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A NOTE ON ABHYANKAR-MOH’S APPROXIMATE ROOTS
OF POLYNOMIALS

BY SZYMON BRZOSTOWSKI

Abstract. We make a contribution to the Abhyankar—Moh’s theory by
studying approximate roots of non-characteristic degrees of an irreducible
element of K ((X)) [Y].

Introduction. Let K((X)) be the power series field in one variable X
with coefficients in an algebraically closed field K. Our aim is to examine
approximate roots \/f of an irreducible element f of the ring K ((X))[Y] (as
Abhyankar and Moh did in [2]), without assuming, though, that we deal with
an approximate root of a ‘characteristic degree’ (see the end of Introduction
for an explanation). For similar considerations in a more general setting see
Moh [6].

Let us recall the basic notions and results of [1,, [2]. For more information
about approximate roots see also [1l, 2} [4].

Let R be a commutative ring with unity, f € R[Y], degy f = k be monic in
Y and let |k be a divisor of k such that 1/l € R. A monic polynomial g € R[Y]
satisfying the relation degy (f —g') < k —k/l is called an approzimate I-th root
of f. We will denote it by /f.

It is a well known fact that under above assumptions an [-th approximate
root of f exists and is uniquely determined (cf. [I, 4]).

Now we pass to the classical situation. The following assumptions will be
made in the sequel. We will call them the BASIC ASSUMPTIONS.

Let f be an irreducible and monic element of K ((X)) [Y], K = K, charK =
0, degy f = k. Then, by Newton’s theorem, f (t*,Y) = [] (Y —y/(et)) for
EEUk(K)
some y (t) €K ((1)),y ()= y;t7 (by Ux(K) we denote the set {e €K : e* = 1}).
J
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Further, let m = (my,...,mp) be the characteristic of f (roughly speaking:
|mo| = k, m1 = ord; y(t) and ma,...,m; are consecutive exponents of the
Laurent expansion of y (t) such that ged(my,...,m;) < ged(myg, ..., m;—1) for
2 < i < h and ged(mo, ..., mp) = 1; for the definition see [II, Definition (6.8)])
and d = (dy,...,dps1), where dp1 = 1, be the divisor sequence defined by

d; = ged(mg,...,m;—1) for 1 <i < h+1.
It is also convenient to define the following derived sequences:
$=(80y--+,5h+1),
putting so := mo, s; == mudi + Y, (mj —mj_1)d;, for 1 < i < h, and
29
Sh41 1= +00;
r = (7“0, e ,Th+1),

putting ro := mog, r; == 3+, for 1 <i < h, and rp41 1= +00;

n=(ni,...,nn),

putting n; = diiﬂ for 1 < i < h.
REMARK 1. Under an additional assumption charK { degy f, one can
extend the results of this work to the case of a positive characteristic.

We summarize basic properties of approximate roots in the following well-
known theorem ([I, Theorem (13.2) (i) and (ii), Theorem (8.2)]).

ABHYANKAR-MOH THEOREM. Ifl =d; for some 1 < j < h+1 then:

1. %/f is irreducible in K ((X))[Y],
2.if 2 < j < h+1, then for every Puiseux root z(t) of §/f(t,Y) there
exists € € Uy (K) such that

ordy (y (et) — z (tk)> =mj,
ordy < ©f (tk,y (t))) =rj.

In the sequel, we try to examine ‘non-characteristic’ approximate roots (i.e.,
we skip the assumption [ = d;) and to give some results similar to those stated
in the above theorem. More specifically: property 1 is not true (Example ,
properties 2 and 3 carry over in the form of inequalities (Theorem |1} Corollary
and Theorem |3]), which are then proved to be in fact equalities in some special
case (Theorem [2| and Theorem [3)).
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Auxiliary results. Throughout the work we freely utilize the notations
and results from [I]. We recall that the symbol & stands for an unspecified,
non-zero element of a field under consideration.

Under the |[Basic Assumptions| it is easy to prove the following lemma,
which is a slight improvement of Lemma (7.16) in [1].

LEMMA 1. Let e be an integer such that 1 < e < h and let Ky be a subfield

of K such that the k-th primitive root of 1 € K belongs to Ko. Assume that

>yt € Ko((t)). Then for every (e,U)-deformation y* (t) of y(t) (i.e.,
J<me

an element of K’ ((t)), where K’ is an overfield of K, such that info;(y* (t) —
> y;t?) =Ut™e), there is

J<me

info; f (tk, Y (t)> =0 (U" - yﬁ;e)de“ t* with 6 € K.

PROOF. We repeat the proof of (7.16) in [I] to obtain the equality (7.16.2):
info;(y* (t)—y (wt)) = info (y (t) —y (wt)) for afixed w € Q (e) = {e € Uy (Kp) :
ord; (y (t) — y (et)) < me}. Since, by assumption, inco; (y (t) — y (wt)) € Ko,
then (7.16.3) takes the form

. " o, ife=1 )

info, H (y*(t) —y(wt)) | = { o mede e >0 with 6 € K.
weQ(e)

The rest of the proof goes through without changes. O

Next we need a version of the Newton Polygon Method, which is a conse-
quence of [I, Theorem (14.2)]. For a more explicit formulation see also § 2.
in [5].

PROPOSITION 1. Let g be an element ofK(( ) [Y] splitting into linear
factors of the formY —z; (X), where zj (X) € ((XI/M)) and 1 < j < degy g.
Let us consider an arbitrary u (t) = Z ujt/M € K ((¢ 1/M)), for some L € Z.

Then the following two conditions are equwalent
i) there exists 1 < j < degy g such that ordy (u (t) — z; (t)) > &;
i) the polynomial h (U) := incor g (¢, u (t) + UtL/M) € K[U] is not constant
and one of its roots is U = 0.

Furthermore, if U = 0 has multiplicity | > 0 as a root of h(U), then
there exist at least 1 different indices ji,...,5 € {1,...,degy g} such that

ordy(u(t)—zj,(t))> & fori=1,...,1

Now we can prove

LEMMA 2. Let f fulfil the [Basic Assumptiond. Let | be an integer such
that l|d; for some 1 < i < h andl ¢ {d1,...,dp11}, and assume that there
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exists an integer m', m;_1 < m’ < m; (in the case of i = 1, we only demand
m’ < my) such that ged (d;,m’) = 1. Then for every Puiseuz series z (t) with
VI (t,z(t)) =0 there exists € € Uy, (K) such that ord, (y (t) — z (t*)) > m/.

PROOF. Let Z be an indeterminate over K and consider y?Z (t) = y (t) +

Zt™ € K[Z]((t). Put fZ(t*,Y) = I (Y —y?(et)). Then fZ(X,Y) €
ef=1

K[Z]((X))[Y] has the characteristic sequence m?= (my, ..., m;_1,m,ml_,...)

and the divisor sequence d? = (dy,...,d;,l,...,1). Notice that I > 1, be-

cause | # djy1. From the Abhyankar-Moh theory it follows that \/f% €

KI[Z] ((X))[Y] is irreducible in K (Z) ((X)) [Y]. Let

VIZ(y) = T v = 2w,

YL

.
where z (t) € K (Z) ((t)) has the property that ord; (2 (t') — yZ (t)) =m/,, >
m’ ([I, Theorem (13.2) (ii)]).

Fix e1 € Uy (K) and consider z (e1t). It follows that 2* (t) =) y; (Elt)]/l—l—
j<m/’

U (alt)m//l e K[U] ((¢)) is (i,U)-deformation of z (¢1t). Applying Lemma [1] to
/ f% and z2* (t), we get
(1) info \/fZ (tk/l 2 (t)) = o (U™ — 2™) " 5 iith o € K.

(Here the bar ‘=’ indicates characteristic sequences for v/ f%.) From the defi-

l
nition of the approximate root we conclude that degy (f% — <\l/ Vil ) ) < k— %
After the substitution Z = 0 in that inequality, we thus get degy ( fZZ:0 —

1
<l 1%, 0) ) < k— 5 But, obviously, fZZ:0 = f. This means that « fZ 0=
Vf. Since \/f% (tk/l z*(t)) € K[Z][U]((t)), then substituting Z = 0 in

we get
info, \/f (tk/l, P (t)) = oUMit11% = o U%it5 = o U%/15 with o € K.
From Proposition [I] we conclude that there exist d; /I Puiseux roots zj, (t),.. .,

Zjq, i (£) of V[ (t,Y) such that m’/k < ord, ( > ij{/ltj/k - Zj, (t)> and so
Z j<m

m’ < ord; (y <€}/lt> - 2j, <tk>> forp=1,...,d;/L.

(Above, 51/ denotes any of [-th roots of 1 in K.) Since €1 was a fixed element
of Uy (K), then we have proven that for any ¢ € Uy (K) there exist d;/I
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Puiseux roots 2.1 (t), ..., 2.4,/ (t) of /f (t,Y) such that

ordy (y (et) — zep (tk>) >m' forp=1,...,d;/l.

Now for A = {e% : £ € Uy, (K)} there is card A = k/d; and if 01,02 € Uy (K),
Ufi # agi, then ord; (y (o1t) — y (o2t)) < m;—1 < m’. Thus

ord; (Zal,pl (tk) — Zoy.ps (tk)> <m/ for p1,pa =1,...,d;/l.

Since d%% = % = degy \/f, the lemma is proved. O
PROPERTY 1. Let g € K ((X))[Y], degy g =k, g = g1+ ... g be the

decomposition of g into irreducible factors in K ((X))[Y]. Let N be a pos-
itive integer such that ged (N,E!) = 1. Then g(XN,Y) = g1 (XN,Y) :
e Gr (XN,Y) is the decomposition of g (XN,Y) into irreducible factors in
K ((X))[Y]. Furthermore, if 21 (t),..., 2 (t) are all Puiseux roots of g(t,Y),
then z; (tN) N (tN) are all Puiseuz roots of g (tN, Y).

PRrOOF. It is enough to prove the property under the assumption that g is
irreducible in K ((X)) [Y']. Let g have characteristic m = (o, ...my,), degy g=
k and z (t) be any of Puiseux roots of g(t,Y) = 0. Since g(tk,z <tk>> =0,
then g (tEN, z (tEN» =0 with ged (E, Supp <z (tEN>>> =1. Thus g (XN, Y)
is irreducible in K ((X))[Y] and the characteristic sequence of g (XV,Y) is
(Mo, N, ..., Nmy,). O

Main results. Our first theorem is an improvement of Lemma It is
a generalization of the item 2 in [Abhyankar—Moh Theorem| covering the non-
characteristic case.

THEOREM 1. Let f fulfill the Basic Assumptions. Let | be such an integer
that l|d; for some 1 < i < h andl ¢ {dy,...,dns1}. Then for every Puiseuz
series z (t) with \/f (t,z (t)) = 0 there exists € € Uy (K) such that

(2) ord, (y (et) — z (tk>) > m,.

PROOF. Let M = k! and let N be any positive integer such that (N, M)=1.
Then by Property (1} f (X*,Y) is irreducible in K ((X)) [Y] and has the char-
acteristic (mg, Nmy,..., Nmp) (see the proof of Property . If N is large
enough, then there exists such an integer m’ that Nm; 1 < m’ < Nm,; and
ged (mo, Nmy,...,Nm;_1,m') = 1 (if i = 1, then we demand m’ < Nmy
and ged (mg,m’) = 1). Consequently, f1 = f (X N ,Y) fulfills the assump-
tions of Lemma We conclude that for every Puiseux series z(t) with
Vi (t,Z(t)) = 0, there exists e € Uy (K) such that ord, (y(et") — z (tF)) >m/.
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But it is evident that v/f1 (X,Y) = v/f (X",Y). And so, by Property
there exists a Puiseux root z(t) of V/f(t,Y) such that z (V) = z(t) and
ord (y (et™) — z (t*V)) > m/, or in other words

(3) ord; (y (et) — 2 (tk>> >m'/N.

From Property [1] it follows that every Puiseux root of \/f (¢t,Y) satisfies the
above inequality.

Choosing a suitable N tending to infinity, we will now improve to
obtain inequality . By Dirichlet’s theorem, the sequence {1+ j - dil}jeN
contains infinitely many prime numbers. Let {Np}peN ={1+j,- dil}peN be
the sequence of primes. Let A := m; —[. Now we can write

Taking a large enough r € N we define B := A + j, - d;lm; (or, respectively,
B := A—j,-d;lm; if m; < 0) with the property that B > 0. For p > r we now
obtain

Npym; = B + (dim; (jp, T jr) + 1)1 = B+ my,
taking my, = (dim; (jp F jr) +1)1. Here ged (di,m;,) = ged (d;, 1) = 1 for
p > r. Since mj, = Nym; — B and B > 0, then m;, < Nym;, and for a p

large enough, also Npm,;_1 < m;, if ¢ > 1. Obviously, we can also assume that
ged (Np, M) = 1.

Fix a Puiseux series z(t) satisfying \/f (¢, z(t)) = 0. From the first part of the
proof it follows that for every N = N, p > 0, there exists ¢, € Uy (K) such
that

ordy (y (ept) — 2 (tk)) > my, /N, = mi — B/N,.

We conclude that there exists an e € Uy (K) such that

ordy (y (et) — =z (tk)> > m; — B/N,

for infinitely many p € N. Since B is constant and N,, tends to infinity with p,
then it means that

ordy <y (et) — z (tk>> > m,.
Thus the theorem is proved. O

REMARK 2. The construction of the sequence {N,} can be simplified: de-
manding only that the sequence { Npm; —my,} should be bounded, there is no
need to use Dirichlet’s theorem.
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COROLLARY 1. For a given integer l|dy, the above theorem is true with
i =max{l < j < h+1:1d;}. If, in addition, | > d; 11, then for every Puiseux
root z (t) of V/f (t,Y) and every o € Uy (K) there holds

ord, (y (ot) — z (tk)) < m.

PROOF. The first part of the corollary is obvious. As for the second one, if
there were ord; (y (ot) — z (t*)) > m;, for some Puiseux root z (t) of v/f (t,Y")
and some o € Uy, (K), then

o J/diq1
Z(t) = Z yj.(g]t]/k) Z Y; oI R dipr o
J<my Jj<my
and since ged (k/dit1,m1/div1,...,mi/div1) = 1, there would also hold
degy Vf > k/d;11 and so k/l > k/d;;1, which is impossible by the assump-
tion. ]

Combining Theorem [T and Corollary [1], we get

THEOREM 2. Let f fulfill the Basic Assumptions. Let I be an integer such
that l|dy and 1 ¢ {d1,...,dpy1}. Define i = max{l < j < h+1:1d;}. I
[ > d;iy1, then for every Puiseuz root z (t) of V/f (t,Y) and every o € Uy (K),

ord; (y (ot) — z (tk)) < m.

Furthermore, there exists an ¢ € Uy (K) such that

ord, (y (et) — =z (tk>> =m;.

THEOREM 3. Let f fulfill the Basic Assumptions. If | is an integer such
that l|dy and | ¢ {d1,...,dps1}, then fori=max{l <j<h+1:1ldj}:

d.
Vf(tF >
ordy (\/?(t J/(ﬂ)) > iy
If, in addition, | > d; 11, then the equality holds.

PROOF. The concept of the proof is similar to that of the proofs of Lemma2]
and Theorem |1} so we will just sketch it, omitting the details.

1. First we return to the proof of Lemma Assume accordingly, that
there exists an integer m’, m;—1 < m’ < m; (or simply m’ < my for i = 1)
such that ged (d;, m’) = I. Defining y%(t), f#, z(t) as in that proof, we obtain

l
VIZ (N Y)=T] (Y — Z(e1t)) and so (xl/fz (tk,Y)> =11 (Y -z ((Et)l)>.
R ck—1
il
Weput 2V (t) = z () +Vte e K(Z) [V ] ((t)), where a > m; is chosen in such a
way that ged (k‘ Supp ( ( )) ) 1. Let BZV (tk Y) =1] (Y -2 (st)). Then
ek=1
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hZV(X,Y)€K[Z,V]((X))[Y] is an irreducible element of K (Z,V) ((X))[Y].
By [1l Theorem (13.2) (ii)], we can assume that m; = ord,(z (') — yZ (t)) =
ord; (2 (t) —yZ (t)), and so ord; (2 (¢t) —y (t)) = m/. Since m' is the i-th
characteristic exponent of z" (t), from Lemma |1| we get

dzy;
info; hZY (tk, Yy (t)) =0 (0 - Z”izv) T with e € K,

where the superscript ‘4" indicates characteristic sequences for h4". But this
implies that also

ZV qzZVv: zv

info; K2V, (tk,y (t)> = o7V 7Y = o 747 7Y with 6 € K.
l
Since, obviously, hZY, = (xl/ fz > , we thus get

(4) info; v/ fZ (tk,y (t)) =024 157"/ with e € K.

A%

We now notice that s

in ,

= s; + (m’ —m;) d; and so, having substituted Z = 0

ords V/f <tk,y (t)) > %n + % (m' —m;).

2. Now we return to the proof of Theorem Constructing a sequence
of primes {Np}peN as in that proof and applying Property [1l, we improve the
above inequality to

ordy \l/f (tk,y (t)) > %ri — C(X;St
p

and so J
ordt\l/f (tk,y(t)) > 717‘1
Finally, from [I, Theorem (8.5)] it follows that in the case of d;+1 <, the
equality has to hold in the above formula. Indeed, let g1 =Y and g; = 4/f
for 2< j < h+1. Then for G = (¢1,...,gn+1) we obtain the G-adic expansion
of \/f in the form {/f = gfi/l+..., because % < didJil’
(8.5)], ords /T (t*,y () < %ir. O

EXAMPLE 1. In general nothing can be said about the (ir)reducibility of
non-characteristic approzimate roots. Take the parametrization X = t*8, Y =
1/(#39) +1/(#5) + 1/(#°) and let f € C((X))[Y] be its minimal monic poly-
nomial. Then f = Y*® 4+ ... It can be verified that for | = 2, there is
incog V/f (t%,1/t5 + 1/t + U - t) = 4096 (=51 + 8U?) and so, by [1, Theorem
(14.2)], /f splits into three irreducible factors in C((X))[Y] each of them
having a Puiseux root of the form t=3/* +t=1/8 4 6 /8 4+ h.o.t. It is worth

and so, by [1l, Theorem
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noticing that the divisor | = 2 here is very ‘reqular’, as dy = 1|2|d3 = 6 and,
despite of that, irreducibility does not follow.

It is also easy to give examples in the other direction. Let X = t18, Y =
t= 24472471 I =3 and let f € C((X))[Y] be its minimal monic polynomial.
Then f =Y + ... . There is incosv/f (% 1/t* + Ut) = 9U? — 6, so /T is
irreductble.

To end with, let us mention that the restriction ! > d;;1 made in Theorem 2]
and Theorem |3| does not seem to be indispensable; in fact, we were not able to
find any counterexample to their respective conclusions. An interesting insight
gives the following example, which is a slight modification of the one above.

EXAMPLE 2. Let X =t Y = t7124-at 3 +bt~1, where a, b are indetermi-
nates over C, | =2. Thenl =2 < d;y1 = 3, so the assumption | > d;y1 is not
fulfilled. In spite of that incog v/ f (t9,1/t* + U/t) = —27/2-U(—2U?+3a?). We
conclude that \/f has two non-conjugate Puiseuz roots. One of them is of the
form z1(t) = t=2/3+/6/2-a-t=1/5 + h.o.t., whereas y(t) =t 2 +at=3 + bt 18,

so still ord, (y (t) — =1 (tls)) = —3 = mag. Also ord; (\Vf (7518; (Y (t))) = 7"26172 =
—81.

We state

PROBLEM 1. Can we drop the assumption | > d;11 from the formulation
of Theorem |9 and Theorem[3?

PROBLEM 2. IfV/f is reducible in K (X)) [Y], do the degrees of the factors
of Vf divide k?
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