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1 Introduction

One of the best known and most frequently applied theorems in the study of
non-compact manifolds is found in L C Siebenmann’s 1965 PhD thesis. It gives
necessary and su�cient conditions for the end of an open manifold to possess
the simplest possible structure|that of an open collar.

Theorem 1 (From [23]) A one ended open n{manifold Mn (n � 6) contains
an open collar neighborhood of in�nity if and only if each of the following is
satis�ed:

(1) Mn is inward tame at in�nity,

(2) �1 ("(Mn)) is stable, and

(3) �1 (Mn) 2 eK0 (Z[�1("(Mn))]) is trivial.

A neighborhood of in�nity is a subset U �Mn with the property that Mn − U
is compact. We say that U is an open collar if it is a manifold with compact
boundary and U � @U � [0;1). Other terminology and notation used in this
theorem will be discussed later.

Remark 1 A 3{dimensional version of Theorem 1 may be found in [16], while
a 5{dimensional version (with some restrictions) may be found in [15]. In [19],
it is shown that Theorem 1 fails in dimension 4.

One of the beauties of Theorem 1 is the simple structure it places on the ends of
certain manifolds. At the same time, this simplicity greatly limits the class of
manifolds to which the theorem applies. Indeed, many interesting and impor-
tant non-compact manifolds are \too complicated at in�nity" to be collarable.
Frequently the condition these manifolds violate is �1{stability. In this paper
we present a program to generalize Theorem 1 so that it applies to manifolds
with non-stable fundamental groups at in�nity. Of course, a manifold with
non-stable fundamental group at in�nity cannot be collarable, so we must be
satis�ed with a less rigid structure on its end. The structure we have chosen to
pursue will be called a pseudo-collar.

We say that a manifold Un with compact boundary is a homotopy collar pro-
vided the inclusion @Un ,! Un is a homotopy equivalence. As it turns out,
a homotopy collar may possess very little additional structure, hence, we de-
�ne the following more rigid notion. A pseudo-collar is a homotopy collar that
contains arbitrarily small homotopy collar neighborhoods of in�nity.
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With the above de�nition established, the goal of this paper can be described
as a study of pseudo-collarability in high dimensional manifolds. For the sake of
the experts, we state our principal result now. A more thorough development
and motivation of this theorem can be found in Section 4.

Main Existence Theorem A one ended open n{manifold Mn ( n � 7) is
pseudo-collarable provided each of the following is satis�ed:

(1) Mn is inward tame at in�nity,

(2) �1("(Mn)) is perfectly semistable,

(3) �1 (Mn) = 0 2 eK0 (�1 ("(Mn))), and

(4) �2("(Mn)) is semistable.

As the reader can see, Condition 1 of Theorem 1 is unchanged in our more gen-
eral setting. Condition 3 has been reformulated so that it applies to situations
where the fundamental group at in�nity is not stable|but it also is essentially
unchanged. Both of these conditions are discussed in Section 3. The weaken-
ing of Condition 2 is the main task in this paper. Much of our work is done
with no restrictions on the fundamental group at in�nity; however, it eventually
becomes necessary to focus on manifolds with perfectly semistable �1{systems
at in�nity. These systems are semistable (also called Mittag{Le�er) and have
bonding maps with perfect kernels. Condition 4 is di�erent from the others|it
has no analog in Theorem 1, and we are not sure whether it is necessary. It
does, however, play a crucial role in our proof.

Semistability conditions are well-established in studies of non-compact 3{man-
ifolds (see [18] or [3]) and also in studies of ends of groups (see [20]), so it seems
�tting that they play a role in the study of high-dimensional manifolds. Precise
de�nitions of these conditions may be found in Section 2.

In Section 3 we review some basics in the study of non-compact manifolds,
then in Section 4 we explore the topology of pseudo-collars. Some examples are
discussed and basic geometric and algebraic properties are derived. These pro-
vide the necessary framework and motivation for our Main Existence Theorem.
Most of the remainder of the paper (Sections 5{8) is geared towards proving
this theorem. The strategy is much the same as that used in [23]; however, since
the hypothesis of �1{stability is thoroughly ingrained in Siebenmann’s work,
nearly all steps require some revision. Sometimes these revisions are signi�cant,
while at other times the original arguments already su�ce. For completeness,
portions of [23] have been repeated. The reader who makes it to the end of this
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paper will reprove Siebenmann’s theorem in the process. (See Remark 8.) In
the �nal section of this paper we discuss some open questions.

We conclude this introduction by defending our choice of \pseudo-collarability"
as the appropriate generalization of collarability.

At �rst glance, one might expect \homotopy collar" to be a good enough gen-
eralization of \collar". Unfortunately, homotopy collars carry very little useful
structure beyond what is given by their de�nition. For example, every con-
tractible open manifold (no matter how badly behaved at in�nity) contains a
homotopy collar neighborhood of in�nity|just consider the complement of a
small open ball in the manifold. Hence, some additional structure is desired.
Propositions 2 and 3 and Theorem 2 show that pseudo-collars do indeed carry
a great deal of additional structure.

A second reason for de�ning pseudo-collars as we have is to mimic a key property
possessed by genuine collars. In particular, a collar structure on the end of a
manifold guarantees the existence of arbitrarily small collar neighborhoods of
that end. Although this observation is trivial, it is extremely important in
applications. It seems that any useful generalization of \collar" should have
an analogous property.

A third factor which focused our attention on pseudo-collarability was work by
Chapman and Siebenmann on Z {compacti�cations of Hilbert cube manifolds.
Although they advertise their main result as an in�nite dimensional version of
Theorem 1, it is really much more general. In particular, it applies to Hilbert
cube manifolds with non-collarable ends. Their program can be broken into
two parts. First they determine necessary and su�cient conditions for a one
ended Hilbert cube manifold X to contain arbitrarily small neighborhoods U of
in�nity for which Bdry(U) ,! U is a homotopy equivalence. (In our language,
they determine when X is pseudo-collarable.) Next they combine the structure
supplied by the pseudo-collar with some powerful results from Hilbert cube
manifold theory to determine whether a Z {compacti�cation is possible. It is
natural to ask if their program can be carried out in �nite dimensions. In this
paper we focus on the �rst part of that program. We intend to address the issue
of Z {compacti�ability for �nite dimensional manifolds and its relationship to
pseudo-collarability in a later paper.

A �nal reason for the choices we have made lies with some key examples and
current research trends in topology. For instance, the exotic universal covering
spaces produced by M Davis in [10] are all pseudo-collarable but not collarable.
Variations on those examples were produced in [11] with the aid of CAT (0)
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geometry|they are also pseudo-collarable. Moreover, many of the basic condi-
tions necessary for pseudo-collarability are satis�ed by all CAT (0) manifolds
and also by universal covers of all aspherical manifolds with word hyperbolic
or CAT (0) fundamental groups. Thus, the collection of examples to which our
techniques might be applied appears quite rich.

We wish to thank Steve Ferry for directing us to [12] and for sharing a copy of
[13] which contains a clear and concise exposition of Siebenmann’s thesis.

2 Inverse sequences and group theory

Throughout this section all arrows denote homomorphisms, while arrows of the
type � or � denote surjections. The symbol �= denotes isomorphisms.

Let

G0
�1 − G1

�2 − G2
�3 − � � �

be an inverse sequence of groups and homomorphisms. A subsequence of fGi; �ig
is an inverse sequence of the form

Gi0
�i0+1������i1 − Gi1

�i1+1������i2 − Gi2
�i2+1������i3 − � � � :

In the future we will denote a composition �i � � � � � �j (i � j ) by �i;j .

We say that sequences fGi; �ig and fHi; �ig are pro-equivalent if, after passing
to subsequences, there exists a commuting diagram:

Gi0
�i0+1;i1 − Gi1

�i1+1;i1 − Gi2
�i2+1;i3 − � � �

- . - . - .
Hj0

�i0+1;i1 − Hj1

�i1+1;i1 − Hj2 � � �

Clearly an inverse sequence is pro-equivalent to any of its subsequences. To
avoid tedious notation, we often do not distinguish fGi; �ig from its subse-
quences. Instead we simply assume that fGi; �ig has the desired properties
of a preferred subsequence|often prefaced by the words \after passing to a
subsequence and relabelling".

The inverse limit of a sequence fGi; �ig is a subgroup of
Q
Gi de�ned by

lim −fGi; �ig =

(
(g0; g1; g2; � � � ) 2

1Y
i=0

Gi

������i (gi) = gi−1

)
:
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Notice that for each i, there is a projection homomorphism pi : lim −fGi; �ig !
Gi . It is a standard fact that pro-equivalent inverse sequences have isomorphic
inverse limits.

An inverse sequence fGi; �ig is stable if it is pro-equivalent to a constant se-
quence fH; idg. It is easy to see that fGi; �ig is stable if and only if, after
passing to a subsequence and relabelling, there is a commutative diagram of
the form:

G0
�1 − G1

�2 − G2
�3 − G3

�4 − � � �
- . - . - .
im(�1)

�= − im(�2)
�= − im(�3)

�= − � � �

In this case H �= lim −fGi; �ig
�= im(�i) and each projection homomorphism

takes lim −fGi; �ig isomorphically onto the corresponding im(�i).

The sequence fGi; �ig is semistable (or Mittag{Le�er) if it is pro-equivalent
to an inverse sequence fHi; �ig for which each �i is surjective. Equivalently,
fGi; �ig is semistable if, after passing to a subsequence and relabelling, there
is a commutative diagram of the form:

G0
�1 − G1

�2 − G2
�3 − G3

�4 − � � �
- . - . - .
im(�1) � im(�2) � im(�3) � � � �

We now describe a subclass of semistable inverse sequences which are of par-
ticular interest to us. Recall that a commutator element of a group H is an
element of the form xyx−1y−1 where x; y 2 H ; and the commutator subgroup
of H; denoted [H;H], is the subgroup generated by all of its commutators. We
say that H is perfect if [H;H] = H . An inverse sequence of groups is perfectly
semistable if it is pro-equivalent to an inverse sequence

G0
�1� G1

�2� G2
�3� � � �

of �nitely presentable groups and surjections where each ker (�i) is perfect. The
following shows that inverse sequences of this type behave well under passage
to subsequences.

Lemma 1 Suppose f : A ! B and g : B ! C are each surjective group
homomorphisms with perfect kernels. Then g �f : A! C is surjective and has
perfect kernel.
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Proof Surjectivity is obvious. To see that ker (g � f) is perfect, begin with
a 2 A such that (g � f) (a) = 1. Then f(a) 2 ker(g), so by hypothesis we may
write

f (a) =
kY
i=1

xiyix
−1
i y−1

i where xi; yi 2 ker(g) for i = 1; � � � ; k:

For each i, choose ui; vi 2 A such that f (ui) = xi and f (vi) = yi . Note that
each ui and vi lies in ker (g � f), and let

a0 =
kY
i=1

uiviu
−1
i v−1

i :

Then f (a0) = f (a), which implies that a (a0)−1 2 ker (f); so by hypothesis we
may write

a
(
a0
�−1 =

kY
j=1

rjsjr
−1
j s−1

j where rj; sj 2 ker(f) for j = 1; � � � ; l:

Moreover, since ker(f) � ker(g � f), each rj ; sj lies in ker(g � f):

Finally, we write

a =
�
a
(
a0
�−1
�
� a0 =

0@ kY
j=1

rjsjr
−1
j s−1

j

1A � kY
i=1

uiviu
−1
i v−1

i

!
;

which shows that a 2 [ker(g � f); ker(g � f)].

Corollary 1 If fGi; �ig is an inverse sequence of groups and surjections with
perfect kernels, then so is any subsequence.

We conclude this section with three more group theoretic lemmas which will be
used later. The �rst is from [26].

Lemma 2 Let A be a �nitely generated group and f : A! B and g : B ! A
be group homomorphisms with f � g = idB . Then ker(f) is the normal closure
of a �nite set of elements. Therefore, if A is �nitely presentable, then so is B .

Proof Let faigki=1 be a generating set for A and let X =
�
ai � (g � f)(a−1

i )
}k
i=1

.
We will show that ker(f) is the normal closure of X .

First note that f
(
ai � (g � f)(a−1

i )
�

= f (ai)�(f � g � f)
(
a−1
i

�
= f (ai)�f

(
a−1
i

�
=

1, for each i. Hence X (and therefore the normal closure of X), is contained
in ker (f).
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As preparation for obtaining the reverse inclusion, let w = w1w2 2 ker (f) and
observe that

w1w2 = w1w2 � (g � f)((w1w2)−1)
= w1w2 � (g � f)(w−1

2 ) � (g � f)(w−1
1 )

= (w1[w2 � (g � f)(w−1
2 )]w−1

1 )(w1 � (g � f)(w−1
1 )):

With this identity as the main tool, induction on word length shows that ker (f)
� normal closure (X).

The next lemma is from [23], where it is used for purposes similar to our own.

Lemma 3 Let f : A � B be a group homomorphism, and suppose A =
ha j ri and B = hb j si are presentations with jaj generators and jsj relators,
respectively. Then ker(f) is the normal closure of a set containing jaj + jsj
elements.

Proof Let � be a set of words so that f (a) = � (b) in B . Since f is sur-
jective, there exists a set of words � so that b = � (f (a)) in B . Then Tietze
transformations give the following isomorphisms:

hb j si �= ha; b j a = � (b) ; s (b)i
�= ha; b j a = � (b) ; s (b) ; r (a) ; b = � (a)i
�= ha; b j a = � (� (a)) ; s (� (a)) ; r (a) ; b = � (a)i
�= ha j a = � (� (a)) ; s (� (a)) ; r (a)i

Now f is speci�ed by the last presentation via the correspondence a 7−! a.
Hence ker(f) is the normal closure of the jaj + jsj elements of � (� (a)) and
s (� (a)).

The following lemma was extracted from the proof of Theorem 4 in [13].

Lemma 4 Each semistable inverse sequence fGi; �ig of �nitely presented
groups is pro-equivalent to an inverse sequence fG0i; �ig of �nitely presented
groups with surjective bonding maps.

Proof After passing to a subsequence and relabelling we have a diagram:

G0
�1 − G1

�2 − G2
�3 − G3

�4 − � � �
- . - . - .
im(�1) � im(�2) � im(�3) � � � �
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The im(�i)’s are clearly �nitely generated but may not be �nitely presented.
We will use this diagram to produce a new sequence with the desired properties.

For each i � 1, let
n
gij

oni
j=1

be a generating set for Gi , and choose
n
hij

oni
j=1

� im(�i+1) so that �i(gij) = �i(hij).

Note The superscripts are indices, not powers.

Let Hi C Gi be the normal closure of the set Si =
�
gij

�
hij

�−1
�ni
j=1

, de�ne

G0i to be Gi=Hi , and let qi : Gi ! G0i be the quotient map. Since Si+1 �
ker(�i+1) we get induced homomorphisms �0i+1 : G0i+1 ! Gi . De�ne �i+1 =
qi � �0i+1 : G0i+1 ! G0i to obtain the commuting diagram:

G1
�2 − G2

�3 − G3
�4 − � � �

q1
.

�02
-

q2
.

�03
-

q3
.

G01
�2� G02

�3� G03
�4� � � �

Since each G0i is generated by
n
qi(gij)

oni
j=1

and each qi(gij) has a preimage hij
2 Gi+1 under the map qi � �i+1 , it follows (from the commutativity of the
diagram) that each �i+1 is surjective. Lastly, each G0i has a �nite presentation
which may be obtained from a �nite presentation for Gi by adding relators
corresponding to the elements of Si .

3 Ends of manifolds: de�nitions and background in-

formation

In this section we review some standard notions involved in the study of non-
compact manifolds and complexes. Since the terminology and notation used
in this area are by no means standardized, the reader should be careful when
consulting other sources. The remarks at the end of the section addresses a
portion of this issue.

The symbol � will denote homeomorphisms; ’ will denote homotopic maps or
homotopy equivalent spaces. A manifold Mn is open if it is non-compact and
has no boundary. We say that Mn is one ended if complements of compacta in
Mn contain exactly one unbounded component. For convenience, we restrict
our attention to one ended manifolds. In addition, we will work in the PL
category. Equivalent results in the smooth and topological categories may be
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obtained in the usual ways. Results may be generalized to spaces with �nitely
many ends by considering one end at a time.

A set U � Mn is a neighborhood of in�nity if Mn − U is compact; U is a
clean neighborhood of in�nity if it is also a PL submanifold with bicollared
boundary. It is easy to see that each neighborhood U of in�nity contains a

clean neighborhood V of in�nity|just let V = Mn−
�
N where N is a regular

neighborhood of a polyhedron containing Mn − U . We may also arrange that
V be connected by discarding all of its compact components. Thus we have:

Lemma 5 Each one ended open manifold Mn contains a sequence fUig1i=0 of

clean connected neighborhoods of in�nity with Ui+1 �
�
U i for all i � 0, andT1

i=0 Ui = ;.

A sequence of the above type will be called neat. In the future, all neighbor-
hoods of in�nity are assumed to be clean and connected and sequences of these
neighborhoods are neat.

We say that Mn is inward tame at in�nity if, for arbitrarily small neighbor-
hoods of in�nity U , there exist homotopies H : U � [0; 1] ! U such that
H0 = idU and H1 (U) is compact. Thus inward tameness means that neigh-
borhoods of in�nity can be pulled into compact subsets of themselves.

Recall that a CW complex X is �nitely dominated if there exists a �nite complex
K and maps u : X ! K and d : K ! X such that d � u ’ idX . It is easy
to see that X is �nitely dominated if and only if it may be homotoped into
a compact subset of itself. Hence, our manifold Mn is inward tame if and
only if arbitrarily small neighborhoods of in�nity are �nitely dominated. This
characterization of \inward tameness" will be useful to us later.

Next we study the fundamental group system at the end of Mn . Begin with
a neat sequence fUig1i=0 of neighborhoods of in�nity and basepoints pi 2 Ui .
For each i � 1, choose a path �i � Ui−1 connecting pi to pi−1 . Then, for each
i � 1, let �i : �1 (Ui; pi) ! �1 (Ui−1; pi−1) be the homomorphism induced by
inclusion followed by the change of basepoint isomorphism determined by �i .
Suppressing basepoints, this gives us an inverse sequence:

�1 (U0) �1 − �1 (U1) �2 − �1 (U2) �3 − �1 (U3) �3 − � � �

Provided this sequence is semistable, one can show that its pro-equivalence
class does not depend on any of the choices made above. We then denote
the pro-equivalence class of this sequence by �1 (" (Mn)). (In the absence of
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semistability, the choices become part of the data.) We will denote the inverse
limit of the above sequence by �1 (1).

Note For our purposes, �1 (1) will only be used as a (rather trivial) con-
venience when �1 (" (Mn)) is stable. Otherwise, we work with the inverse
sequence.

Before moving to a new topic, notice that the same procedure may be used to
de�ne �k (" (Mn)) for k > 1.

We now understand the �rst two conditions in Theorem 1, and begin to look
at the third. If � is a ring, we say that two �nitely generated projective �{
modules P and Q are stably equivalent if there exist �nitely generated free
�{modules F1 and F2 such that P � F1

�= Q � F2 . The stable equivalence
classes of �nitely generated projective modules form a group eK0 (�) under
direct sum. Then P represents the trivial element of eK0 (�) if and only if it
is stably free, ie, there exists a �nitely generated free �{module F such that
P � F is free. In [26], Wall shows that each �nitely dominated X determines
a well-de�ned element � (X) 2 eK0 (Z [�1X]) which vanishes if and only if X
has the homotopy type of a �nite complex. When an open one ended manifold
Mn (n � 6) satis�es Conditions 1 and 2 of Theorem 1, Siebenmann isolated
a single obstruction (which we have denoted �1 (Mn)) in eK0 (Z [�1(1)]) to
�nding an open collar neighborhood of in�nity. In addition he observed that,
up to sign, his obstruction is just the Wall obstruction of an appropriately
chosen neighborhood of in�nity. One upshot of this observation (requiring use
of Siebenmann’s Sum Theorem for the Finiteness Obstruction|see [23] or [13])
is that �1 (Mn) vanishes if and only if all clean neighborhoods of in�nity in
Mn have �nite homotopy types.

When �1 (" (Mn)) is not stable, the de�nition of �1 (Mn) becomes somewhat
more complicated. Instead of measuring the obstruction in a single neighbor-
hood of in�nity, it will lie in the group eK0 (�1 (" (Mn))) � lim −

eK0 (Z [�1Ui]),

where fUig is a neat sequence of neighborhoods of in�nity. Then �1(Mn) may
be identi�ed with the element (−1)n (�(U0); �(U1); �(U2); � � � ), with � (Ui) be-
ing the Wall �niteness obstruction for Ui . Again, this obstruction vanishes if
and only if all clean neighborhoods of in�nity in Mn have �nite homotopy types.
When �1 ("(Mn)) is stable, this de�nition of �1(Mn) reduces to the one dis-
cussed above. When n � 6 and �1 (" (Mn)) is semistable, we will see �1(Mn)
arise naturally|without reference to the Wall �niteness obstruction|as an ob-
struction to pseudo-collarability (see Section 8). For a more general treatment
of this obstruction|which, among other things, shows that eK0 (�1 (" (Mn)))
and �1(Mn) are independent of the choice of fUig|we refer the reader to [6].
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Remark 2 Our use of the phrase \inward tame" is not standard. In [6] the
same notion is simply called \tame", while in [23], \tame" means \inward tame
and �1{stable". Quinn and others (see, for example, [17]) have given \tame"
a di�erent and inequivalent meaning which involves pushing neighborhoods of
in�nity toward the end of the space, while referring to our brand of tameness
as \reverse tameness". We hope that by referring to our version of tameness
as \inward tame" and Quinn’s version as \outward tame" we can avoid some
confusion.

Remark 3 One should be careful not to interpret the symbol �1 (Mn) as
the Wall �niteness obstruction � (Mn) of the manifold Mn . Indeed, Mn can
have �nite homotopy type even when its neighborhoods of in�nity do not. (The
Whitehead contractible 3{manifold is one well-known example.) This situation
can arise even when �1 (" (Mn)) is stable.

4 Pseudo-collars and the Main Theorem

Recall that a manifold Un with compact boundary is an open collar if Un �
@Un� [0;1); it is a homotopy collar if the inclusion @Un ,! Un is a homotopy
equivalence. If Un is a homotopy collar which contains arbitrarily small homo-
topy collar neighborhoods of in�nity, then we call Un a pseudo-collar. We say
that an open n{manifold Mn is collarable if it contains an open collar neighbor-
hood of in�nity, and that Mn is pseudo-collarable if it contains a pseudo-collar
neighborhood of in�nity. The following easy example is useful to keep in mind.

Example 1 Let Mn be a contractible n{manifold and Bn �Mn a standardly

embedded n{ball. Then U = Mn−
�
Bn is a homotopy collar; however, in general

Mn need not be pseudo-collarable (see Example 2).

Remark 4 A standard duality argument guarantees that any connected ho-
motopy collar (hence any connected pseudo-collar) is one ended. See, for ex-
ample, [24].

When discussing collars, some complementary notions are useful. A compact
codimension 0 submanifold C of an open manifold Mn is called a core if

C ,!Mn is a homotopy equivalence; it is called a geometric core if Mn −
�
C is

a homotopy collar; and it is called an absolute core if Mn−
�
C is an open collar.

The following is immediate.
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Proposition 1 Let Mn be a one ended open n{manifold. Then:

(1) Mn is collarable if and only if Mn contains an absolute core (hence,
arbitrarily large absolute cores), and

(2) Mn is pseudo-collarable if and only if Mn contains arbitrarily large ge-
ometric cores.

Example 2 The Whitehead contractible 3{manifold M3 is not pseudo-coll-
arable. Indeed, if M3 were pseudo-collarable, it would contain arbitrarily large
geometric cores each of which|by standard 3{manifold topology|would be a
3{ball. But then M3 would be a monotone union of open 3{balls, and hence,
homeomorphic to R3 by [4] or by an application of the Combinatorial Annulus
Theorem (Corollary 3.19 of [22]).

On the positive side we have:

Example 3 Although they are not collarable, the exotic universal covering
spaces produced by Davis in [10] are pseudo-collarable. If Mn is one of these
covering spaces with compact contractible manifold Cn as a \fundamental
chamber", then Mn contains arbitrarily large geometric cores homeomorphic
to �nite sums

Cn#@C
n#@ � � �#@C

n

(with increasing numbers of summands). Here #@ denotes a \boundary con-
nected sum", ie, the union of two n{manifolds with boundary along boundary
(n− 1){disks. However, Mn is not collarable since �1 (" (Mn)) is not stable|
in fact �1 (" (Mn)) may be represented by the sequence

G G �G (G �G) �G (G �G �G) �G � � �

where G = �1 (@Cn) and each homomorphism is projection onto the �rst term.
It is interesting to note that this sequence is perfectly semistable.

A compact cobordism
(
W n;Mn−1;Nn−1

�
is a one-sided h-cobordism if one

(but not necessarily both) of the inclusions Mn−1 ,! W n or Nn−1 ,!W n is a
homotopy equivalence. The following property of one-sided h-cobordisms is a
well-known consequence of duality (see, for example, Lemma 2.5 of [8]).

Lemma 6 Let
(
W n;Mn−1;Nn−1

�
be a compact connected one-sided h-cob-

ordism with Mn−1 ’
,! W n . Then the inclusion induced homomorphism

�1

(
Nn−1

�
! �1 (W n) is surjective and has perfect kernel.
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Non{trivial one-sided h-cobordisms are plentiful. In fact, if we are given a
closed (n− 1){manifold Nn−1 (n � 6), a �nitely presented group G, and a
homomorphism � : �1

(
Nn−1

�
� G with perfect kernel, then the \Quillen plus

construction" (see [21] or Sections 11.1 and 11.2 of [15]) produces a one-sided
h-cobordism

(
W n;Mn−1;Nn−1

�
with �1 (W n) �= G and

ker
(
�1

(
Nn−1

�
! �1 (W n)

�
= ker (�) :

The role played by one-sided h-cobordisms in the study of pseudo-collars is
clearly illustrated by the following easy proposition.

Proposition 2 Let f(Wi;Mi;Ni)g1i=1 be a collection of one-sided h-cobord-

isms with Mi
’
,!Wi , and suppose that for each i � 1 there is a homeomorphism

hi : Ni !Mi+1 . Then the adjunction space

U = W1 [h1 W2 [h2 W3 [h3 � � �

is a pseudo-collar. Conversely, every pseudo-collar may be expressed as a count-
able union of one-sided h-cobordisms in this manner.

Proof For the forward implication, we begin by observing that U is a homo-
topy collar. First note that @U = M1 ,! W1 [h1 � � � [h1 Wk is a homotopy
equivalence for any �nite k . A direct limit argument then shows that @U ,! U
is a homotopy equivalence. Alternatively, we may observe that �� (U; @U) � 0
and apply the Whitehead theorem. To see that U is a pseudo-collar we apply
the same argument to the subsets Ui = Wi+1 [hi+1

Wi+2 [hi+2
Wi+3 [hi+3

� � � .

For the converse, assume that U is a pseudo-collar. Choose a homotopy collar

U1 �
�
U and let W1 = U−

�
U1 . Then @U

’
,!W1 , so (W1; @U; @U1) is a one-sided

h-cobordism. Next choose a homotopy collar U2 �
�
U1 and let W2 = U1 −

�
U2 .

Repeating this procedure gives the desired result. See Figure 1.

The next result provides a striking similarity between pseudo-collars and gen-
uine open collars. It follows immediately from Proposition 2 and the main
result of [9] which shows that one-sided h-cobordisms in dimensions � 6 may
be \laminated".

Proposition 3 Let Un be a pseudo-collar (n � 6). Then there exists a proper
continuous surjection p : Un ! [0;1) with the following properties.

(1) p−1 (0) = @Un;
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Figure 1

(2) each p−1 (r) is a closed (n− 1){manifold with the same Z{homology as
@Un , and

(3) p−1 (r) is nicely embedded, ie, has a product neighborhood in Un , for
r 6= 1; 2; 3; � � � .

Our next result provides the fundamental conditions necessary for pseudo-
collarability.

Theorem 2 Suppose a one ended open manifold Mn is pseudo-collarable.
Then

(1) Mn is inward tame at in�nity,

(2) �1("(Mn)) is perfectly semistable, and

(3) �1 (Mn) = 0 2 eK0 (�1 ("(Mn))).

Proof Properties 1 and 3 follow easily from the de�nition of pseudo-collar;
while Property 2 is obtained from Proposition 2 and Lemma 6.

One might hope that the above conditions are also su�cient for Mn (n � 6)
to be pseudo-collarable. This would be an ideal generalization of Theorem 1;
but, although we have not ruled it out, we are thus far unable to prove it. Our
main result|which, for easy reference, we now restate|requires an additional
hypothesis and one additional dimension.
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Theorem 3 (Main Existence Theorem) A one ended open n{manifold Mn

(n � 7) is pseudo-collarable provided each of the following is satis�ed:

(1) Mn is inward tame at in�nity,

(2) �1("(Mn)) is perfectly semistable,

(3) �1 (Mn) = 0 2 eK0 (�1 ("(Mn))), and

(4) �2("(Mn)) is semistable.

Remark 5 Several interesting classes of manifolds are known to satisfy some
or all of the conditions in the above theorems, thus making them ideal candi-
dates for pseudo-collarability. We mention a few of them.

(a) We already know that the exotic universal coverings of [10] are pseudo-
collarable, and therefore satisfy Conditions 1{3. It can also be shown that they
satisfy Condition 4.

(b) Every piecewise flat CAT (0) manifold satis�es Conditions 1{3. Some of
the most interesting of these|the exotic universal covers produced by Davis
and Januszkiewicz in [11]|also satisfy Condition 4 (and are therefore pseudo-
collarable).

(c) A more general class of open n{manifolds which are of current interest are
those admitting Z {compacti�cations (see [1], [2], [14] and [5] for discussions).
These manifolds satisfy Conditions 1 and 3, and also have semistable funda-
mental groups at in�nity (whether these are perfectly semistable is unknown).

Most of the remainder of this paper is devoted to proving the Main Existence
Theorem.

5 Proof of the Main Existence Theorem: an outline

Let Mn be a 1{ended open manifold and U a connected clean neighborhood of
in�nity. According to [23], U is a 0{neighborhood of in�nity if @U is connected.
Under the assumption that �1 (" (Mn)) is stable, [23] then de�nes U to be a
1{neighborhood of in�nity provided it is a 0{neighborhood in�nity and both
�1 (1) ! �1 (U) and �1 (@U) ! �1 (U) are isomorphisms. For k � 2, U is a
k{neighborhood of in�nity if it is a 1{neighborhood of in�nity and �i(U; @U) = 0
for i � k .

We may now describe Siebenmann’s proof of Theorem 1. Beginning with a
neat sequence fUig of neighborhoods of in�nity, perform geometric alterations
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to obtain a neat sequence of 0{neighborhoods of in�nity. This is easy|given
a Ui with non-connected boundary, choose �nitely many disjoint properly em-
bedded arcs in Ui connecting the components of @Ui . Then \drill out" regular
neighborhoods of these arcs to connect up the boundary components, thus
obtaining a 0{neighborhood U 0i � Ui . After passing to a subsequence (if nec-
essary) to maintain the \nestedness" condition, we have the desired sequence.
Assuming then that fUig is a neat sequence of 0{neighborhoods of in�nity
and that Conditions 1 and 2 of Theorem 1 are both satis�ed, convert the Ui ’s
into 1{neighborhoods of in�nity. This stage of the proof is more complicated.
We view it as the �rst of three major steps in obtaining Theorem 1. Some
algebra (Lemmas 2 and 3) is required, neighborhoods of arcs are drilled out,
and neighborhoods of disks are \traded"|sometimes removed and sometimes
added. Ultimately one obtains a neat sequence of 1{neighborhoods of in�nity.
Next, in the middle step of the proof, the Ui ’s are inductively improved until
they are (n− 3){neighborhoods. The key tools here are: general position, han-
dle theory, and Lemma 9. The �nal step in Siebenmann’s proof is to improve
(n− 3){neighborhoods of in�nity to (n− 2){neighborhoods|which turn out
to be open collars. This step is very delicate. More algebra is required, the
need for Condition 3 becomes clear, and �1{stability plays a crucial role.

To a large extent, the proof of our Main Existence Theorem is a careful rework-
ing of [23]. In fact, the reader will �nd Siebenmann’s proof properly embedded
in ours. However, since the �1{stability hypothesis so thoroughly permeates
[23], a great deal of revision and generalization is necessary. First, we de�ne
a generalized 1{neighborhood of in�nity to be a 0{neighborhood of in�nity U
with the property that �1 (@U) ! �1 (U) is an isomorphism. Then for k � 2,
a generalized k{neighborhood of in�nity is a generalized 1{neighborhood of in-
�nity with the property that �i(U; @U) = 0 for i � k . The point here is that,
when �1 (" (Mn)) is not stable, there is no \preferred fundamental group" for
our neighborhoods of in�nity. Later we will see that there are sometimes \pre-
ferred sequences of fundamental groups". To avoid confusion, we will often refer
to the k{neighborhoods of in�nity de�ned earlier as strong k{neighborhoods of
in�nity. Of course, this only makes sense when �1 (" (Mn)) is stable.

We break our proof into the same three major steps as above. In the �rst step
(Section 6) we obtain neat sequences of generalized 1{neighborhoods of in�nity.
For this, only Condition 1 of the Main Existence Theorem is required; however,
given additional assumptions about �1 (" (Mn)) (eg, stability, semistability, or
perfect semistability), we show how these may be incorporated. The middle
step of the proof (Section 7) requires the least revision of [23]. Only Condition
1 is needed to obtain a neat sequence of generalized (n− 3){neighborhoods
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of in�nity. As before, additional assumptions on the fundamental group at
in�nity can be incorporated into this step. The �nal step (Section 8) is the
most di�cult. In order to make any progress beyond generalized (n− 3){
neighborhoods of in�nity, it becomes necessary to assume that �1 (" (Mn)) is
semistable (a part of Condition 2). We show that a neat sequence of gen-
eralized (n− 2){neighborhoods, with �1{semistability appropriately built in,
determines a pseudo-collar structure; hence, obtaining generalized (n− 2){
neighborhoods is our goal. In our attempt to mimic Siebenmann, we rediscover
the eK0{obstruction much as it appeared in [23]. The di�erence is that, since
�1 (Ui) changes with i, so must the eK0{obstruction. Hence, our obstruction
becomes a sequence of obstructions. When this obstruction dies, most of the al-
gebraic and handle theoretic steps from [23] may be duplicated. Unfortunately,
at the last instant|a �nal application of the Whitney Lemma|the lack of
�1{stability creates major problems. To complete the proof in the non-stable
situation, we are forced to develop a new strategy. It is only here that we
require Condition 4 and the \perfect" part of Condition 2.

6 Obtaining generalized 1{neighborhoods of in�nity

In this section we show how to obtain a neat sequence fUig of generalized
1{neighborhoods of in�nity in a one ended open n{manifold when n � 5:
This requires only that Mn be inward tame at in�nity. (In fact, it would
be enough to assume that clean neighborhoods of in�nity have �nitely pre-
sentable fundamental groups.) In addition we show that, when �1("(Mn)) is
pro-equivalent to certain preferred inverse sequences of surjections, we can make
our sequence f�1(Ui)g isomorphic to corresponding subsequences This covers
situations where �1("(Mn)) is stable, semistable and perfectly semistable.

Lemma 7 Let Mn (n � 5) be a one ended open n{manifold which is inward
tame at in�nity and let V be a 0{neighborhood of in�nity. Then V contains
a generalized 1{neighborhood U of in�nity with the property that �1 (U) !
�1 (V ) is an isomorphism.

Proof First we construct a 0{neighborhood V 0 � V so that �1 (@V 0) !
�1 (V 0) is surjective and �1 (V 0)! �1 (V ) is an isomorphism.

Since V is �nitely dominated, �1 (V ) is �nitely generated, so we may choose a
�nite collection f�1; �2; � � � ; �kg of disjoint properly embedded p.l. arcs in V
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so that �1(@V [ (
Sk
i=1 �i))! �1(V ) is surjective. Choose a collection fNigki=1

of disjoint regular neighborhoods of the �i ’s in V and let

V 0 = V −
[k

i=1
Ni:

Clearly �1 (@V 0) (and thus �1 (V 0)) surjects onto �1 (V ); moreover, since disks
in V may be pushed o� the Ni ’s, then �1 (V 0)! �1 (V ) is also injective.

Next we modify V 0 to be a generalized 1{neighborhood. Since V 0 is �nitely
dominated, Lemma 2 implies that �1 (V 0) is �nitely presentable. Hence, by
Lemma 3, ker(�1 (@V 0) ! �1 (V 0)) is the normal closure of a �nite set of ele-
ments. Let f�1; �2; � � � ; �rg be a collection of pairwise disjoint embedded loops
in @V 0 representing these elements, then choose fD1;D2; � � � ;Drg a pairwise
disjoint collection of properly embedded 2{disks in V 0 with @Di = �i for each i.
Let fP1; P2; � � � ; Prg be a pairwise disjoint collection of regular neighborhoods
of the Di ’s in V 0 and de�ne

U = V 0 −
[r

i=1
Pi:

By VanKampen’s theorem �1 (@V 0 [ (
Sr
i=1 Pi)) ! �1 (V 0) is an isomorphism,

and by general position �1 (@U) ! �1 (@V 0 [ (
Sr
i=1 Pi)) and �1 (U) ! �1 (V 0)

are isomorphisms. It follows that U is a generalized 1{ neighborhood of in�nity
and �1 (U)! �1 (V ) is an isomorphism.

Combining the above lemma with the method described in the previous section
for obtaining 0{neighborhoods of in�nity gives:

Corollary 2 Every one ended open n{manifold (n � 5) that is inward tame
at in�nity contains a neat sequence of generalized 1{neighborhoods of in�nity.

Lemma 8 Let Mn (n � 5) be a one ended n{manifold that is inward tame at
in�nity and suppose the fundamental group system �1("(Mn)) is pro-equivalent
to an inverse sequence G : G1 � G2 � G3 � � � � of �nitely presentable groups
and surjections. Then there is a neat sequence fUig1i=1 of 1{neighborhoods of
in�nity so that the inverse sequence �1(U1)  �1(U2)  �1(U3)  � � � is
isomorphic to a subsequence of G .

Proof By the hypothesis and Corollary 2, there exists a neat sequence fVig of
generalized 1{neighborhoods of in�nity, a subsequence Gk1 � Gk2 � Gk3 �
� � � of G , and a commutative diagram:

�1(V0) �1 − �1(V1) �2 − �1(V2) �3 − �1(V3) �4 − � � �
g1

-
f1

.
g2

-
f2

.
g3

-
f3

.
Gk1 � Gk2 � Gk3 � � � �
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Each fi is necessarily surjective, so by Lemmas 2 and 3 each ker(fi) is the
normal closure of a �nite set of elements Fi � �1(Vi). For each i � 1, choose a
�nite collection

n
�ij

oni
j=1

of pairwise disjoint embedded loops in @Vi representing

the elements of Fi . By the commutativity of the diagram, each �ij contracts

in Vi−1 . For each �ij choose an embedded disk Di
j �

�
V i−1 with @Di

j = �ij .

Arrange that the Di
j ’s are pairwise disjoint, and all intersections between

�
Di
j

and
S
@Vk are transverse.

In order to kill the kernels of the fi ’s, we would like to add to each Vi regular
neighborhoods of the Di

j ’s. This would work if each Di
j was contained in

Vi−1 −
�
V i ; for then we would be attaching a �nite collection of 2{handles to

each Vi and each would kill the normal closure of its attaching 1{sphere �ij in
�1(Vi), and no more. Since this ideal situation may not be present, we must
�rst perform some alterations on the Vi ’s.

Claim There exists a nested co�nal sequence fV 0i g of 0{neighborhoods of
in�nity which satisfy the following properties for all i � 1:

(i) V 0i � Vi ,
(ii) �1(V 0i )! �1(Vi) is an isomorphism,

(iii)
Sni
j=1 �

i
j � @V 0i , and

(iv) each �ijbounds a 2{disk in V 0i−1 −
�
V 0i .

Roughly speaking, a V 0q will be constructed by removing regular neighborhoods
of the Dq

j ’s from Vq ; but in order arrange condition (iii) and to maintain \nest-
edness", some extra care must be taken.

We already have that @Di
j = �ij � @Vi and

�
Di
j intersects �nitely many @Vl

(l � i) transversely. In addition, we would like the outermost component of

Di
j− @Vi to lie in Vi−1 −

�
Vi . If this is not already the case, it can easily

be arranged by pushing a small annular neighborhood of @Di
j into Vi−1 −

�
Vi

while leaving @Di
j = �ij �xed. Now choose a pairwise disjoint collection

n
Lij

o
of regular neighborhoods of the collection

n
Di
j

o
; then for each Di

j , choose a

smaller regular neighborhood N i
j �

�
Lij . Between each N i

j and Lij there exists
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a sequence 2N i
j ; 3N

i
j ; 4N

i
j ; � � � of regular neighborhoods of Di

j such that

N i
j �

�
2N i

j � 2N i
j �

�
3N i

j � 3N i
j � � � � � Lij:

For each q � 1, let

V 0q = Vq −
[q

i=1

�[ni

j=1
qN i

j

�
.

Conditions (i), (iii) and (iv) are obvious, and since each V 0i was obtained from
Vi by removing regular neighborhoods of 2{complexes, condition (ii) follows
from general position.

Now, along each �ij it is possible to attach an ambiently embedded 2{handle

hij � V 0i−1 −
�
V 0i to V 0i . For each q � 1, let

V 00q = V 0q [
�[nq

j=1
hqj

�
:

The naturally induced homomorphisms f
00
q : �1(V 00q ) ! Gkq are now isomor-

phisms.

Lastly, we must apply Lemma 7 to each V 00q to create a sequence fUqg of
generalized 1{neighborhoods of in�nity with the same fundamental groups. To
regain nestedness, we may then have to pass to a subsequence of fUqg (and to
the corresponding subsequence of

�
Gkq

}
) to complete the proof.

The main consequences of this section are summarized by the following:

Theorem 4 (Generalized 1{Neighborhoods Theorem) Let Mn (n � 5) be a
one ended, open n{manifold which is inward tame at in�nity. Then:

(1) Mn contains a neat sequence fUig of generalized 1{neighborhoods of
in�nity,

(2) if �1("(Mn)) is stable, we may arrange that the Ui ’s are strong 1{
neighborhoods of in�nity,

(3) if �1("(Mn)) is semistable, we may arrange that each �1 (Ui) �1 (Ui+1)
is surjective, and

(4) if �1("(Mn)) is perfectly semistable, we may arrange that each �1 (Ui) 
�1 (Ui+1) is surjective and has perfect kernel.

Proof Claim 1 is just Corollary 2. To obtain Claim 2, observe that if
�1("(Mn)) is pro-equivalent to fG; idg , then Lemma 2 implies that G is �nitely
presentable. Hence we may apply Lemma 8 to obtain the desired sequence.
Claims 3 and 4 follow similarly from Lemma 8, with the necessary algebra
being found in Lemma 4 and Corollary 1.
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7 Obtaining generalized (n−3){neighborhoods of in-
�nity

We now show how to obtain appropriate neat sequences of generalized (n− 3){
neighborhoods of in�nity. To do this, we begin with a neat sequence fUig of
generalized 1{neighborhoods of in�nity and make geometric alterations to kill
�j(Ui; @Ui) for 2 � j � n−3. These alterations will not change the fundamental
groups of the original Ui ’s, hence any work accomplished by Theorem 4 will be
preserved.

If Ui is a generalized 1{neighborhood of in�nity and � : eUi ! Ui is the universal
covering projection, then @ eUi = �−1 (@Ui) is the universal cover of @Ui , thus,
�j(Ui; @Ui) �= �j(eUi; @ eUi) for all j . Moreover, if Ui is a generalized (k − 1){
neighborhood of in�nity, the Hurewicz Theorem (Theorem 7.5.4 of [25]) implies
that �k(eUi; @ eUi) �= Hk(eUi; @ eUi). The last of these|the homology in the uni-
versal cover|is usually the easiest to work with. Throughout the remainder of
this paper, the symbol \�" over a space denotes a universal cover.

When calculating homology groups we prefer cellular homology. If
(
Xn; Y n−1

�
is a manifold pair with Y n−1 � @Xn , then a handle decomposition of Xn

built on Y n−1 gives rise to a relative CW{complex
(
K;Y n−1

�
’
(
Xn; Y n−1

�
obtained by collapsing handles onto their cores such that each j{cell of K −
Y n−1 corresponds to a unique j{handle of Xn . Then the cellular chain complex

0! Cn ! Cn−1 ! � � � ! C0 ! 0 (y)
for

(
K;Y n−1

�
, where each Cj is generated by the j{cells of K − Y n−1 , may

be used to calculate the homology of
(
Xn; Y n−1

�
. We will frequently abuse

terminology slightly by referring to (y) as the chain complex for
(
Xn; Y n−1

�
and referring to the j{handles of Xn as the generators of Cj .

If �1

(
Y n−1

� �=! �1 (Xn) and we wish to calculate H�
� eXn; eY n

�
, we may use

the cellular chain complex

0! eCn ! eCn−1 ! � � � ! eC0 ! 0 (z)

of the pair
� eK; eY n−1

�
. This may be given the structure of a Z[�1K]{complex,

where eCj is a free Z[�1Y
n−1]{module with one generator for each j{cell of

K − Y n−1 (see Chapter I of [7] for details). Alternatively, we will refer to
(z) as a chain complex for

� eXn; eY n
�

where eCj has one Z[�1X
n]{generator

for each j{handle of Xn . The additional algebraic structure means that each
Hj

� eXn; eY n
�

may be viewed as a Z[�1X
n]{module.
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Another useful way to view (z) is as the chain complex for the homology of(
Xn; Y n−1

�
with local Z[�1X

n]{coe�cients. Then eCj = Cj ⊗ Z[�1X
n] is gen-

erated by the j{handles of Xn (with preferred base paths) and for j > 2 the
boundary map is determined by Z[�1X

n]{intersection numbers. In particular,
if hj is a j{handle of Xn with attaching (j − 1){sphere �j−1 , then

@hj =
X
s

"
(
�j−1; �n−js

�
hj−1
s

where "
�
�j−1; �n−js

�
denotes the Z[�1X

n]{intersection numbers between �j−1

and the belt sphere �n−js of a (j − 1){handle hj−1
s measured in @Xj−1 where

Xj−1 = (Y n−1 � [0; 1]) [ (handles of index � j − 1) See Chapter 6 and Ap-
pendix A of [22] for further discussion. When the chain complex is viewed
in this manner, we will still denote the corresponding homology groups by
H�
� eXn; eY n

�
.

The following algebraic lemma will be used each time we attempt to improve a
generalized j{neighborhood of in�nity to a generalized (j + 1){neighborhood.

Lemma 9 Suppose U is a generalized j{neighborhood of in�nity (j � 1) in

a one ended inward tame open n{manifold. Then Hj+1

�eU; @ eU� is �nitely

generated as a Z[�1U ]{module.

Proof Fix a triangulation of @U and for each k � 2, let Kk denote the
corresponding k{skeleton. Let K1 denote the corresponding 2{skeleton. Note
that the inclusion Kk ,! U induces a �1{isomorphism for all k � 1. Hence,
we have universal covers eU � @ eU � eKk .

Since Hj

�
@ eU; eKj

�
= 0, the long exact sequence for the triple

�eU; @ eU; eKj
�

provides an epimorphism of Z[�1]{modules Hj+1

�eU; eKj
�
� Hj+1

�eU; @ eU�.

Hence, the desired conclusion will follow if we can show that Hj+1

�eU; eKj
�

is �nitely generated. This will follow immediately from Theorem A of [26] if
we can show that Hi

�eU; eKj
�

= 0 for all i � j . Again we employ the exact

sequence for
�eU; @ eU; eKj

�
:

� � � ! Hi

�
@ eU; eKj

�
! Hi

�eU; eKj
�
! Hi

�eU; @ eU�! � � �
Clearly the �rst term listed vanishes for all i � j and, by hypothesis, so does
the third term; thus, forcing the middle term to vanish.
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The next lemma is the key to this section.

Lemma 10 Let Mn (n � 5) be open, one ended and inward tame at in�nity
and let k � n−3. Then each generalized 1{neighborhood of in�nity V0 contains

a generalized k{neighborhood of in�nity U0 such that �1(V0)
�= − �1(U0).

Proof If k = 1, there is nothing to prove; otherwise we assume inductively
that k � 2 and each generalized 1{neighborhood of in�nity V contains a
generalized (k − 1){neighborhood of in�nity U such that �1(V )

�= − �1(U).

Now let V0 be a generalized 1{neighborhood of in�nity. By the inductive hy-
pothesis, we may assume that V0 is already a generalized (k − 1){neighborhood
of in�nity. We will show how to improve V0 to a k{neighborhood of in�nity.

As we noted earlier, �i
�eV0; @ eV0

�
�= �i (V0; @V0) for all i, Hi

�eV0; @ eV0

�
= 0

for i � k − 1, and Hk

�eV0; @ eV0

�
�= �k

�eV0; @ eV0

�
. Furthermore, by Lemma 9,

Hk

�eV0; @ eV0

�
is �nitely generated as a Z[�1 (V0)]{module.

We break the remainder of the proof into overlapping but distinct cases:

Case 1 2 � k < n
2

Choose a �nite collection of disjoint embeddings (Dj ; @Dj) ,! (V0; @V0) of k{
cells representing a generating set for �k (V0; @V0) viewed as a Z[�1V0]{module.
Let Q be a regular neighborhood of @V0[(

S
Dj) in V0: Notice that �1(@V0)!

�1(Q) and �1(Q)! �1(V0) are both isomorphisms. (If k > 2 this is obvious. If
k = 2 notice that each @Dj already contracts in @V0 since V0 is a generalized
1{neighborhood.) Thus, eQ = �−1(Q) is the universal cover of Q:

Let U0 = V0 −Q. Since the Dj ’s have codimension greater than 2, then
�1(U0) ! �1(V0) is an isomorphism. It remains to show that U0 is a k{
neighborhood of in�nity.

To see that �1(@U0) ! �1(U0) is an isomorphism, recall from above that
�1(Q)

�=! �1(V0). Then observe that the pair (V0; Q) may be obtained from
the pair (U0; @U0) by attaching (n − k){handles (the duals of the removed
handles), which has no e�ect on fundamental groups.

To see that �i(U0; @U0) = 0 for i � k , we will show that the corresponding
Hi

�eU0; @ eU0

�
are trivial. By excision, it su�ces to show that Hi

�eV0; eQ� = 0
for i � k .
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For i < k , the triviality of Hi

�eV0; eQ� can be deduced from the following

portion of the long exact sequence for the triple
�eV0; eQ; @ eV0

�
:

� � � ! Hi

�eV0; @ eV0

�
! Hi

�eV0; eQ�! Hi−1

� eQ; @ eV0

�
! � � �

The �rst term is trivial because V0 is a generalized (k− 1){neighborhood, and
the last term is trivial (when i − 1 < k) because eQ is homotopy equivalent to
a space obtained by attaching k{cells to @ eV0 . Thus the middle term vanishes.

In dimension k , we use a portion of the same long exact sequence:

� � � ! Hk

� eQ; @ eV0

�
 ! Hk

�eV0; @ eV0

�
�! Hk

�eV0; eQ�! Hk−1

� eQ; @ eV0

�
! � � �

The last term above is again trivial for the reason cited above. Furthermore, the
map  is surjective by the construction of Q; hence � is trivial, so Hk

�eV0; eQ�
vanishes.

Case 2 2 < k � n− 3

The strategy in this case is similar to the above except that when k � n
2 we

cannot rely on general position to obtain embedded k{disks. Instead we will
use the tools of handle theory.

By the inductive hypothesis and the fact that �k (V0; @V0) is �nitely generated
as a Z[�1(V0)]{module, we may choose a generalized (k − 1){neighborhood

V1 � V0 so that, for R = V0 −
�
V 1 , the map �k (R; @V0) ! �k (V0; @V0) is

surjective. Applying VanKampen’s theorem to V0 = R [@V1 V1 shows that
�1(R) ! �1(V0) is an isomorphism, and it follows that �1(@V0) ! �1(R) is
also an isomorphism. Hence �−1(R) is the universal cover eR of R.

Claim Hi

� eR; @ eV0

�
= 0 for i � k − 2

We deduce this claim from the long exact sequence of the triple
�eV0; eR; @ eV0

�
:

� � � ! Hi+1

�eV0; eR�! Hi

� eR; @ eV0

�
! Hi

�eV0; @ eV0

�
! � � �

The third term listed above is trivial for i � k − 1, therefore it su�ces to
show that the �rst term vanishes when i � k − 2. Let bV1 = �−1(V1) � eV0 .
Since �1(V1)! �1(V0) needn’t be an isomorphism, bV1 needn’t be the universal
cover of V1 . In fact, bV1 will be connected if and only if �1(V1) ! �1(V0) is
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Figure 2

surjective. In general, bV1 has path components
nbV �

1

o
�2A

(one for each element

of co ker(�1(V1)! �1(V0))) each of which is a covering space for V1 . See Figure
2. Moreover, @ bV1 = �−1(@V1) =

F
�2A @

bV �
1 , and for each � we have �1(@ bV �

1 )
�=!

�1(bV �
1 ). Thus each

�bV �
1 ; @

bV �
1

�
is a \covering pair" for (V1; @V1). It follows

that �i

�bV �
1 ; @

bV �
1

�
is trivial for all i � k − 1, so by the Hurewicz Theorem,

Hi

�bV �
1 ; @

bV �
1

�
= 0 for all � and for all i � k − 1. Therefore Hi

�bV1; @ bV1

�
= 0

for i � k− 1, implying (via excision) that Hi+1

�eV0; eR� vanishes for i � k− 2,
thus completing the proof of the claim.

We now have a cobordism (R; @V0; @V1) with �1(@V0)
�=! �1(R) and Hi

� eR; @ eV0

�
= 0 for i � k−2 (where k−2 � n−4). By Chapter 6 of [22], there is a handle
decomposition of R built upon @V0 which contains no handles of index � k−2
and so that the existing handles have been attached in order of increasing index.
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This give rise to a cellular chain complex for the pair
� eR; @ eV0

�
of the form:

0 −! eCn @n−! eCn−1
@n−! � � � @k+1−! eCk @k−! eCk−1 −! 0

where each eCi is a �nitely generated free Z[�1(R)] �= Z[�1(V0)]{module with

one generator for each i{handle of (R; @V0). For [c] 2 Hk

� eR; @ eV0

�
write

c =
P
�iei where each �i 2 Z[�1(R)] and each ei is a k{handle of R with

a preferred base path. Let Rk−1 � R denote Si [ (k − 1){handles, where
S0 � @V0 � [0; 1] is a closed collar on @V0 in V0 . We may represent [c] with
a single k{handle as follows: introduce a trivial cancelling (k; k + 1){handle
pair

(
hk; hk+1

�
to @Rk−1 , then do a �nite sequence of handle slides of hk over

the other k{handles until hk is homologous to c. (Again see [22].) Now, since
@kc = 0, we may apply the Whitney Lemma in @Rk−1 to move the attaching
(k − 1){sphere of hk o� the belt spheres of all the (k − 1){handles.

Note In the case k − 1 = 2, the belt spheres of the (k − 1){handles have
codimension 2 in @Rk−1 , so a special case of the Whitney Lemma (p. 72
of [22]) is needed. In particular we need to know that the belt spheres are
�1{negligible in @Rk−1 , ie, that �1(@Rk−1 − fbelt spheresg)

�=! �1(@Rk−1).
Since �1(@V0)

�=! �1(Rk−1) (attaching the 2{handles does not kill any �1 ), this
condition is satis�ed. See Lemma 16 for the dual version of this fact.

We may now assume that hk was attached directly to S0 . By repeating this
for each element of a �nite generating set for Hk

�eV0; @ eV0

�
we obtain a �nite

set
�
hk1 ; � � � ; hkt

}
of k{handles attached to S0 , so that if Q = S0 [

�S
hkj

�
,

then Hk

�
Q; @ eV0

�
! Hk

�eV0; @ eV0

�
is surjective. The same argument used in

Case 1 will now show that U0 = V0 −
�
Q is a generalized k{neighborhood of

in�nity.

Combining Lemma 10 with the Generalized 1{Neighborhoods Theorem gives:

Theorem 5 (Generalized (n− 3){Neighborhoods Theorem) Let Mn (n �
5) be a one ended, open n{manifold that is inward tame at in�nity. Then

(1) Mn contains a neat sequence fUig of generalized (n− 3){neighborhoods
of in�nity,

(2) if �1("(Mn)) is stable, we may arrange that the Ui ’s are strong (n− 3){
neighborhoods of in�nity,
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(3) if �1("(Mn)) is semistable, we may arrange that each �1 (Ui) �1 (Ui+1)
is surjective, and

(4) if �1("(Mn)) is perfectly semistable, we may arrange that each �1 (Ui) 
�1 (Ui+1) is surjective and has perfect kernel.

8 Obtaining generalized (n−2){neighborhoods of in-

�nity

Much like Siebenmann’s original collaring theorem, the crucial step to ob-
taining a pseudo-collar neighborhood of in�nity is in improving generalized
(n − 3){neighborhoods of in�nity to generalized (n − 2){neighborhoods of in-
�nity. Lemma 12 shows that, for manifolds with semistable fundamental group
systems at in�nity, if we succeed our task is complete.

Lemma 11 Suppose Mn (n � 5) contains generalized (n− 3){neighborhoods
of in�nity U1 � U2 such that �1 (U1)  �1 (U2) is surjective, and let R =

U1 −
�
U2 . Then R admits a handle decomposition on @U1 containing handles

only of index (n − 3) and (n − 2). Hence, (R; @U1) has the homotopy type of
a relative CW pair (K;@U1) such that K − @U1 contains only (n − 3){ and
(n− 2){cells.

Proof Consider the cobordism (R; @U1; @U2). Since �1 (U1) � �1 (U2) it is
easy to check that �1 (R) � �1 (@U2). Hence, �i(R; @U2) = 0 for i = 0; 1
so we may eliminate all 0{ and 1{handles from a handle decomposition of R
on @U2 . Then the dual handle decomposition of R on @U1 has handles only
of index � n − 2 and, by arguing as in the Claim of Lemma 10, we see that
�i(R; @U1) �= Hi

� eR; @ eU1

�
= 0 for i � n−4, so we may eliminate all handles of

index � n− 4 from this handle decomposition. (In the process we increase the
numbers of (n − 3){ and (n − 2){handles.) Collapsing the remaining handles
to their cores gives us (K;@U1).

Lemma 12 Suppose Mn (n � 5) contains a neat sequence fUig1i=1 of (n− 3){
neighborhoods of in�nity with the property that �1 (Ui) �1 (Ui+1) is surjec-
tive for all i. Then

(1) each pair (Ui; @Ui) is homotopy equivalent to a (probably in�nite) relative
CW pair (Ki; @Ui) such that Ki−@Ui contains only (n−3){ and (n−2){
cells;
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(2) if some Uk is an (n− 2){neighborhood of in�nity, then @Uk ,! Uk is a
homotopy equivalence, ie, Uk is a homotopy collar.

Proof Roughly speaking, the �rst assertion is obtained by applying Lemma

11 to each Ri = Ui+1 −
�
U i . Since this process is in�nite, there are some

technicalities to be dealt with. We refer the reader to [24] for details.

If Uk is a generalized (n − 2){neighborhood of in�nity then we already know
that �i(Uk; @Uk) = 0 for i � n − 2. Moreover, our �rst assertion guarantees
that Hi(eUk; @ eUk) is trivial for i > n − 2. Thus, �i(eUk; @ eUk) �= �i(Uk; @Uk) is
trivial for i > n − 2, so by a theorem of Whitehead (see Section 7.6 of [25])
@Uk ,! Uk is a homotopy equivalence:

With the end goal now clear, we begin the task of improving generalized (n−3){
neighborhoods of in�nity to generalized (n − 2){neighborhoods. Even in the
ideal situation where �1(") is stable and U is a strong (n − 3){neighborhood
of in�nity this may not be possible. Siebenmann recognized that, in this ideal
situation, the problem was captured by the Wall �niteness obstruction of U . In
our more general situation (�1(" (Mn)) semistable and U a generalized (n−3){
neighborhood of in�nity) we will confront the same issue along with some new
problems caused by the lack of �1{stability.

Lemma 13 Suppose Mn (n � 5) contains a neat sequence fUig1i=1 of (n− 3){
neighborhoods of in�nity with the property that �1 (Ui) � �1 (Ui+1) for all i.
Then each Hn−2(eUi; @ eUi) is a �nitely generated projective Z[�1Ui]{module.

Moreover, as elements of eK0 (Z[�1Ui]), [Hn−2 (Ui; @Ui)] = (−1)n �(Ui) where
� (Ui) is the Wall �niteness obstruction for Ui .

Proof Finite generation of Hn−2(eUi; @ eUi) follows from Lemma 9. For projec-
tivity, consider the cellular chain complex for the universal cover

� eKi; @ eUi� of
the CW pair (Ki; @Ui) provided by assertion 1 of Lemma 12

0! eCn−2
@! eCn−3 ! 0.

Triviality of Hn−3(eUi; @ eUi) implies that @ is surjective, so we have a short exact
sequence

0! ker @ ! eCn−2
@! eCn−3 ! 0

which splits since eCn−3 is a free Z[�1Ui]{module. Thus eCn−2
�= ker @ � eCn−3 ,

so Hn−2(eUi; @ eUi) = ker @ is a summand of a free module, and is therefore
projective.
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The identity [Hn−2 (Ui; @Ui)] = (−1)n � (Ui) now follows immediately from
Theorem 8 of [27]. An alternative argument which relies only on [26] can be
found in [23].

Remark 6 In the above proof it is essential that eCn−1 is trivial, hence, the
assumption that �1 (Ui) � �1 (Ui+1) for all i is crucial. By the Generalized
(n− 3){Neighborhoods Theorem this may be arranged whenever �1("(Mn)) is
semistable (and Mn is inward tame at in�nity).

Lemma 14 Suppose Mn (n � 5) is a one ended open n{manifold that is
inward tame at in�nity, and that �1(" (Mn)) is semistable. Then the following
are equivalent:

(1) Mn contains arbitrarily small clean neighborhoods of in�nity having �nite
homotopy types,

(2) �1 (Mn) is trivial,

(3) Mn contains a neat sequence fUig1i=0 of generalized (n− 3){neighbor-

hoods such that �1 (Ui)� �1 (Ui+1) for all i and each Hn−2

�eUi; @ eUi� is

a �nitely generated stably free Z [�1Ui]{module,

(4) Mn contains a neat sequence fVig1i=0 of generalized (n− 3){neighbor-

hoods such that �1 (Vi)� �1 (Vi+1) for all i and each Hn−2

�eVi; @ eVi� is

a �nitely generated free Z [�1Vi]{module.

Proof The equivalence of (1){(3) follows immediately from Lemma 13 and our
earlier discussion of �1 . Since 4)=)3) is obvious, we need only show how to
\improve" a given Ui with stably free Hn−2

�eUi; @ eUi� to a generalized (n− 3){

neighborhood Vi with free Hn−2

�eVi; @ eVi�. This is easily done by carving out
�nitely many trivial (n− 3){handles as described below.

Fix i, and let Fk be a free Z [�1Ui]{module of rank k so that Hn−2

�eUi; @ eUi��
Fk is a �nitely generated free Z [�1Ui]{module. Let Si � Ui be a closed collar
on @Ui and let

(
hn−3

1 ; hn−2
1

�
;
(
hn−3

2 ; hn−2
2

�
; � � � ;

(
hn−3
k ; hn−2

k

�
� Ui − Ui+1 be

trivial (n− 3; n − 2){handle pairs attached to Si . Set Q = Si [
�Sk

j=1 h
n−3
j

�
,

and let Vi = Ui −
�
Q. VanKampen’s Theorem and general position show that

each of the inclusions: @Ui ,! Q, Q ,! Ui , Vi ,! Ui and @Vi ,! Vi induce �1{
isomorphisms. Thus, Vi is a generalized 1{neighborhood of in�nity, moreover,
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we have a triple
�eUi; eQ; @ eUi� of universal covers. Clearly

H�( eQ; @ eUi) =
�

0 if � 6= n− 3
Fk if � = n− 3

;

so for j � n− 3 the long exact sequence for triples yields:

Hj

�eUi; @ eUi� ! Hj

�eUi; eQ� ! Hj−1

� eQ; @ eUi�
q q
0 0

Hence, Hj

�eUi; eQ� = 0 for i � n − 3, and by excision, Vi is a generalized
(n− 3){neighborhood of in�nity.

In dimension n− 2 we have:

0
q

Hn−2

� eQ; @ eUi� ! Hn−2

�eUi; @ eUi�! Hn−2

�eUi; eQ�!
Hn−3

� eQ; @ eUi�
q
Fk

! Hn−3

�eUi; @ eUi�
q
0

Since Fk is free this sequence splits, so

Hn−2

�eVi; @ eVi� �= Hn−2

�eUi; eQ� �= Hn−2

�eUi; @ eUi�� Fk
as desired.

We now begin working towards a proof of our main theorem. In order to make
the role of each hypothesis clear (and to provide additional partial results), we
begin with a minimal hypothesis and add to it only when necessary.

Initial hypothesis Mn (n � 5) is one ended, open, and inward tame at
in�nity and �1 (" (Mn)) is semistable.

Then by the Generalized (n− 3){Neighborhoods Theorem we may begin with
a neat sequence fUig1i=0 of generalized (n− 3){neighborhoods of in�nity such

that �1 (Ui) � �1 (Ui+1) for all i. For each i, let Ri = Ui −
�
U i+1 , �i :eUi ! Ui be the universal covering projection, and bUi+1 = �−1

i (Ui+1) � eUi .
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Since each Hn−2

�eUi; @ eUi� is �nitely generated as a Z [�1Ui]{module, we may

(by passing to a subsequence and relabelling) assume that Hn−2

� eRi; @ eUi� !
Hn−2

�eUi; @ eUi� is surjective for all i. Consider the following portion of the long

exact sequence for the triple
�eUi; eRi; @ eUi�.

0
q

Hn−1

�eUi; eRi� ! Hn−2

� eRi; @ eUi� �! Hn−2

�eUi; @ eUi� 0!

Hn−2

�eUi; eRi� γ! Hn−3

� eRi; @ eUi�! Hn−3

�eUi; @ eUi� :
q
0

Triviality of the middle homomorphism follows from surjectivity of �. The
�rst term in the sequence vanishes because it is isomorphic (by excision) to
Hn−1

�bUi+1; @ bUi+1

�
which is 0 by an application of Lemma 12. The last term

is trivial since Ui is a generalized (n− 3){neighborhood. After another appli-
cation of excision we obtain the following Z[�1Ui]{module isomorphisms:

Hn−2

� eRi; @ eUi� �= Hn−2

�eUi; @ eUi� (1)

Hn−3

� eRi; @ eUi� �= Hn−2

�bUi+1; @ bUi+1

�
(2)

By Lemma 11, we may choose a handle decomposition of Ri containing only
(n− 3){ and (n− 2){handles. Furthermore, we assume that all (n− 3){handles
are attached before any of the (n− 2){handles. Thus the homology of

� eRi; @ eUi�
is given by a chain complex of the form:

0! eCn−2
@! eCn−3 ! 0 (3)

where eCn−2 is a free Z[�1Ui]{module with one generator for each (n− 2){
handle of Ri and eCn−3 is a free Z[�1Ui]{module with one generator for each
(n− 3){handle of Ri . From this sequence we may extract the following short
exact sequences.

0! im(@)! eCn−3 ! Hn−3

� eRi; @ eUi�! 0 (4)

0! Hn−2

� eRi; @ eUi�! eCn−2 ! im(@)! 0 (5)
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Lemma 9 (slightly modi�ed to apply to the pair
�eUi; eRi�) and an argument

like that used in proving Lemma 13 show that Hn−2

�bUi+1; @ bUi+1

�
is a �nitely

generated projective Z[�1Ui]{module. Hence, by identity (2), the �rst of these
sequences splits. We abuse notation slightly and writeeCn−3 = im(@)�Hn−3

� eRi; @ eUi� . (6)

This implies that im(@) is also �nitely generated projective, and

[im(@)] = −
h
Hn−3

� eRi; @ eUi�i 2 eK0 [Z�1Ui] (7)

Then the second short exact sequence also splits, so we may writeeCn−2 = Hn−2

� eRi; @ eUi�� im(@)0 (8)

where im(@)0 denotes a copy of im (@) lying in eCn−2 (whereas im (@) itself lies
in eCn−3 ). This shows that

[im(@)] = −
h
Hn−2

� eRi; @ eUi�i 2 eK0(Z[�1Ui]). (9)

Remark 7 Combining (1), (2), (7) and (9) shows thath
Hn−2

�eUi; @ eUi�i =
h
Hn−2

�bUi+1; @ bUi+1

�i
2 eK0(Z[�1Ui]):

In the special case that �1("(Mn)) is stable and Ui and Ui+1 are strong (n− 2){
neighborhoods of in�nity, this shows thath

Hn−2

�eUi; @ eUi�i =
h
Hn−2

�eUi+1; @ eUi+1

�i
:

This was one of the arguments used by Siebenmann in [23] to show that his end
obstruction is well-de�ned. One can also obtain this result by using the Sum
Theorem for Wall’s �niteness obstruction (see Ch. VI of [23] or [13]).

Identities (6) and (8) allow us to rewrite (3) as

0! Hn−2

� eRi; @ eUi�� im(@)0 @! im(@)�Hn−3

� eRi; @ eUi�! 0 (30)

where ker @ = Hn−2

� eRi; @ eUi� and @jim(@)0 : im(@)0
�=! im(@).

We are now ready to add to our Initial Hypothesis.

Additional Hypothesis I From now on we assume that �1 (Mn) = 0.
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Then by Lemma 14 we may assume that Hn−2

�eUi; @ eUi� �= Hn−2

� eRi; @ eUi�
are �nitely generated free Z[�1Ui]{modules, and by Identity (8), that im(@)0 �=
im(@) are stably free. We may easily \improve" im(@)0 and im(@) to free
Z([�1Ui]){modules by introducing trivial (n− 3; n − 2 ){handle pairs to our
handle decomposition of Ri . Indeed, if we introduce a trivial handle pair(
hn−3; hn−2

�
, then im(@)0 is increased to im(@)0 � Z[�1Ui] and im(@)0 is in-

creased to im(@)0 �Z[�1Ui] with the new factors being generated by hh−2 and
hn−3 , respectively. Moreover, the new boundary map (properly restricted) is
@ � idZ[�1Ui]

. By doing this �nitely many times we may arrange that im(@)0 �=
im(@) are free.

At this point we have a free Z[�1Ui]{module eCn−2 with a natural (geomet-
ric) basis

�
hn−2

1 ; hn−2
2 ; � � � ; hn−2

r

}
consisting of the (n− 2){handles of Ri: We

also have a direct sum decomposition of eCn−2 into free submodules eCn−2 =
Hn−2

� eRi; @ eUi� � im(@)0 ; hence there exists another basis fa1; � � � ; as;

b1; � � � ; br−sg for eCn−2 such that fa1; � � � ; asg generates Hn−2

� eRi; @ eUi� and
fb1; � � � ; br−sg generates im(@)0 . We would like the geometry to match the
algebra|in particular we would like one subset of handles, say fhn−2

1 ; hn−2
2 ;

� � � ; hn−2
s g, to generate Hn−2

� eRi; @ eUi� with the remaining handles fhn−2
s+1 ;

hn−2
s+2 ; � � � ; hn−2

r g generating im(@)0 . This may not be possible at �rst, but by
introducing even more trivial (n− 3; n − 2 ){handle pairs and then perform-
ing handle slides, it may be accomplished. Key to the proof is the following
algebraic lemma.

Lemma 15 (See Lemma 5.4 of [23]) Let F be a �nitely generated free �{
module with bases fx1; � � � ; xrg and fy1; � � � ; yrg and F 0 be another free module
of rank r with basis fz1; � � � ; zrg. Then the basis fx1; � � � ; xr; z1; � � � ; zrg of
F � F 0 may be changed to a basis of the form fy1; � � � ; yr; z01; � � � ; z0rg by a
�nite sequence of elementary operations of the form x 7−! x+ �y .

Proof If A is the matrix of the basis fy1; � � � ; yrg in terms of fx1; � � � ; xrg,
then the matrix of fy1; � � � ; yr; z1; � � � ; zrg in terms of fx1; � � � ; xr; z1; � � � ; zrg

is
�
A 0
0 I

�
. Now �

A 0
0 I

�
�
�
A−1 0

0 A

�
=
�
I 0
0 A

�
,

where�
A−1 0

0 A

�
=
�
I A−1

0 I

�
�
�

I 0
I −A I

�
�
�
I −I
0 I

�
�
�

I 0
I −A−1 I

�
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is a product of matrices obtained by elementary moves.

To apply this lemma, we introduce r trivial (n− 3; n − 2 ){handle pairs�
(kn−3
i ; kn−2

i )
}r
i=1

into Ri thus giving us a geometric basis

B1 =
�
hn−2

1 ; � � � ; hn−2
r ; kn−2

1 ; � � � ; kn−2
r

}
for eCn−2 . (In the process eCn−2 , im(@)0 and im(@) are expanded, but
Hn−2

� eRi; @ eUi� remains the same.) According to Lemma 15 we can change B1

to a basis of the form

B2 =
�
a1; � � � as; b1; � � � br−s; k01; � � � ; k0r

}
using only elementary operations which may be imitated geometrically with
handle slides. Hence we arrive at a handle decomposition of Ri for which each
element of B2 corresponds to a single (n− 2){handle, and a subset of these
handles generates the submodule Hn−2

� eRi; @ eUi�.

Given the above, we revert to our original notation in which eCn−2 is generated
by
�
hn−2

1 ; � � � ; hn−2
r

}
; assuming in addition that the subset

�
hn−2

1 ; � � � ; hn−2
s

}
generates Hn−2

� eRi; @ eUi�.

Most of the work that remains to be done involves handle theory in the cobor-
dism (Ri; @Ui; @Ui+1). For convenience, we label certain subsets of Ri . Let
Si � Ri be a closed collar on @Ui , Ti = Si [ ((n− 3) {handles), and @+Ti =
@Ti − @Ui . Then Ri = Ti [

(
hn−2

1 [ � � � [ hn−2
r

�
. See Figure 3. For each hn−2

j

let �j � @+Ti be its attaching (n− 3){sphere, and for each (n− 3){handle
hn−3
k let �k be its belt 2{sphere.

To complete the proof, we would like to proceed as follows:

� slide the handles hn−2
1 ; � � � ; hn−2

s (the ones which generate Hn−2

� eRi; @ eUi�)
o� the (n− 3){handles of Ri so that they are attached directly to Si ,

� then carve out the interiors of hn−2
1 ; � � � ; hn−2

s to obtain the desired
(n− 2){neighborhood.

Unfortunately, each of these steps faces a signi�cant di�culty. For the �rst step,
we would like to employ the Whitney Lemma to remove

Ss
j=1 �j from

S
�k .

Since @hn−2
j = 0 for i = 1; � � � ; s the relevant Z[�1Ui]{intersection numbers

" (�k; �j) are trivial as desired; however, since the �j ’s are codimension 2 in
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Figure 3

@+Ti we also need �1{negligibility for the �j ’s. As we will soon see, this is very
unlikely.

The di�culty at the second step is similar. Assume for the moment that we
succeeded at step 1|so each hn−2

j (j = 1; � � � s) is attached directly to Si .
Since the cores of the hn−2

j ’s have codimension 2 in Ui , and the �n−3 ’s have
codimension 2 in @Si , the removal of interiors of the hn−2

j ’s is likely to change
the fundamental groups of these spaces|a situation we cannot tolerate at this
point in the proof.

Both of the above problems can be understood through the following easy
lemma, whose proof is left to the reader. In it, the term \�1{negligible" is used
as follows: a subset A of a space X is �1 {negligible provided �1(X − A) !
�1(X) is an isomorphism.

Lemma 16 Suppose (W n; @−W;@+W ) is a compact cobordism (n � 5) ob-
tained by attaching (n− 2){handles h1; � � � ; hq to a collar C = @−W � [0; 1] .
Let @+C denote @−W � f1g, and let �1; � � � ; �q � @+C be the attaching
(n− 3){spheres and N(�1); � � � ;N(�q) � @+C the attaching tubes for the
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handles. Then we have the following commutative diagram.

�1 (W n) � �1(@+W )
�=" �="

�1(@+C) � �1(@+C −
Sq
i=1

�
N(�i))

Hence, the collection �1; � � � ; �q of attaching (n− 3){spheres is �1{negligible
in @+C if and only if �1 (W n) �1 (@+W ) is an isomorphism.

Remark 8 Applying this lemma to the project at hand shows that in the spe-
cial case that �1 (@Ri) �1 (@Ui+1) is an isomorphism for each i, the program
outlined above may be carried out when n � 6. Hence, when �1(" (Mn)) is
stable, we have a proof of Theorem 1.

Lemma 16 shows that di�culties with fundamental groups are unavoidable
when �1(" (Mn)) is not stable|speci�cally, when �1 (Ui)  �1 (Ui+1) has
non-trivial kernel, the corresponding attaching (n− 3){spheres will not be �1{
negligible. Thus we need a new strategy for improving the Ui ’s to generalized
(n− 2){neighborhoods. Instead of \carving out" the unwanted (n− 2){handles
in Ui , we will \steal" duals for these handles from below. Our strategy is par-
tially based on Quillen’s \plus construction" (see [21] or Section 11.1 or [15]).
We will require some additional hypotheses.

Additional Hypothesis II �1 (" (Mn)) is perfectly semistable and n � 6.

Then by The Generalized (n− 3){Neighborhoods Theorem we could have cho-
sen our original sequence fUig1i=0 of generalized (n− 3){neighborhoods of in-
�nity so that

ker(�1(Ui)� �1(Ui+1))is perfect for all i: (10)

With the exception of passing to subsequences (which is permitted by Corollary
1), fundamental groups have not been changed during the current stage of
the proof, hence we may simply add Property (10) to the conditions already
achieved.

Fix an i > 0 and return to the cobordism (Ri; @Ui; @Ui+1) under discussion.

Claim 1 There exists a pairwise disjoint collection fγjgrj=1 of embedded 2{

spheres in @+Ti which are algebraic duals for the collection f�jgrj=1 of attach-
ing (n− 3){spheres of the (n− 2){handles of Ri . This means that for each
0 � j; k � r ,

" (�j ; γk) =
�

1 if j = k
0 if j 6= k :
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Note Technically " (�j ; γk) denotes Z [�1 (@+Ti)]{intersection number. Since
�1(Ui)

�= �1(@+Ti) we think of it as a Z [�1 (Ui)]{intersection number.

Proof Let � : eUi ! Ui be the universal covering projection. Then �−1(@+Ti) =
@+
eTi is the universal cover of @+Ti . Also, @+

eTi −�−1(
Sr
j=1 �j) covers @+Ti −Sr

j=1 �j and �1

�
@+
eTi − �−1(

Sr
j=1 �j)

�
�= ker(�1(@+Ti) �1(@+Ti−

Sr
j=1 �j))

which is perfect by an application of Lemma 16.

For a �xed 1 � j0 � r , we will show how to construct γj0 . Let b�j0 be a
component of �−1(�j0), and let bDj0 be a small 2{disk in @+

eTi intersectingb�j0 transversely in a single point. Since �1

�
@+
eTi − �−1(

Sr
j=1 �j)

�
is perfect,

then H1

�
@+
eTi − �−1(

Sr
j=1 �j)

�
is trivial; so @ bDj0 bounds a surface bEj0 in

@+
eTi − �−1(

Sr
j=1 �j). Let bDj0 [ bEj0 represent an element of H2

�
@+
eTi� and

apply the Hurewicz isomorphism to �nd a 2{sphere bγj0 in @+
eTi representing the

same element. Since they are invariants of homology class, the Z{intersection
number of bγj0 with b�j0 is 1; while the Z{intersection number of bγj0 with any
other component of �−1(

Sr
j=1 �j) is 0. Thus, with an appropriately chosen arc

to the basepoint, the Z [�1 (@+Ti)]{intersection numbers of γj0 = � (bγj0) with
the �j ’s are as desired. If necessary, use general position to ensure that γj0 is
embedded.

By general position, we may assume that the γj ’s miss the belt 2{spheres of
each of the (n− 3){handles of Ri |and hence, that they miss the (n− 3){
handles altogether. Thus, the γj ’s lie in the upper boundary component @+Si
of the collar Si . The collar structure gives us a parallel copy γ0j � @Ui of each
γj . We would like to arrange for each of these γ0j ’s to bound a 3{disk in Ri−1 .
To make sure this is possible, we add our last additional hypotheses.

Additional Hypotheses III �2(" (Mn)) is semistable and n � 7.

Then, in addition to all of the above, we may assume the existence of a diagram
of the form:

�2(U0) �1 − �2(U1) �2 − �2(U2) �3 − �2(U3) �4 − � � �
- . - . - .
im�1 � im�2 � im�3 � � � �

Since each Ui is a generalized (n− 3){neighborhood, we have isomorphisms
�2(@Ui)

�=! �2(Ui), �2(Ri)
�=! �2(Ui) and �2(@Ui)

�=! �2(Ri) for all i � 0.
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Assume again that i has been �xed. By including the arcs to a common
basepoint (and abusing notation slightly) we view each γ0j as representingh
γ0j

i
2 �2(Ui). Then, for 1 � j � r , the above diagram guarantees the ex-

istence of a 2{sphere Ωj � @Ui+1 so that �i � �i+1([Ωj ]) = �i

�h
γ0j

i−1
�

in

�2(Ui−1). By general position (as before) we may assume that Ωj misses the
(n− 3){ and (n− 2){handles of Ri , and thus lies in (@+Ti) \ (@+Si) where
it does not intersect any of the �j ’s. By forming the connected sum γj#Ωj

(along an appropriate arc in @+Si ) we obtain a new 2{sphere in @+Ti with
" (�k; γj#Ωj) = " (�k; γj) for all k , and the additional property that its paral-
lel copy (γj#Ωj)0 in @Ui contracts in Ui−1 . Note then that (γj#Ωj)0 may be
contracted in Ri−1.

In order to simplify notation, we replace each γj with γj#Ωj and assume that,
in addition to the properties of Claim 1, we have chosen the γj ’s to satisfy:

Each γj is contained in @+Si and its parallel copy γ0j � @Ui contracts in Ri−1:

By general position (here we use n � 7), we may select a pairwise disjoint
collection fDjgsj=1 of properly embedded 3{disks in Ri−1 with @Dj = γ0j for
each 1 � j � s.

Note We have selected bounding disks only for the duals to the attaching
spheres �1; � � � ; �s of the handles hn−2

1 ; � � � ; hn−2
s which generate Hn−2(Ui; @Ui).

Now let Qi be a regular neighborhood in Ri−1 of @Ui [
�Ss

j=1Dj

�
and let

Vi = Qi [ Ui . See Figure 4. Our proof of the Main Existence Theorem will be
complete when we prove the following.

Claim 2 Vi is a homotopy collar.

Notice that �1 (Ui) ! �1 (Vi) is an isomorphism and Ui−1 � Vi � Ui+1 ; so Vi
may be substituted for Ui as part of a �1{surjective system of neighborhoods
of in�nity. Hence, by Lemma 12, it su�ces to show that Vi is a generalized
(n− 2){neighborhood of in�nity.

Consider the cobordism (Qi; @Vi; @Ui). Since Qi may be obtained by attaching
3{handles (one for each Dj ) to a collar on @Ui , it may also be constructed
by attaching (n− 3){handles to a collar on @Vi . In this case the 2{spheres
γ1; � � � ; γs become the belt spheres of the (n− 3){handles, which we label as
kn−3

1 ; � � � ; kn−3
s , respectively. Since we already know that Ui admits an in�nite
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Figure 4

handle decomposition containing only (n− 3){ and (n− 2){handles, this shows
that Vi also admits a handle decomposition with handles only of these indices. It
follows from general position that Vi is a generalized 1{neighborhood and from
the usual argument that �k(Vi; @Vi) �= �k(eVi; @ eVi) �= Hk(eVi; @ eVi) = 0 for k �
n− 4. Hence, it remains only to show that Hn−3(eVi; @ eVi) = 0 = Hn−2(eVi; @ eVi).
To do this, begin with an in�nite handle decomposition of (Ui; @Ui) which has
only (n− 3){ and (n− 2){handles, and which contains the handle decomposi-
tion of Ri used above. Let

0! eDn−2
@! eDn−3 ! 0 (11)

be the associated chain complex for the Z[�1(Ui)]{homology of (Ui; @Ui). Then
@ is surjective and eDn−2 = ker @� eD0n−3 , where @j

D̃0n−3
is an isomorphism, and

ker @ = Hn−2(eUi; @ eUi) =
〈
hn−2

1 ; � � � ; hn−2
s

�
. Hence, (11) may be rewritten as:

0!
〈
hn−2

1 ; � � � ; hn−2
s

�
� eD0n−3

0�@j
D̃0
n−3−! eDn−3 ! 0 (110)

Our preferred handle decomposition of (Vi; @Vi) is obtained by inserting the
(n− 3){handles kn−3

1 ; � � � ; kn−3
s beneath our handle decomposition of (Ui; @Ui).

Hence, the corresponding chain complex for (Vi; @Vi) has the form

0!
〈
hn−2

1 ; � � � ; hn−2
s

�
� eD0n−3

@1�@2−!
〈
kn−3

1 ; � � � ; kn−3
s

�
� eDn−3 ! 0:
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In the usual way, the image of an (n− 2){handle under the boundary map is
determined by the Z�1{intersection numbers of its attaching (n− 3){sphere
with the belt 2{spheres of the various (n− 3){handles. Thus it is easy to see
that @hn−2

j =
�
kn−3
j ; 0

�
2
〈
kn−3

1 ; � � � ; kn−3
s

�
� eDn−3 for each hn−2

j (1 � j � s);

and the map @2 : eD0n−3 !
〈
kn−3

1 ; � � � ; kn−3
s

�
� eDn−3 is of the form

�
�; @j

D̃0n−3

�
where � is unimportant to us and @jD̃0n−3

is the isomorphism from (11 0 ). It is

now easy to check that @1�@2 is an isomorphism; and thus, Hn−3(eVi; @ eVi) and
Hn−2(eVi; @ eVi) are trivial.

Note For those who wish to avoid the technical issues involved with in�nite
handle decompositions, an alternative proof that Vi is a generalized (n− 2){
neighborhood may be obtained by analyzing the long exact sequence for the
triple (Vi; Qi [Ri; @Vi). The work involved is similar, but the key calculations
are now shifted to the compact pair (Qi [Ri; @Vi).

9 Questions

The results and examples discussed in this paper raise a number of natural
questions. We conclude this paper by highlighting a few of them.

The most obvious question is whether Conditions 1{3 of Theorem 3 are su�-
cient to imply pseudo-collarability. Other possible improvements to Theorem
3 involve Condition 2. For example, it seems reasonable to hope that the as-
sumption of \perfect semistability" can be weakened to just \semistability".
Note that Condition 4 and \perfectness" were not used until very near the end
of the proof Theorem 3.

Unlike the conditions just mentioned, the assumption that �1 ("(Mn)) is semi-
stable is �rmly embedded in the proof of Theorem 3. In particular, nearly all
of the work done in Section 8 depends on this assumption. However, we do not
know an example of an open manifold that is inward tame at in�nity which
is not �1{semistable at in�nity. Therefore we ask: Is every one ended open
manifold that is inward tame at in�nity also �1{semistable at in�nity? Must
�1 be perfectly semistable at in�nity?

Lastly, we direct attention towards universal covers of closed aspherical man-
ifolds. As we noted in Section 4, these provide some of the most interesting
examples of pseudo-collarable manifolds. Hence, we ask whether the universal
cover of a closed aspherical manifold is always pseudo-collarable. Since very
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little is known in general about the ends of universal covers of closed aspheri-
cal manifolds, one should begin by investigating whether these examples must
satisfy any of the conditions in the statement of Theorem 3.
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