probability measures
(µn)+∞n=1 converges weakly to a distribution µ if

lim
n→+∞

〈f, µn〉 = 〈f, µ〉 for every f ∈ Cb,

where Cb is the family of bounded continuous functions on R. The weak con-
vergence will be denoted by µn ⇀ µ.

Theorem 3.1. Fix s>0 with decomposition (16). Let r = (r1, . . . , rl; rs) ∈
Rl × R+ and assume that µ, µn ∈ Mr (n ∈ N). If lim

n→+∞
ζs(µn, µ) = 0 then

µn ⇀ µ. Conversely, if µn ⇀ µ and

(21) lim
n→∞

|m|s(µn) = |m|s(µ),

then lim
n→+∞

ζs(µn, µ) = 0.

Proof. [Outlined] Proof of the first part of the theorem is based on the
following well-known inequality (see [14], p. 123, Theorem 1.5.8)

(22) πs+1(µ1, µ2) ≤ cs · ζs(µ1, µ2),

where the constant cs depends on s only. Here π is the Levy–Prokhorov metric
defined by

π(µ1, µ2) = inf {ε > 0 : µ1(A) ≤ µ2(Aε) + ε,A 6= ∅, closed} ,

where

Aε = {x : dist (A, x) < ε} , dist (A, x) = inf {d(x, y) : y ∈ A} .

Now it suffices to use the fact that the Levy–Prokhorov metric metrizes the
weak convergence.

Proof of the second part of the theorem is based on the inequality (see [15],
p. 749, Theorem 3)

(23) ζs(µ1, µ2) ≤
Γ(1 + α)
Γ(1 + s)

{
2lκs(µ1, µ2) + [2κs(µ1, µ2)]

α b1−α
s

}
,
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where bs = min (|m|s(µ1), |m|s(µ2)) and κs is the difference pseudomoment
metric defined by

κs(µ1, µ2) = s

∫
R
|x|s−1|F1(x)− F2(x)|dx.

To finish the proof, we use the fact that the metric κs metrizes the weak conver-
gence plus the convergence of the s-th absolute moments (see [10], p. 301).

The following lemma deals with the properties of the weak convergence of
distributions in the set Mr.

Lemma 3.2. Fix s > 0 with decomposition (16) and let r = (r1, . . . , rl; rs) ∈
Rl × R+. If µn ∈Mr (n ∈ N), µ ∈Mprob and µn ⇀ µ, then µ ∈Mr.

Proof. Assume that the sequence (µn)+∞n=1 converges weakly to a measure
µ ∈Mprob. For an arbitrary δ > 0, define

gδ(x) = min {δ, |x|s} .
The functions gδ, δ > 0, are continuous and bounded. Moreover, they form a
family increasing with respect to the parameter δ. Since µn ∈Mr there is

|〈gδ, µn〉| ≤ 〈| · |s, µn〉 ≤ rs for n ∈ N and arbitrary δ > 0.

Passing to the limit as n → +∞, by the weak convergence of (µn)+∞n=1, we
obtain

|〈gδ, µ〉| ≤ rs for arbitrary δ > 0.
Then passing to the limit as δ → +∞, by virtue of the Lebesgue Monotone
Convergence Theorem, we get

(24) |〈| · |s, µ〉| ≤ rs.

Fix 1 ≤ k ≤ l. For an arbitrary δ > 0, define

hδ(x) =


xk, |x| ≤ δ
δk, x > δ
(−δ)k, x < −δ

.

We will use the following quite obvious inequality

(25) 〈| · |kI|x|≥δ, µn〉 ≤ δk−srs.

Fix ε > 0. We can choose δ > 0 such that δk−srs < ε. For such δ, from (25)
we obtain

|〈rk − hδ, µn〉| ≤ ε.

The functions rk − hδ, δ > 0, are continuous and bounded. Thus, by the weak
convergence of (µn)+∞n=1 as n→ +∞, we get

|〈rk − hδ, µ〉| ≤ ε for arbitrary δ > 0.
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Moreover, the functions |rk − hδ|, δ > 0, are uniformly bounded from above
by the µ-integrable function rk + | · |k. Hence, passing to the limit as δ → +∞,
we obtain ∣∣∣〈rk − (·)k, µ〉

∣∣∣ ≤ ε.

Since ε > 0 and 1 ≤ k ≤ l are arbitrary, we conclude that mk(µ) = rk for
k = 1, 2, . . . , l. This and (24) complete the proof.

Before analysing the completeness of the metric space (Mr, ζs) we shall
need some prerequisites.

Observation 3.3. Fix s ∈ (0, 1] and let f ∈ Fs. For an arbitrary constant
c, the functions gr and gl defined by

gr(x) =
{
f(x) if x ≤ c
f(c) if x > c

and gl(x) =
{
f(c) if x < c
f(x) if x ≥ c

belong to Fs.

Observation 3.4. Fix s ∈ (0, 1], x0 ∈ R and bounded functions f1, f2 ∈
Fs such that f1(x0) = f2(x0). Then there exists a nonnegative constant d such
that the function f defined by

f(x) =

 f1(x) if x ≤ x0

f1(x0) if x0 < x < x0 + d
f2(x− d) if x0 + d ≤ x

belongs to the family Fs.

Using the above observations, we can prove the following lemma.

Lemma 3.5. Fix s ∈ (0, 2] with decomposition (16). For every function
f ∈ Fs, there exist a constant c ∈ R and sequence of continuous functions
(fi)+∞i=1 such that fi ∈ Fs (i ∈ N) and

lim
i→+∞

fi(x) = f(x) for every x ∈ R,(26)

fi(x) ∈ Cb for every i ∈ N,(27)

|fi(x)| ≤ c(1 + |x|s) for every x ∈ R and every i ∈ N.(28)

Proof. We will give a constructive proof in two cases: first for s ∈ (0, 1],
then for s ∈ (1, 2].

Let s ∈ (0, 1] and fix f ∈ Fs (then, according to (16), α = s). For every
i ∈ N there exist a positive constant bi and monotonous functions λi, ωi ∈ Fs

such that
λi(−i) = f(−i), λi(x) = 0 for x ≤ −i− bi

and
ωi(i) = f(i), ωi(x) = 0 for x ≥ i+ bi.
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Due to Observation 3.3 and Observation 3.4, we can choose a constant ai > i
such that the function

fi(x) =


f(x) if |x| ≤ i
f(isgn x) if i < |x| ≤ ai

ωi(x− ai + i) if ai < x ≤ ai + bi
λi(x+ ai − i) if −ai − bi ≤ x < −ai

belongs to the family Fs for every i ∈ N. It is easy to verify that for every i ∈ N
the function fi satisfies the conditions (26)–(28) and has a compact support.

Further, let s ∈ (1, 2] and fix f ∈ Fs (here α = s−1). The derivative g = f ′

belongs to Fs−1 and there exists a sequence (gi)+∞i=1 , gi ∈ Fs−1, of functions
with compact supports and satisfying the conditions (26)–(28). Define the
sequence (fi)

+∞
i=1 by

fi(x) = f(0) +
∫ x

0
gi(y)dy for x ∈ R and i ∈ N.

We conclude that f ′i = gi ∈ Fs−1 for every i ∈ N. Hence fi ∈ Fs, i ∈ N. It
is easy to verify that the functions fi satisfy the conditions (26)–(28). This
completes the proof.

The following theorem concerning completeness of the metric space (Mr, ζs)
holds.

Theorem 3.6. Fix s ∈ (0, 2]. For every r = (r1; rs) ∈ R×R+, the metric
space (Mr, ζs) is a complete metric space.

Proof. Assume that (µn)+∞n=1 is the Cauchy sequence in the space (Mr, ζs).
Inequality (22) implies that (µn)+∞n=1 is also the Cauchy sequence in the com-
plete metric space (Mprob, π). Hence there exists a measure µ ∈ Mprob such
that µn ⇀ µ. By Lemma 3.2, we know that µ ∈ Mr. We only need to show
that lim

n→+∞
ζs(µn, µ) = 0.

Let ε > 0 be arbitrary. The sequence (µn)+∞n=1 satisfies the Cauchy condition
in metric ζs, hence there exists N ∈ N such that for every n,m ≥ N and every
f ∈ Fs, the following inequality holds

|〈f, µn − µm〉| ≤ ε.

Fix an arbitrary f ∈ Fs and let (fi)+∞i=1 be a sequence of functions chosen as
in Lemma 3.5. Since fi ∈ Fs (i ∈ N), for every n,m ≥ N , there is

|〈fi, µn − µm〉| ≤ ε for every i ∈ N.

By the weak convergence of (µm)+∞m=1 as m→ +∞, we get

(29) |〈fi, µn − µ〉| ≤ ε for every i ∈ N and n ≥ N.
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Next fix n ≥ N in (29). Using condition (28), we can pass to the limit as
i→ +∞. By (26), we obtain

(30) |〈f, µn − µ〉| ≤ ε for n ≥ N.

The function f ∈ Fs was arbitrary and N was chosen independently of f .
Hence inequality (30) gives the convergence in the Zolotarev metric, which
completes the proof.

4. Nonlinear Markov operators. In this chapter we analyze properties
of the operators P∗n, P◦ϕ and Pn

∗ϕ given by (9), (10) and (11), respectively.
Fix s > 0 with decomposition (16) and let r = (r1, . . . , rl; rs) ∈ Rl × R+. It is
easy to verify that the following inequality holds (see [8]).

Lemma 4.1. Assume that µ1, µ2 ∈Mr and ϕ ∈Ms. Then

(31) ζs(P◦ϕµ1, P◦ϕµ2) ≤ |m|s(ϕ)ζs(µ1, µ2).

Using the triangle inequality and the fact that ζs is the ideal metric, it is
easy to verify that the operators P∗n and Pn

∗ϕ are Lipschitzean operators with
respect to the Zolotarev metric ζs.

Lemma 4.2. Assume that µ1, µ2 ∈Mr and ν ∈Ms. Then

(32) ζs(P∗nµ1, P∗nµ2) ≤ nζs(µ1, µ2)

and

(33) ζs(Pn
∗νµ1, P

n
∗νµ2) ≤ ζs(µ1, µ2)

for n ∈ N.

The following relations concerning moments of P◦ϕµ, P∗nµ and Pn
∗ϕµ hold.

Lemma 4.3. Assume that µ, ϕ ∈M1. Then

m1(P◦ϕµ) = m1(ϕ)m1(µ),(34)

m1(P∗nµ) = nm1(µ)(35)

for n ∈ N. If µ, ϕ ∈Ms, then

(36) |m|s(P◦ϕµ) = |m|s(ϕ)|m|s(µ).

Moreover, if s ∈ (1, 2], then

(37) |m|s(P∗nµ) ≤ n|m|s(µ) +
s

2
n(n− 1)|m|s1(µ)

for n ∈ N.
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Proof. Formulae (34)–(36) follow directly from the definitions of the
operators P◦ϕ, P∗n, Pn

∗ϕ and properties of moments. To obtain inequality (37),
we use the formula

|x+ y|s ≤ |x|s + s|x||y|s−1 + |y|s, s > 1.

Hence, for arbitrary probability measures µ1 and µ2 there is
|m|s(µ1 ∗ µ2) ≤ |m|s(µ1) + s|m|1(µ1)|m|s−1(µ2) + |m|s(µ2)

≤ |m|s(µ1) + s|m|1(µ1)|m|s−1
1 (µ2) + |m|s(µ2).

Using the definition of the operator P∗n, formula (37) follows by the mathe-
matical induction.

5. A Generalized Tjon-Wu Equation. In this section, we give a gen-
eralization of the results by Lasota [5] and Lasota and Traple [8] concerning
the stability of integro-differential equations in vector spaces. Let E be a real
vector space with a norm ‖·‖ and let D ⊂ E be a nonempty and convex set.
Assume that the metric space (D, ρ), where ρ(x, y) = ‖x− y‖, is complete.
We consider the Cauchy problem of the form

(38)

{
du
dt + u = Pu

u(0) = u0
,

where P : D → D. A mapping u : [0,+∞) → D is called a solution to problem
(38) if the strong derivative du

dt exists in the space (E, ‖·‖) for every t ≥ 0 and
u satisfies (38).

The following well-known consequence of the results of Crandall [2], Lasota
[5] and the Banach contraction principle holds.

Theorem 5.1. Assume that the operator P : D → D satisfies the Lipschitz
condition

ρ(Pv1, Pv2) ≤ Lρ(v1, v2), 0 ≤ L < +∞, v1, v2 ∈ D.
Then for every initial point u0 ∈ D there exists a unique solution u to prob-
lem (38).

If additionally L < 1, then the operator P has a unique stationary point u∗.
Moreover, for every initial point u0 ∈ D the unique solution u to problem (38)
satisfies the inequality

ρ(u(t), u∗) ≤ c · e−(1−L)t for every t ≥ 0,

where c = 1
1−Lρ(u0, P0).

In what follows we will use Theorem 5.1 to analyse the asymptotics and
stability of solutions to operator-differential equations supported on the real
line. The following theorems are generalizations of the results contained in [6]
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and [8]. Let ϕn ∈Mprob (n ∈ N) and let pn be a sequence of nonnegative real
numbers such that

(39)
+∞∑
n=1

pn = 1.

We consider the generalized Tjon–Wu problem of the form

(40)

{
dµ
dt + µ = Pµ

µ(0) = µ0
,

where µ(t) ∈Mprob and t ≥ 0. The operator P : Mprob →Mprob is defined by

(41) Pµ = P∞µ =
+∞∑
n=1

pnPnµ, where Pnµ = P◦ϕnP∗nµ.

In the following, we will assume that the initial measure µ0 is not a Dirac
measure with mass at the point 0.

Problem (40), (41) has been already studied by several authors. However,
in their publications, some additional assumptions have been made. For exam-
ple, Lasota [6] studied a simplified version of the operator P∞. In [8] Lasota
and Traple considered the distributions supported on the positive half-line only.

Denote

J =
+∞∑
n=1

npnm1(ϕn)

and

(42) Ls =
+∞∑
n=1

npn|m|s(ϕn), s > 0.

The following lemma gives sufficient conditions for the operator P∞ to satisfy
the energy conservation law.

Lemma 5.2. Fix s ∈ (1, 2]. Assume that nonnegative real numbers pn

(n ∈ N) satisfy (39) and probability measures ϕn ∈M1 (n ∈ N) are such that

(43) J = 1.

Then for an arbitrary distribution µ ∈M1 the following identity holds

(44) m1(P∞µ) = m1(µ).

If ϕn ∈Ms (n ∈ N) and inequality

(45) Ls < 1

is satisfied, then for every r1 ∈ R there exists r̃ ∈ R+ such that for every r ≥ r̃
the operator P∞ maps the set M(r1;r) into itself.
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Proof. Evidently, P∞(Mprob) ⊂Mprob. Take an arbitrary µ ∈ M1. By
the properties of the expectation and using Lemma 4.3, we obtain

m1(P∞µ) = Jm1(µ).

This and (43) yield (44). Next let r > 0 be such that |m|s(µ) ≤ r. By definition
of the operator P∞ and by (36), there is

|m|s(P∞µ) =
+∞∑
n=1

pn|m|s(ϕn)|m|s(P∗nµ).

Hence, using (37) we obtain

(46) |m|s(P∞µ) ≤ rLs +
s

2
|m|s1(µ)

+∞∑
n=1

n(n− 1)pn|m|s(ϕn).

Take

(47) r̃ =
(

1 +
As

1− Ls

)
|m|s1(µ), As =

s

2

+∞∑
i=n

n(n− 1)pn|m|s(ϕn).

By (46) and (47), we get |m|s(P∞µ) ≤ r for every r ≥ r̃. This and (44) yield
P∞(M(r1;r)) ⊂M(r1;r) for every r ≥ r̃.

Now we are going to compute the Lipschitz constant for the operator P∞
in the space (Mr, ζs).

Lemma 5.3. Fix s ∈ [1, 2] and let r = (r1; rs) ∈ R × R+. Assume that
nonnegative real numbers pn (n ∈ N) satisfy (39) and that ϕn ∈ Ms (n ∈ N).
Then, in the metric space (Mr, ζs), the operator P∞ satisfies the Lipschitz
condition

(48) ζs(P∞µ1, P∞µ2) ≤ Lsζs(µ1, µ2).

Proof. For arbitrary distributions µ1, µ2 ∈ M(r1;rs), by (39), (41) and
by the definition of the Zolotarev metric ζs, it follows that

(49) ζs(P∞µ1, P∞µ2) ≤
+∞∑
n=1

pnζs(Pnµ1, Pnµ2).

Next by (32), (31) and (33), we get

(50) ζs(Pnµ1, Pnµ2) ≤ n|m|s(ϕn)ζs(µ1, µ2).

Combining inequalities (49) and (50), we obtain (48).

The main result of this chapter is the following theorem describing the
asymptotics and stability of the solutions the problem (40), (41).
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Theorem 5.4. Fix s ∈ (1, 2] and let pn (n ∈ N) be nonnegative real
numbers satisfying (39). Assume that distributions ϕn ∈ M1 (n ∈ N) satisfy
relation (43) and the condition

(51) L1 =
+∞∑
n=1

npn|m|1(ϕn) < +∞.

Fix r1 ∈ R. Then for every initial measure µ0 ∈ Mr1
1 there exists in the set

Mr1
1 a unique solution µ to problem (40), (41).
If additionally ϕn ∈ Ms (n ∈ N), µ0 ∈ Mr1

1 ∩Ms and condition (45) is
satisfied, then there exists a constant rs = rs(µ0) > 0 such that µ(t) ∈M(r1;rs)

for every t ≥ 0. Moreover, the operator P∞ admits a unique stationary measure
µ∗ in the set Mr1

1 ∩ Ms. Furthermore, for µ0 ∈ Mr1
1 ∩ Ms the solution µ

satisfies the inequality

(52) ζs(µ(t), µ∗) ≤ ce−(1−Ls)t for every t ≥ 0,

where c = 1
1−Ls

ζs(µ0, P∞µ0).

Proof. Assume that µ0 ∈ Mr1
1 is the initial measure for problem (40),

(41). The set Mr1
1 is convex and (by Theorem 2.1 of [6]) the space (Mr1

1 , ζ1)
is complete. Using (51) and (43), we obtain that P∞(Mr1

1 ) ⊂Mr1
1 . By virtue

of Lemma 5.3, the operator P∞ satisfies inequality (48) for s = 1 in the space
(Mr1

1 , ζ1). Hence, by virtue of Theorem 5.1, problem (40), (41) has a unique
solution µ and µ ∈Mr1

1 .
Next assume that µ0 ∈Mr1

1 ∩Ms is the initial measure for problem (40),
(41). Since condition (45) is satisfied, by virtue of Lemma 5.2, we can choose
a constant r̄ > 0 such that

(53) P∞(M(r1;r̄)) ⊂M(r1;r̄).

Define rs = max(r̄, |m|s(µ0)). The set M(r1;rs) is a convex subset of the vector
space E = Msig,s and by Theorem 3.6, the space (M(r1;rs), ζs) is complete.
By virtue of Lemma 5.3, the operator P∞ satisfies inequality (48) in the space
(M(r1;rs), ζs). Hence, by virtue of Theorem 5.1, problem (40), (41) admits a
unique solution µ and µ ∈M(r1;rs). Moreover, there exists a unique stationary
measure µ∗ for the operator P∞, µ∗ ∈M(r1;rs) and inequality (52) is satisfied.

The constant rs can be arbitrary large; thus µ∗ is the unique stationary
solution to problem (40), (41) in the entire set Mr1

1 ∩Ms.

The following proposition makes use of the stability results given by Theo-
rem 5.4 and is a generalization of Theorem 1.1. We study the solutions to the
problem

(54)
{

∂u(t,x)
∂t + u(t, x) = (Phu)(t, x)

u(0, x) = u0(x)
for t ≥ 0,
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where

(55) (Phv)(x) =
∫

R
h

(
x

y

)
dy

|y|

∫
R
v(y − z)v(z)dz,

with v the density function of an arbitrary distribution.
We will need a few prerequisites. We begin with a characterization of the

convolutions of distribution possessing atoms (see [9]).

Lemma 5.5. Assume that a measure µ ∈ Mprob has its greatest atom at
the point c ∈ R. Then

(56) (µ ∗ µ)({x}) ≤ µ({c}) for every x ∈ R.
Moreover, if supp µ is not a finite set, then

(57) (µ ∗ µ)({x}) < µ({c}) for every x ∈ R.
Next, using Lemma 5.5, we will prove that if operator (55) defined in

terms of the distributions admits a stationary measure then this measure has
a continuous distribution function.

Lemma 5.6. Let ϕ ∈Mprob be such that

(58) ϕ({0}) = 0.

Let µ ∈Mprob satisfy the identity

(59) µ̂(t) =
∫

R
µ̂2(tr)ϕ(dr),

where µ̂ denotes the characteristic function of the measure µ. If supp µ is not
a finite set, then the distribution function of µ is continuous on R.

Proof. Fix µ ∈ Mprob. Assume that µ has atoms and let µ({c}) be its
greatest atom. Applying the well-known identity for characteristic functions

µ({c}) = lim
T→+∞

1
2T

∫ T

−T
e−ctiµ̂(t)dt

and conditions (58) and (59), we obtain the identity

(60) µ({c}) =
∫

R\{0}
(µ ∗ µ)

({ c
r

})
ϕ(dr).

Using the fact that supp µ is not a finite set, by virtue of (57), we get

µ({c}) > (µ ∗ µ)({x}) for every x ∈ R.
This and (60) yield a contradiction

µ({c}) <
∫

R\{0}
µ({c})ϕ(dr) = µ({c}),

which completes the proof.
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The following result concerning the strong stability of the solutions to
problem (54), (55) for the densities supported on the whole real line holds.

Theorem 5.7. Let s ∈ (1, 2] and c > 0. Assume that a function h : R →
[0,+∞) satisfies the following conditions∫

R
h(x)dx = 2

∫
R
xh(x)dx = 1,(61) ∫

R
|x|sh(x)dx < 1

2
,(62)

|x|h(x) ≤ c for every x ∈ R.(63)

Then there exists a stationary function u∗ of the operator Ph in the set D1.s.
Additionally, for every initial density u0 ∈ D1.s there exists a unique solution
u : [0,+∞) → D1.s to problem (54), (55) and

(64) lim
t→+∞

‖u(t)− u∗‖1.1 = 0.

Proof. Using assumption (61), it is easy to see that Ph(D1) ⊂ D1. From
(61) it follows that the operator Ph satisfies the Lipschitz condition in the set
D1

‖Phv1 − Phv2‖1.1 ≤ 2d ‖v1 − v2‖1.1 , where d =
∫

R
|x|h(x)dx.

Since D1 is a closed and convex subset of the Banach space L1.1, by Theorem
5.1, equation (54) admits a unique solution u ∈ D1 for every u0 ∈ D1.

Fix u0 ∈ D1.s and consider the integral form of equation (54):

(65) u(t, x) = e−tu0(x) +
∫ t

0
e−(t−s)Phu(s, x)ds, t ≥ 0.

Define the measures

ψ0(A) =
∫

A
u0(x)dx, ψ(t)(A) =

∫
A
u(t, x)dx, t > 0

and
ϕ(A) =

∫
A
h(x)dx

for A ∈ B(R). The function ψ : [0,+∞) →M1
1 is a solution to problem (40),

(41) with the initial measure µ0 = ψ0 and for the operator P = P2 = P◦ϕP∗2.
Condition (61) gives

J = 2m1(ϕ) = 1 and L1 = 2|m|1(ϕ) < +∞.

By (61) and (62), the conditions of Theorem 5.4 are satisfied. Therefore, ψ is
the unique solution to problem (40), (41) and there exists a constant rs > 0
such that ψ(t) ∈ M(r1;rs) for every t ≥ 0. This implies that u(t) ∈ D1.s for
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every t ≥ 0. Moreover, the operator P admits a unique stationary measure ψ∗
in the set M1

1 ∩Ms and relation (52) holds.
We will prove that the trajectory U = {u(t) : t ≥ 0} is a relatively weakly

compact set in the space L1. Fix ε > 0. Using the Markov inequality and
the fact that ms(ψ(t)) ≤ rs for every t ≥ 0, we conclude that there exists a
constant a > 0 such that

(66) ψ(t)({|x| ≥ a}) =
∫
|x|≥a

u(t, x)dx ≤ ε, t ≥ 0.

The measure ϕ is absolutely continuous. Therefore, the stationary mea-
sure ψ∗ is not a Dirac measure with mass at x = 1. From this fact and the
relation m1(ψ∗) = 1 it follows that there exists x0 > 1 such that x0 ∈ supp ψ∗.
Similarly, the identity m1(ϕ) = 1

2 yields the existence of a y0 >
1
2 such that

y0 ∈ supp ϕ. From the identity ψ∗ = ϕ ◦ (ψ∗ ∗ψ∗), we obtain 2x0y0 ∈ supp ψ∗.
Repeating this procedure, we obtain (2y0)nx0 ∈ supp ψ∗ for every n ∈ N.
Hence the support of the measure ψ∗ is not a finite set and by Lemma 5.6, we
obtain ψ∗({c}) = 0 for every c ∈ R. Therefore, we can choose b > 0 such that
ψ∗([−b, b]) < ε

2 . Using this and the weak convergence ψ(t) ⇀ ψ∗ as t → +∞,
we obtain the existence of t0 > 0 such that

(67)
∫ b

−b
u(t, x)dx = ψ(t)([−b, b]) < ε for every t ≥ t0.

From (65), (63) and (55), for A ⊂ Y = {x : b < |x| < a0}, we obtain∫
A
u(t, x)dx ≤

∫
A
u0(x)dx+ |A|c

b
, t ≥ 0,

where |A| denotes the Lebesgue measure of A. Hence there exists δ > 0 such
that

(68) A ⊂ Y, |A| < δ ⇒
∫

A
u(t, x)dx < ε for every t ≥ 0.

Therefore, by (66), (67) and (68), the trajectory U is a relatively weakly com-
pact set in L1.

By (65), the set U is contained in the closed convex hull of the set {u0} ∪
Ph(U). By virtue of Theorem 4.1 in [4], the operator Ph maps weakly compact
sets into strongly compact sets. Hence the set U is contained in a convex
strongly compact set in L1. The compactness of the trajectory U in the set
L1 and the weak convergence ψ(t) ⇀ ψ∗ as t → +∞ (ψ∗ ∈ M1

1 ∩Ms) imply
that the stationary measure ψ∗ is absolutely continuous. Let u∗ be the density
function of the measure ψ∗

ψ∗(A) =
∫

A
u∗(x)dx for A ∈ B(R).
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By virtue of Theorem 5.4, the function u∗ belongs to the family D1.s. Using
again the L1-compactness of the trajectory U and the uniqueness of the weak
limit, we obtain the L1-convergence of u(t, ·) to u∗(·) as t→ +∞

(69) lim
t→+∞

∫
R
|u(t, x)− u∗(x)| dx = 0.

To finish the proof we only need to show that

(70) lim
t→+∞

∫
R
|x| |u(t, x)− u∗(x)| dx = 0.

The conclusion follows immediately from the L1-convergence of the densities
u(t, x) to the stationary density u∗ and the fact that there exists a constant
rs > 0 such that

∫
R |x|

su(t, x)dx < rs for every t ≥ 0. This completes the
proof.
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