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If an infinite-dimensional dynamical system possesses a global attractor of finite
dimension (see the definitions in Chapter 1), then there is, at least theoretically,
a possibility to reduce the study of its asymptotic regimes to the investigation of pro-
perties of a finite-dimensional system. However, as the structure of attractor cannot
be described in details for the most interesting cases, the constructive investigation
of this finite-dimensional system cannot be carried out. In this respect some ideas
related to the method of integral manifolds and to the reduction principle are very
useful. They have led to appearance and intensive use of the concept of inertial ma-
nifold of an infinite-dimensional dynamical system (see [1]-[8] and the references
therein). This manifold is a finite-dimensional invariant surface, it contains a global
attractor and attracts trajectories exponentially fast. Moreover, there is a possibility
to reduce the study of limit regimes of the original infinite-dimensional system
to solving of a similar problem for a class of ordinary differential equations.

In this chapter we present one of the approaches to the construction of inertial
manifolds (IM) for an evolutionary equation of the type:

du . _
-at—-l—Au—B(u, t), ul,_ o= Up- (0.1)

Here u(t) is a function of the real variable ¢ with the values in a separable Hilbert
space H . We pay the main attention to the case when A is a positive linear operator
with discrete spectrum and B (u, t) is a nonlinear mapping of H subordinated to A
in some sense. The approach used here for the construction of inertial manifolds is
based on a variant of the Lyapunov-Perron method presented in the paper [2]. Other
approaches can be found in [1], [3]-[7], [9], and [10]. However, it should be noted
that all the methods for the construction of IM known at present time require a quite
strong condition on the spectrum of the operator A : the difference kN +1_7\'N
of two neighbouring eigenvalues of the operator A should grow sufficiently fast
as N > oo,

§ 1 Basic Equation and Concept
of Imertial Manifold

In a separable Hilbert space H we consider a Cauchy problem of the type

%+Au=3(u, t), t>s, ul|,_ =ug, seR, (1.1)

where A is a positive operator with discrete spectrum (for the definition see Section
1 of Chapter 2) and B(-, -) is a nonlinear continuous mapping from D(Ae) x R
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into H, 0 < 0 < 1, possessing the properties

IB(u, t)] < M(1+]A%]) (1.2)
and
|B(wy, 1) =B(ug, t)] < M|A(u; —uy)| (1.3)

forall w, u;, and u, from the domain %y = D(Ae) of the operator A9 Here M is
a positive constant independent of ¢ and | -| is the norm in the space H . Further it
is assumed that {e, } is the orthonormal basis in / consisting of the eigenfunctions
of the operator A :

Aey=Me,, 0<A <Ay<.., kli_l)nookkzoo.

Theorem 2.3 of Chapter 2 implies that for any initial condition u, € Fi'e prob-
lem (1.1) has a unique mild (in %) solution u(t) on every half-interval [s, s +T'),
i.e. there exists a unique function u(t) € C(s, s +T; %,) which satisfies the inte-
gral equation

t

u(t) = =54y + Je_(‘_T)AB(u(T), 7)de (14)

forall ¢t e [s, S+ T) . This solution possesses the property (see (2.6) in Chapter 2)
|AP(w(t+0)-u@)l <Ccc®-PB,  0<B<O

for 0 < o < 1 and ¢t > s. Moreover, for any pair of mild solutions u,(¢) and u4(t) to
problem (1.1) the following inequalities hold (see (2.2.15)):

[40u(t)] < aye™ " I|us), txs (15)
and (cf. (2.2.18))

[Qx A%u(t)] < {Q_AN“(H“M (1+k)a; gt eaz”‘s)}llAeu(s)Il, (1.6)

where w(t) = u,(t) —uy(t), a; and a, are positive numbers depending on 0, A, ,
and M only. Hereinafter @ = I — Fy;, where Py is the orthoprojector onto the first
N eigenvectors of the operator A . Moreover, we use the notation

k=eeja‘9e‘§d§ for >0 and k=0 for 0=0. 1.7
0

Further we will also use the following so-called dichotomy estimates proved
in Lemma 1.1 of Chapter 2:

[a0c-tap < 29 e R;

—(A

[ Qy] < et is0; (1.8)
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-\

[A0 et4Qy] < [(0/6)°+2.5, Je ™" 150, 0>0.

The inertial manifold (IM) of problem (1.1) is a collection of surfaces
M., ¢t € R} in H of the form
t

M,={p+®(p, t): pe ByH, ®(p,t)e(1-Fy)%},
where @(p, t) is a mapping from B, H x R into (1—F;)%, satisfying the Lipschitz
condition

[4%@(py, 1) = @0y, )] < C[A%p) ~ )| (1.9)

with the constant C independent of D; and ¢ . We also require the fulfillment of the
invariance condition (if u, € My, then the solution w(t) to problem (1.1) posses-
ses the property u(t) € M;, t > s) and the condition of the uniform exponential
attraction of bounded sets: there exists y > 0 such that for any bounded set B ¢ H
there exist numbers Cp and ¢z > s such that

sup {dist%(u(t, uy), My): uy e B} < Cp ¢ 7 p)

forall t > t5. Here u(t, u) is amild solution to problem (1.1).

From the point of view of applications the existence of an inertial manifold (IM)
means that a regular separation of fast (in the subspace (/ —PN)H ) and slow (in the
subspace I3;H ) motions is possible. Moreover, the subspace of slow motions turns
out to be finite-dimensional. It should be noted in advance that such separation is
not unique. However, if the global attractor exists, then every IM contains it.

When constructing IM we usually use the methods developed in the theory
of integral manifolds for central and central-unstable cases (see [11], [12]).

If the inertial manifold exists, then it continuously depends on ¢, i.e.

. 0 _ _
th;nSllA (®(p, s)—D(p, 1)l =0
forany p € ByH and s € R.Indeed, let u () be the solution to problem (1.1) with
uy=p+®p, s), p e AyH.Thenu(t) e M, for ¢ > s and hence
u(t) = Byu(t) +O(Pyul(t), t).
Therefore,
O(p, t) = D(p, s) = [P(p, 1) = C(Byult), 1)] +
+[u(t) —ug] +[p —Pyu(t)] -
Consequently, Lipschitz condition (1.9) leads to the estimate
||A9(CD(p, s)—D(p, t))|| < C”Ae(u(t) —uo)” )

Since u(t) € C(s, +o0, D(A?)), this estimate gives us the required continuity pro-
perty of D(p, t).
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Exercise 1.1 Prove that the estimate
|AP(@(p, t+0) - (p, 1) < Cy(p, N)c¥ =P
holds for ®(p, t) when0 <6 <1, 0<pB <0, tekR.

The notion of the inertial manifold is closely related to the notion of the inertial
Jorm. If we rewrite the solution wu(t) in the form w(t)=p(t)+q(t), where
p(t)=Pyu(t), q(t)= Qyu(t), and @y =1—Py, then equation (1.1) can be re-
written as a system of two equations

S p(t)+Ap(t) = BB +a(t) |

Sa+Aa() = QuBE©)+a (1),

Dl,_y=Po = Pyug, 4a|,_ ;=)= Q-

By virtue of the invariance property of IM the condition (po, qo) eM s implies that
(p(t), q(t)) € M,, ie. the equality Q9= D (pg, s) implies that g (t) = ® (p(t), t).
Therefore, if we know the function @ (p, ¢) that gives IM, then the solution 2 (¢)
lying in l\/lt can be found in two stages: at first we solve the problem

Sp(0)+Ap(t) = BBEO+(p(), 1),  pl,_ =py, (110

and then we take u(t) = p(t) + ®(p(t), t) . Thus, the qualitative behaviour of solu-
tions u(¢) lying in IM is completely determined by the properties of differential
equation (1.10) in the finite-dimensional space FyyH. Equation (1.10) is said to be
the inertial form (IF) of problem (1.1). In the autonomous case (B(u, t) = B(u))
one can use the attraction property for IM and the reduction principle (see Theorem
7.4 of Chapter 1) in order to state that the finite-dimensional IF completely deter-
mines the asymptotic behaviour of the dynamical system generated by problem (1.1).

Exercise 1.2 Let ®(p, t) give the inertial manifold for problem (1.1).
Show that IF (1.10) is uniquely solvable on the whole real axis, i.e.
there exists a unique function p(t) € C(—o0, oo; P H) such that
equation (1.10) holds.

Exercise 1.3 Let p(¢) beasolution to IF (1.10) defined forall ¢ € R. Prove
that w(t) = p(t) + D@ (p(t), t) is amild solution to problem (1.1) de-
fined on the whole time axis and such that u|, _ = p,+®(py, 1).

Exercise 1.4 Use the results of Exercises 1.2 and 1.3 to show that if IM
{M,} exists, then it is strictly invariant, i.e. for any u € M, and
s < t there exists u, € M, such that u = w(t) is a solution to prob-
lem (1.1).
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In the sections to follow the construction of IM is based on a version of the Lyapunov-
Perron method presented in the paper by Chow-Lu [2]. This method is based on the
following simple fact.

Lemma 1.1.

Let f(t) be a continuous function on R with the values in H such that
loys(@)) =€, teR.

Then for the mild solution wu(t) (on the whole axis) to equation
a%u+Au = f(1) (11D
to be bounded in the subspace Qn %y it is necessary and sufficient that
t ¢
u(t) = e(t=5)4p +Je(tf)APNf(r)dt+ J e~(t=D4Q, f(t)dt (1.12)
s —o0
Jor t € R, where p is an element from ByH and s is an arbitrary real
number.

We note that the solution to problem (1.11) on the whole axis is a function u(t) €
e C(R, H) satisfying the equation
t
u(t) = (=504 5) + Je_(t _T)Af(r)dt
S
forany s € R.

Proof.

It is easy to prove (do it yourself) that equation (1.12) gives a mild solution
to (1.11) with the required property of boundedness. Vice versa, let u(t) be
a solution to equation (1.11) such that ||QNu(t)||e is bounded. Then the func-
tion g (¢) = Qyu(t) is a bounded solution to equation

G +Aa(t) = Qur(1).

Consequently, Lemma 2.1.2 implies that
t

q(t) = J' e =DAQ F(t)dr.

—o0
Therefore, in order to prove (1.12) it is sufficient to use the constant variation
formula for a solution to the finite-dimensional equation

W s ap=Bes(),  p()=Byult).

Thus, Lemma 1.1 is proved.
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Lemma 1.1 enables us to obtain an equation to determine the function ®@(p, t).
Indeed, let us assume that B (u, t) is bounded and there exists M, with the func-
tion @(p, ¢) possessing the property ||A9CD(p, t)|| < Cforallp e ByH and t € R.
Then the solution to problem (1.1) lying in Mt has the form

u(t) = p(t)+D(p(t), t).

It is bounded in the subspace Q,H and therefore it satisfies the equation of the
form

u(t) = e (t=5)4p +
¢ ¢
+J‘e(tT)APNB(U(T), )dt +J. e*(t*T)AQNB(u(r), T)dt, (teR). (1.13)

Moreover,
S
D(p, s)=Quu(s) = J e 5 =D4Q, B(u(t), T)dr . (1.14)

Actually it is this fact that forms the core of the Lyapunov-Perron method. It is
proved below that under some conditions (i) integral equation (1.13) is uniquely
solvable for any p € PyyH and (ii) the function ®(p, s) defined by equality (1.14)
gives IM.

In the construction of IM with the help of the Lyapunov-Perron method an im-
portant role is also played by the results given in the following exercises.

Exercise 1.5 Assume that sup{e_y(s_t)||f(t)||: t < s} < oo, where y is any
number from the interval (Ay, Ay, ;) ands € R.Let u(t)be amild
solution (on the whole axis) to equation (1.11). Show that w(¢) pos-
sesses the property

sup {eV(s "5)||A9u(t)||} < oo
1< s
if and only if equation (1.12) holds for ¢ < s ..
Hint: consider the new unknown function

w(t) = e S u(r)
instead of u(t).
Exercise 1.6 Assume that f(t) is a continuous function on the semiaxis
[s, +o0) with the values in H such that for some y from the interval
(Ax» Ay,qp) the equation
sup {e Y Of()]: t e [s, +o0)} < o0

holds. Prove that for a mild solution u(t) to equation (1.11) on the
semiaxis [s, +oo) to possess the property
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sup {e V=040 (1)]: t e [s, +00)} < o0
it is necessary and sufficient that
t

u(t) = e(tS)Aq+J‘e(tf)AQNf(r)dr —

S
+ o0

- J e VAR f(1)du (1.15)
t
where ¢ > s and g is an element of @, D(A%). Hint: see the hint to
Exercise 1.5.

§ 2 Integral Equation for Determination
of Imertial Manifold

In this section we study the solvability and the properties of solutions to a class of in-
tegral equations which contains equation (1.13) as a limit case. Broader treatment of
the equation of the type (1.13) is useful in connection with some problems of the ap-
proximation theory for IM.

For s € R and 0 < L < oo we define the space Cy = C, ¢(s —L, s) as the set
of continuous functions v () on the segment [s —L, s] with the values in D(A")
and such that

el =, o (71O TAOu0]) < oo

Here v is a positive number. In this space we consider the integral equation

v(t)=By F[o](t), s-L<t<s, @2.1)

where

BS L 0] (1) = et —5)4p - jevf)APB(v(r), T)dr +

t
t

+ J e~(t=DAQB(v (1), T)dr .
s—L
Hereinafter the index N of the projectors P, and @, is omitted, i.e. P is the ortho-

projector onto Lin{e,, ..., ey} and @ = 1 —P . It should be noted that the most sig-
nificant case for the construction of IM is when L = oo .
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Lemma 2.1.

Let at least one of two conditions be fulfilled:
0
0<L<oo and M(IQ:éLl‘9+Lk]?,+l)£q< 1 (2.2)
or 0 < L <00 and
0
hvor =y = 2R, +AY), 0<a<, 2.3)

where k is defined by equation (1.7). Then for any fixed s € R there
exists a unique function v (t' p) € C, satisfying equation (2.1) for all

e[s—L, s], where y is an arbmcwy number from the segment [ Ay,
Ani1] i the case of (2.2) and v = A +(2M/q) N 1 the case of (2.3).
Moreover,

0 (s p) v (s py)s < (1-a)H|A%(py —py)| @4)
and
oy, < (1 —q) YD, +]| (2.5)
where
_ -1+0 -1+0
D, = M(l—kk)kN+1 +MKN . (2.6)
Proof.

Let us apply the fixed point method to equation (2.1). Using (1.8) it is easy
to check (similar estimates are given in Chapter 2) that

[40(By;, " (v)) (1) = B}, “(05) ()] <

S
< MG 4)”149(201 ~py)| +_[ kf%e}w(r 7t)M”U1 (1) =y (T)gdr +

t

0 0 _
() e e oy (x) vy (o) o <

IN

T4, po)] + () s, 1)+ ay(s, 1) ! Doy —v,
where

a,(s, t) = M JE [(%}%kﬁ,@ o v g @1
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and
S
gy (s. 1) = M'[k]?, NN D g @2.8)
t
Therefore, if the estimate
q,(s, t)+aqy(s, t) <q, s-L<t<s 2.9
holds, then
, L , L
‘BZI [vq] - st)z [7)2]‘8 < HAe(pl —pz)“ +q|vl—02|s. (2.10)

Let us estimate the values g, (s, t) and gy (s, t). Assume that (2.2) is fulfilled.
Then it is evident that

a,(s, t) < MO J (t—1)Odt+ MAY (t—s+1) =
s—L

0
= Mle_—e(t —s+ L) MAY, (1 —s+1L)

and
o(s, t) < MAS(s —t) < MAY, (s —1)

for Ayy <7 < Ay - Therefore,
09 _ 1-0 0
q,(s, t)+aqy(s, t) <M I—:é(t s+ L)Y+ A5 L)

Consequently, equation (2.2) implies (2.9). Now let the spectral condition (2.3)
be fulfilled. Then
L 0
0 _ _ _ M
q,(s, t) < J‘ M0 5¢ Py~ =D e TN+
(t=1) Ays1=7

—00

for all ¥ < Ay, ;. We change the variable in integration & = (Ay_;—7)(t —7)
and find that

0
Mk " M )‘N+1
(1= Ay
where the constant k is defined by (1.7). It is also evident that

qy(s, t) <

)

MY
V= Ay
provided that y > A,. Equation (2.3) implies that y = Ay + (2M/q)k1% lies in
the interval (Ay, Ay, ;). If we choose the parameter y in such way, then we get

q5(s, t) <
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M(1+k)2)
q,(s, t)+aqy(s, t) < ( )My +4
Y X _ZM)\’G 2
N+1~MN T g AN

Hence, equation (2.3) implies (2.9). Therefore, estimate (2.10) is valid, provi-
ded that the hypotheses of the lemma hold. Moreover, similar reasoning enables
us to show that

|B;’L[U]‘s < Dy +[A%] + g, 2.11)

where D, is defined by formula (2.6). In particular, estimates (2.10) and (2.11)
mean that when s, L, and p are fixed, the operator BJSO’L maps C, into itself
and is contractive. Therefore, there exists a unique fixed point @S(t, p). Evi-
dently it possesses properties (2.4) and (2.5). Lemma 2.1 is proved.

Lemma 2.1 enables us to define a collection of manifolds { Mé } by the formula
ML ={p+®L(p, s): p e PH},

where

S
OL(p, s)= J o (s _T)AQB(U(’E), T)dt = Qu(s; p). (2.12)
s—L
Here v (t) = v(t; p) is the solution to integral equation (2.1). Some properties of
the manifolds {Mf} and the function ®L(p, s) are given in the following assertion.

Theorem 2.1.

Assume that at least one of two conditions (2.2) and (2.3) is satisfied.
Then the mapping CDL( -, 8) from PH into QH possesses the properties
a) |A%®L(p, s)| < Dy+q(1—q){D;+[A%]} (2.13)
Jor any p € PH, hereinafter D, is defined by formula (2.6) and
Dy =M(1+k) A0 ; (2.14)

b) the manifold MSL 18 a Lipschitzian surface and
”AGCDL(pl, s) —DL(p,, S)H < %}”Ae(pl—pz)” (2.15)

Jorall py, py € PH and s € R;

o) fu(t)=u(t s;p +CD§‘(p)) 1s the solution to problem (1.1) with the
initial data uy=p+®DL(p, s), p € PH, then Qu(t)= ®L(Pu(t), t)
Sfor L = oo, In case of L < o the inequality

[A9(Qui(t) - DE(Pu(t), 1)) <

< Dy(1-q) e "+ q(1-q)2e 75D, +] 40} (2.16)
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holds for all s <t < s+ L, where y is an arbitrary number from the
segment [ Ly, Ay 1] o (2.2) is fulfilled and y = Ly + (2M/q)7x]% when
(2.3) is fulfilled;

d) if B(u, t) = B(u) does not depend on t, then ®L(p, s) = PL(p), ie.
®L(p, t) is independent of t.

Proof.
Equations (2.12) and (1.8) imply that

S 9 B ~
|40l (p, s)| < M j [(22) #2817 a0 ol <
—L

= J (%) #2700 gy, 9,

By virtue of (2.9) we have that q, (s, s) < q. Therefore, when we change the vari-
able in integration § = A, ;(s—1) with the help of equation (2.5) we obtain (2.13).
Similarly, using (2.4) and (1.8) one can prove property (2.15).

Let us prove assertion (c). We fix ¢, € [s, s+L] and assume that w(t) is a
function on the segment [s, s+L] such that w(t) = u(t) for t € [s, ty] and w(t) =
=,(t) for t €[s—L, s].Here v(t) is the solution to integral equation (2.1). Using
equations (1.4) and (2.1) we obtain that

t
w(t) = e-t=9)4(p + OL(p, s)) +J'e (t=DAB(w (1), T)dt =

S
t

= e tms)Ap je—@ DA PpB(w(t), T)dT+ j e =DAQB(w (), T)dt (217
S s—L
for s <t < 1. Evidently, equation (2.17) also remains true for ¢ € [s L, s] Equa-
tion (1.4) gives us that

S
p=e T p0) 4 Je—@ ~94pB(w (1), 1)dr.
Ly
Therefore, the substitution in (2.17) gives us that

o, L
w(t) = Bpo(to)[w](t)-l—bL(tO, s t) (2.18)
forallt € [ty—L, t,], where p(t) = Pu(t) and
tO—L
by(ty, 55 t) = J' e 1 =D4QB (v (1), T)dT . (2.19)

s—L
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In particular, if L = oo equation (2.18) turns into equation (2.1) with s = ¢, and
p = p(ty). Therefore, equation (2.12) implies the invariance property Qu(t,)=
= O®(Pu(ty), t;).Letus estimate the value (2.19). If we reason in the same way as
in the proof of Lemma 2.1, then we obtain that

”AebL(to, s: t)H < e_(t_toJrL))LN“{qi(s, ty—L)+q,(s, ty—L) eY(s_to+L)|vS|S},

where ¢, (s, t) is defined by formula (2.7) and
t

\ 0 - _
q,(s, t)=M J ((%) +k2+1)e e T g (2.20)
s—=L
Therefore, simple calculations give us that

HAebL(t(p s; t)” < e—(t—tO+L)}LN+1 {D2+€y(s_tO+L)Q|US|s}, 2.21)

where D, is defined by formula (2.14). Let v, O(t) be the solution to integral equa-
tion (2.1) for s = ¢, and p = Pu(t,). Then using (2.12), (2.18), and (2.1) we find
that

Qu(ty) =@ (Puty), tg) = Q(w(ty) = v, () (2.22)

However, forall t € [t,—L, t,] we have that

w(t) o, (1) = By [)(1) = Byt [0, 1)+ by (1 55 1).

tn, L
Therefore, the contractibility property of the operator Bp0 gives us that

(1 _q)’w _Uto‘zo = { e [tf)llpL, to]{e_Y(to_t)HAebL(to’ > t)”}

Hence, it follows from (2.21) and (2.22) that

HAG(QU(ZO))_CDL(PU(’:O)» to)” “AG (t) —v, (to))H <

< [0ty < (-0 {e‘“DzweW“)wsu}'

This and equation (2.5) imply (2.16). Therefore, assertion (c) is proved.
In order to prove assertion (d) it should be kept in mind that if %(u, t) =
= B(wu), then the structure of the operator B‘Z; L enables us to state that

By “[0](t—n) = By F[,] (1)

for s+h—L <t < s+h,where v,(t) = v(t—h). Therefore, if v(t) € C, g(s—L, s)
is a solution to integral equation (2.1), then the function

vy(t) = v(t=h)eC, g(s+h-L, s+h)
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is its solution when s+ & is written instead of s. Consequently, equation (2.12)
gives us that

OL(p, s+h) = Qu,(s+h)=Qu(s)=DL(p, s) .

Thus, Theorem 2.1 is proved.

Exercise 21 Show that if |B(u, t)] < M, then inequalities (2.13) and
(2.16) can be replaced by the relations

|A%DL(p, s)| < Dy, (2.23)

[49(Qu(t) ~@L(Pu((r), )l < Dy(1-q) e, (224)
where Dy, is defined by formula (2.14).

§ 8 Existence and Properties
of Imertial Manifolds

In particular, assertion (c) of Theorem 2.1 shows that if the spectral gap condition

hvar=dy 2 2+ R)AR +0N), O<a<1, 3.1
is fulfilled, then the collection of surfaces
M,={p+®(p, s): p e PH}, sek, (3.2)
is invariant, i.e.
U, s) Mg M,, -oo<s<t<oo. (3.3)

Here @(p, s) = ®=(p, s) is defined by formula (2.12) for L = oo and U(t, s) is
the evolutionary operator corresponding to problem (1.1). It is defined by the for-
mula U(t, s)u, = u(t), where u(¢) is a mild solution to problem (1.1).

In this section we show that collection (3.2) possesses the property of exponen-
tial uniform attraction. Hence, {Mt} is an inertial manifold for problem (1.1). More-
over, Theorem 3.1 below states that {M,} is an exponentially asymptotically
complete 1M, i.e. for any solution u (t) = U(t, s)u, there exists a solution u () =
= U(t, s)u, lying in the manifold (2 (t) € M;, t > s) such that

140 (u(t) —a(e)l < Ce M) n>0, t>s.

In this case the solution % (¢) is said to be an induced trajectory for u(t) on the
manifold Mt . In particular, the existence of induced trajectories means that the so-
lution to original infinite-dimensional problem (1.1) can be naturally associated with
the solution to the system of ordinary differential equations (1.10).
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Theorem 3.1.

Assume that spectral gap condition (3.1) is valid for some g < 2 — J2.
Then the manifold {M,, s € R} given by formula (3.2) is inertial for prob-
lem (1.1). Moreover, for any solution wu(t)= U(t, s)u, there exists an in-
duced tragectory w(t) = U(t, s)uy, such that u'(t) e M, for t > s and

2(1-q)
(2-q)?-2

where y = kN+%M7L1% and t>s.

140 (u (1) —ur ()] < e 1179 A0(Quy — D(Pyu, s))

, B4

Proof.

Obviously it is sufficient just to prove the existence of an induced trajectory
u*(t) € M, possessing property (3.4). Let u(¢) be a mild solution to problem (1.1),
u(t) = U(t, s)u,. We construct the induced trajectory w*(t) = U(t, s)u for u(t)

in the form () = w(t) +w(t), where w(t) lies in the space Cf = Cy (s, +o,
D(A9)) of continuous functions on the semiaxis [s, +o0) such that
lwl, | = sup {eY(z_s)”Aew(t)"} < o0, (3.5)

t>s
where v = Ay+(2M/q) k]?, . We introduce the notation

F(w, t)=B(u(t)+w, t)—B(u(t)) (3.6)
and consider the integral equation (cf. (1.15))

w(t) = Bi[w](t) = e(tS)Aq(w)+J.e(tT)AQF(w(r), 7)dt —

+o0
- J e "DAPR(w (1), T)dt, 1 e[s, +oo), 3.7
t
in the space Cf . Here the value q(w) € QD(AY) is chosen from the condition
w(s)=u(s)+w(s) e My,
i.e. such that
Quy+Quw(s)=D(Puy+Pw(s), s).
Therefore, by virtue of (3.7) we have
ool
q(w) = —Quy+®| Pug, — J e = DAPF(w (1), T)dr, 5. (3.8)

S

Thus, in order to prove inequality (3.4) it is sufficient to prove the solvability of inte-
gral equation (3.7) in the space C;L and to obtain the estimate of the solution. The
preparatory steps for doing this are hidden in the following exercises.
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Exercise 8.1 Assume that F(w, t) has the form (3.6). Show that for any
w(t), w(t) e C;' =C s, +o0; D(Ae))
and for ¢ > s the following inequalities hold:

IF(w(t), )] < eV IMpol, (3.9)

s, y(

|F(w(t), t)—F@(t), ) < e " IMw -], , . (3.10)

Exercise 8.2 Using (1.8) prove that the equations

0
|40t =D A pl o~ (T=s)gr | < k—N-e‘Y(’f‘s) 3.11)
Y_kN ,

t
J'”Aee—(t “4ge (=) gr | <

< k(A=) +)‘N+1 o1(t=5) (3.12)
Ang1 =Y
hold for Ay < v < Ay, and ¢ > s. Here k is defined by formula

a.m.

Lemma 3.1.

Assume that spectral gap condition (3.1) holds with q < 2 —J2. Then
B: 1S a continuous contractive mapping of the space C;' wmto itself.
The unique fixed point w of this mapping satisfies the estimate

ol < (—;—%)——Q-LHA@ Qug —@(Puy, s)). (3.13)

Proof.
If we use (3.7), then we find that

[49B3 [w] ()] < e\ N a0 ()] +
+oo

3
+J|\A96—<t “DAQNF(w (1), T)ldt + .[ |40e~( = DA P| | F(w (1), T) dt

for ¢ > s. Therefore, (3.9), (3.11), and (3.12) give us that

AOBH [w =91 ABg () +
(w)

0 0
V=Ay Ay~ ’
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Since y = Ay +(2M/ q) ~ > Spectral gap condition (3.1) implies that
[40BE[w]()] < ¢ TN A0q(w) +qe Il L . B14)
Similarly with the help of (3.10)—(3.12) we have that
[A°B;[w](t) - Bi[@] (1) <
< ¢ UMt 0 (g(w) - q(@))] + g TS —l, (3.15)

forany w, w € C;r . From equations (3.8), (3.9), and (2.15) we obtain that
+ o0

|4%a(w) + Qug ~@(Puy, )] < {27 juAe e =D p| (.

Therefore, (3.11) implies that

|4%(w)l < [4%Qug ~@(Pug, )]+ 57—

S + -
Similarly we have that
0 T @ T
|A (q(w)—q(w))” < mlw —wls, 4 (3.17)
It follows from (3.14)—(3.17) that
q 2-q
Bi[w]l,. , < [4A%Quy —®(Puy, s))| + 5 T—gls, +» (3.18)

+ [ q 2-q —
|Bs[w] - B [w]|s + = 514 lw —w|5, +
Therefore, if g < 2 — ﬁ , then the operator B; is continuous and contractive in
C; . Estimate (3.13) of its fixed point follows from (3.18). Lemma 3.1 is proved.

In order to complete the proof of Theorem 3.1 we must prove that the function

wi(t)=wu(t)+w(t)
is a mild solution to problem (1.1) lying in {M,, ¢ > s} (here w(¢) is a solution
to integral equation (3.7) ). We can do that by using the result of Exercise 1.2, the in-
variance of the collection {M,}, and the fact that equality (3.8) is equivalent to the
equation u*(s) € My . Theorem 3.1 is completely proved.

Exercise 3.8 Show that if the hypotheses of Theorem 3.1 hold, then the in-
duced trajectory w*(¢) is uniquely defined in the following sense: if
there exists a trajectory «**(¢) such that u**(¢t) e M, for t > s and

140w (2) —w ()] < CeV(=5)

with 7 2 2+ 2245 then (1) = w'(t) for ¢ > 5.
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The construction presented in the proof of Theorem 3.1 shows that in order to build
the induced trajectory for a solution u(¢) with the exponential order of decrease y
given, it is necessary to have the information on the behaviour of the solution (%)
for all values ¢ > s. In this connection the following simple fact on the exponential
closeness of the solution % (t) to its projection Pu (t) + ®(Pwu(t), ¢) onto the mani-
fold appears to be useful sometimes.

Exercise 34 Show that if the hypotheses of Theorem 3.1 hold, then the es-
timate

1AO(Qu(t) —@(Pu(t), t))l <

<2

(2-q)*-2

is valid for any solution w%(t) to problem (1.1). Here y= Ay +

+ (2M/q)k1% and ¢ >s (Hint: add the value D((Pu(t),t)—

—Qu*(t)) =0 to the expression under the norm sign in the left-hand
side. Here w*(t) is the induced trajectory for w(t)).

=) A0(Puy — D(Pug, 1))

It is evident that the inertial manifold {M,} consists of the solutions «(t) to problem
(1.1) which are defined for all real ¢ (see Exercises 1.3 and 1.4). These solutions can
be characterized as follows.

Theorem 3.2.

Assume that spectral gap condition (3.1) holds with g < 2 -2 and
{Mt} s the inertial manifold for problem (1.1) constructed in Theorem 3.1.
Then for a solution wu(t) to problem (1.1) defined for all t € R to lie in the
inertial manifold (u(t) e M,), it is necessary and sufficient that

lul, = sup {7V D[ A0u(t)|: o0 <t < 5} < o0 (3.19)

Jor each s € R, where v = Ay + %Mk]%

Proof.
If u(t) e M, then w(t)=Pu(t)+D(Pu(t), t). Therefore, equation (2.13)
implies that
[4%%(t)| < D, + % + ﬁ |49Pu (1) . (3.20)
The function p (t) = Pu(t) satisfies the equation
t
p(t)= e =9)4p () + Je@f)ApB(u(r), T)dr
S

for allreal ¢t and s . Therefore, we have that
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S
[40p ()] < & ] a0p(s)] + 128, J TN (1 4 |40 (1)]) o
3

A

for ¢ < s. With the help of (3.20) we find that
9 S
A, MA ey
HAep(t)” < Cf(s, N, q)e(S 0 N+ T——_—%[ J-e(T 0 NHA%(T)” dt
t

for t < s, where

qDl
C(s, N, q) = A%(s) +M(1+D2 + 1“—71) e

Hence, the inequality
M8 7
o) < C(s, N, q)+1T;V J(p(f)df
t

holds for the function @(t) = ||A9p(lf)|| e(t_s)}w and ¢ < s. If we introduce the func-
tion Y() = J.‘: ¢(7t)dt, then the last inequlity can be rewritten in the form

M,
W‘(t)-l-qw(t) > -C(s,N,q), t<s,

or

0 0
d MA M A
a—{w(t)exp{—lt-gtﬂ > —C(s, N, q)exp{—l—:—gt , t<s.

After the integration over the segment [t, s] and a simple transformation it is easy
to obtain the estimate
0

MA
Apt) < C(s, N NV (s —n) L. 3.21
|49 () < s, ,q)exp{(kNJr 1_q)(s t)} (3.21)
Obviously for g < 2 — /2 we have that
M2, 2M 40
Ay + =g < y:kN+7kN.

Therefore, equations (3.21) and (3.20) imply (3.19).
Vice versa, we assume that equation (3.19) holds for the solution % (). Then

IBu()l < ?C~OM(1+d,), t<s. (3.22)

It is evident that ¢ (t) = e~ Qu () is a bounded (on (—oo, s]) solution to the
equation

L (@a-y)a=F().
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where F(t) = exp{—y(s—t)} QB(u(t)). By virtue of (3.22) the function F(¢) is
bounded in @ H . It is also clear that Ay = A—7v is a positive operator with discrete
spectrum in @ H . Therefore, Lemma 1.1 is applicable. It gives
t
Qu(t) = J' e~(t=AQ B (u(1))dr.

Using the equation for Pu(t) it is now easy to find that

w(t)=By T [u](t), t<s,
where p = Pu(s) and B;’ * [u] is the integral operator similar to the one in (2.1).
Hence, we have that Qu(s) = ®(Pu(s), s) accoring to definition (2.12) of the
function @ (p, s) = ®*(p, s). Thus, Theorem 3.2 is proved.

The following assertion shows that IM My = M can be approximated by the mani-

folds { MSL }, L < oo, with the exponential accuracy (see (2.12)).
Theorem 3.3.

Assume that spectral gap condition (3.1) is fulfilled with q < 1. We also
assume that the function (I)L(p, s) 1is defined by equality (2.12) for
0 < L £ oo. Then the estimate

L L
|40@"1(p, 5) -0 (p, 5))| <
_1+g
2(1-q)?
is valid with L ; =min(L,, Ly), 0 < Ly, L, < oo; the constants D, and D,
are defined by equations (2.6) and (2.14);

< Dy(1—q)le " ming (D, +]A0p]} & ONFmin | (3.23)

2M 50 2M(1-q),0
=Avt+tESAy,  Oy=—— Ay
INT=MANT T MY NT T N
Proof.
Let 0 < L < Ly < oo Definition (2.12) implies that
L L
OU(p, 5) =0 p, 5) = Q(v,(5) ~0,(5)). (324)

where v;(¢) is a solution to integral equation (2.1) with L = L, j =1, 2. The ope-
rator B;; Ly acting in Cy’ Q(S—Lz, s) (see (2.1)) can be represented in the form
s, L s, L
B, v](t)= B, "[v]()+b(vs b, s), tels—Ly, s],
where
stl
b(v; 1, s) = J o= QB(v(1), T)dt

s—L2
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and v (t) is an arbitrary element in C, (s —Ly, s). Therefore, if v,(¢) is a solution
to problem (2.1) with L = Lj , then

s, L s, L
v1(t) —vy(t) = B, T[] = B, [vy] —b(vg; ¢, 5) (3.25)

forall s—L; <t < s.Let us estimate the value b(vy; t, s). As before it is easy to
verify that

”Aeb(Uz; L S)H < o TS v {ri(s=Ly) +ry(s—Ly)fvy .}

forallt € [s—L;, s], where

t
ry(t) =M j |A0¢~(1-7)4 Q] dr,

t
ro(t) = MJ [49—(t-DAQ| " Dgr

and the norm |v2|S , is defined using the constants g* = I+q and y,= Ay + Z(JA/[ X?V

by the formula 2
P, = s ety 0] e =Ly .

Evidently, spectral gap condition (3.1) implies the same equation with the parameter
q" instead of q . Therefore, simple calculations based on (1.8) give us that

.-
2 K

where D, is defined by formula (2.14). Using Lemma 2.1 under condition (2.3) with
q* instead of ¢ we obtain that

vgl,. . < (1=a") Dy +[4%]},

r(t) <Dy and 7, <e

where D, is given by formula (2.6). Therefore, finaly we have that

0 . —(t=s+ L)AL q* y.L
[4% (vy: ¢, )| < e s Dyt sa— 1Dy +]4%I)

forallt € [s—L,, s].Consequently,

sup {eY(t_S)HAeb(vz; t,s)|:tels—Ly, s]} <

—-vL * L
<e 1{D2+2w(1q_q*) e 1(D1+||A%||)}-



Existence and Properties of Inertial Manifolds

. , Ly . . . .
Therefore, since B; 1 is a contractive operator in CY 0 (s—Ll, s), equation (3.25)
gives us that

(1=q)|o; =0,

<
v, e(s —-L,, s)

—yL
Selez-i-

1 1+g e—(v—y*)ﬂl(Dl + ||A910||) .
2 1-q

Here we also use the equality ¢* = %(1 +q). Hence, estimate (3.23) follows from
(3.24). Theorem 3.3 is proved.

Exercise 8.5 Show that in the case when |B(u, t)| < M equation (3.23)
can be replaced by the inequality

|40@" (5, 5)~0"2(p, )| < Dy(1-g) I

Exercise 3.6 Assume that the hypotheses of Theorem 3.1 hold. Then the
estimate

[49(Qu (1) —@L(Pu(t), ) <

_ _ 10

< C(l +HA9uO\|)e W)y g gt

holds for ¢ > ¢, and for any solution « (t) to problem (1.1) possess-
ing the dissipativity property: ||A9u t)|| <R for ¢t >¢,>s and for
some R and t¢,. Here yy= Ay + ZTKJ% and the constant o > 0
does not depend on N .

Therefore, if the hypotheses of Theorem 3.1 hold, then a bounded solution to prob-
lem (1.1) gets into the exponentially small (with respect to k]e\, and L) vicinity of
the manifold {Mﬁ : —o0 < § < oo} at an exponential velocity.

According to (2.12) in order to build an approximation {Mﬁ} of the inertial
manifold { Ms} we should solve integral equation (2.1) for L large enough. This
equation has the same structure both for L. < co and for L. = oo . Therefore, it is im-
possible to use the surfaces { M%) directly for the effective approximation of {M} .
However, by virtue of contractiveness of the operator B;; “ in the space Cg =
=C, (=, s), its fixed point v(¢) which determines M, can be found with the
help of iterations. This fact enables us to construct the collection {Mn’ s} of appro-
ximations for { M} as follows. Let vy = v, ((¢; p) be an element of C; . We take

v, =0, (t,p)=By Zlv, |](t), n=1,2 ..,
and define the surfaces {M,, } by the formula
Mn’ s={p+®,(p, s): pe PH},
where @, (p, s) = Qvn’s(p, s), m=1,2,..
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Exercise 8.7 Letv, = p andlet B(u, t) = B(u). Show that
®y(p, s) =0 and D(p, s)= A"1QB(p).

Exercise 3.8 Assume that spectral gap condition (3.1) is fulfilled. Show
that

4%, . N = (o, + (=) [Dy +12%l] ),

where D, is defined by formula (2.6) and @(p, s) is the function
that determines the inertial manifold.

Exercise 3.9 Prove the assertion for @, (p, s) similar to the one in Exer-
cise 3.5.

Theorems represented above can also be used in the case when the original system is
dissipative and estimates (1.2) and (1.3) are not assumed to be uniform with respect
tou eD (Ae) . The dissipativity property enables us to restrict ourselves to the con-
sideration of the trajectories lying in a vicinity of the absorbing set when we study
the asymptotic behaviour of solutions to problem (0.1). In this case it is convenient
to modify the original problem. Assume that the mapping B(u, t) is continuous with
respect to its arguments and possesses the properties

IB(u, t)l < Cpy [B(uy, 1) =Blug, t)] < Cp|A%uy —uy)]  (3.26)
for any p >0 and for all %, u,, and u, lying in the ball Bp ={v: | AB0| < p}.
Let y (s) be an infinitely differentiable function on R, = [0, o) such that
x(s)=1, 0<s<1; x(s)=0, s2>2;
0<y(s)<1, Ix'(s) <2, sekR,.
We define the mapping By (u, t) by assuming that
Bp(u, t) = x(RA%[)B(u, t), uweD(A?). (3.27)

Exercise 310 Show that the mapping BR(u, t) possesses the properties
|49B (w, )| < M,

|Br(uy, t) =Bg(ug, 1)) < M|A(u, (3.28)
where M = Cy 5 (1+2/R) and C, isa constant from (3.26).
Let us now assume that B(u, ¢) satisfies condition (3.26) and the problem
du
@ +Au = B(u, t), ul,_y =g (3.29)

has a unique mild solution on any segment [s, S+ T] and possesses the following
dissipativity property: there exists K > 0 such that for any R > 0 the relation
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|49 (2, 55 ug)| <Ry forall t—s>t4(R) (3.30)

holds, provided that “AGU,OH <R .Here u(t, s; uo) is the solution to problem (3.29).

Exercise 311 Show that the asymptotic behaviour of solutions to problem
(3.29) completely coincides with the asymptotic behaviour of solu-
tions to the problem

du
—az—i-Au = BZRO(u, t), ul,_ =ug, (3.3

where B, Ry is defined by formula (3.27) and R, is the constant
from equation (3.30).

Exercise 3.12 Assume that for a solution to problem (3.29) the invariance
property of the absorbing ball is fulfilled: if ”AGMOH <R,, then
HAeu (t, s; uo)u <R forall ¢ <s.Let M, be the invariant manifold
of problem (3.31). Then the set Mfo =M, N{u: | ABw| < R} isin-
variant for problem (3.29): if u, e MZEo | then w(t,s; Uy) € MZEo
t2>2s.

Thus, if the appropriate spectral gap condition for problem (3.29) is fulfilled, then
there exists a finite-dimensional surface which is a locally invariant exponentially at-
tracting set.

In conclusion of this section we note that the version of the Lyapunov-Perron me-
thod represented here can also be used for the construction (see [13]) of inertial
manifolds for retarded semilinear parabolic equations similar to the ones considered
in Section 8 of Chapter 2. In this case both the smallness of retardation and the fulfil-
ment of the spectral gap condition of the form (3.1) are required.

§ 4 Continuous Dependence of Inertial
Mamnifold on Problem Parameters

Let us consider the Cauchy problem

%%LJrAu:B*(u, 0, ul,_,=uy, seR .1

in the space H together with problem (1.1). Assume that B" (u, t) is a nonlinear
mapping from D(AG) x R into H possessing properties (1.2) and (1.3) with the
same constant M asin problem (1.1). If spectral gap condition (3.1) is fulfilled, then
problem (4.1) (as well as (1.1)) possesses an invariant manifold

171



172

s Q

~ 0 =T o

Inertial Manifolds

M;={p+®(p, s): pePH}, seR. (4.2)

The aim of this section is to obtain an estimate for the distance between the
manifolds M and M: . The main result is the following assertion.

Theorem 4.1.
Assume that conditions (1.2), (1.3), and (3.1) are fulfilled both for
problems (1.1) and (4.1). We also assume that
IB(v, 1) =B (0, )] < py+pyla®] (4.3)

Sforall v € D(Ae) and t € R, where p; and py are positive numbers. Then
the equation

pL+p
sup49(@(p. 5) - @'(p. s))| < Cy(a. 0) 11762 +Cy(q, 0, M) py|A%p|

N

is valid for the functions ®(p, s) and O (p, s) which give the invariant
manifolds for problems (1.1) and (4.1) respectively. Here the numbers
Ci(g, 6) and Cy(q, 6, M) do not depend on N and p;.

Proof.
Equation (2.12) with L = oo implies that

|48 (p, 5) - D' (p, 5))| < juA@e—(s—f)AanB(v(r), ) - B*(v(1), D)l dt |

where v(1) and v*(t) are solutions to the integral equations of the type (2.1) cor-
responding to problems (1.1) and (4.1) respectively. Equations (1.3) and (4.3) give
us that

B(v(1). 1) = Bw(x), 0l < MLA%(o(1) ~vr ()l +(py + pyla®u (o)) <

< QY(S -1) (Mlp _U*|S + Py |U|s) + P, (4.4)
for T < s, where
lwl, = ess sup {ey(s -1) ||A®w(t)||} (4.5)
t<s
and v = kN + wk?v as before. Hence, after simple calculations as in Section 2 we
find that
" 4 P 1+k
|4°(@(p. 5) - @@, s)l < Lo v, + 520l )+ py oo 4o
N+1

Let us estimate the value |v —v*| ¢-Since v and v* are fixed points of the correspon-
ding operator B;’ * we have that
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140w (£) —v*(1))] < J-||Aee(tT)AP||||B(U(I), ) —B(v*(1), 1)|dt +

j [0~ = DA Q| IB(w(1), 1) B (v*(x), T)ldr .

Therefore, by using spectral gap condition (3.1) and estimate (4.4) as above it is
easy to find that

. a o 4Pg 1 1+k
o —v, < gqlv-v |s+7-|vls+ pl(m 210 ]
N N+ 1
Consequently,
o q pz 2+k
lv U|S < g M || 1 qkm}v_e-
Therefore, equation (4.6) implies that
* q Py 2 2+k
14%@(p, )= @0, ) < 175 g Il + Py gt 0
Hence, estimate (2.5) gives us the inequality
N P1tPy 24k
|49(@(p, 5)-0i(p, syl < DLTP2 24k, G Papey

— )2 1-0 M
(1-q)* 2579 2(1-q)
This implies the assertion of Theorem 4.1.
Let us now consider the Galerkin approximations um(t) of problem (1.1). We re-

mind (see Chapter 2) that the Galerkin approximation of the order m is defined as a
function u,,(¢) with the values in P, H , this function being a solution to the problem

du,,
-a—Z—+Aum:]§nB(umO), um‘t:s: Ug - 4.7
Here P, is the orthoprojector onto the span of elements {el, ey em} in H.

Exercise 4.1 Assume that spectral gap condition (3.1) holdsand m > N+1.
Show that problem (4.7) possesses an invariant manifold of the form

M{™) = (p+®)(p, s): p e PH)

in P, H , where the function ®(")(p, s): PH — (B,—P)H is de-
fined by equation similar to (2.12).
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The following assertion holds.

Theorem 4.2.

Assume that spectral gap condition (3.1) holds. Let ®(p, s) and
CD(m)(p, s) be the functions defined by the formulae of the type (2.12) and
let these functions give invariant manifolds for problems (1.1) and (4.7) for
m > N + 1 respectively. Then the estimate

C(a, M, 0) |, Di+14%l
}\'1 0

m+ 1 1-—

|48(D(p, s) —D)(p, s)) < (4.8)

Ay
km +1
is valid, where the constant D, is defined by formula (2.6).

Proof.
It is evident that

(D(p, s) —D")(p, s))=Q[v(s; p)—v")(s; p)], (4.9
where v (¢, p) and v(")(t, p) are solutions to the integral equations
v(t) = By “[v](t), -eo<t<s,
and
oM (t)y=P, B;’ Clom](t), -wo<t<s.
Here BZ’ * ig defined as in (2.1). Since
v(t)=olM(t) = (=B, )v(t) + B, [By “[v](t) - By " [o(™](1)],
we have
[4%o(2) =™ (1) = |A%(1= B, ) v (1)| +[ A% By *[0](1) - By “[o™](1)]].
The contractiveness property of the operator B]% * leads to the equation
1490(e) ~om )] = |4%(1=E, ) (0)] + a-lo —o0m) o766 0.
In particular, this implies that
lv —v(m)]; = ggl)se_y(s_‘)||A9(U(t)—U(’”)(I))" < (1-q) H(1-B,)v, -
Hence, with the help of (4.9) we find that
|AO(D(p, s) — D) (p, s)) < |49 (s)—v(™)(s))| < v —vm), < (4.10)
< (1=g) H(1-5,)v,
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Let us estimate the value |(1-F, )| . It is clear that
t
(1-P,)v(t) = '[e‘(’f‘T)A(l—Pm)B(w(r))dr.

Therefore, Lemma 2.1.1 (see also (1.8)) gives us that

[4°(1-P,) J U +k§n+& D g

¢
+M_[ [(%) +7‘?n+1} eixm“(tit) 8(27T)7 dt Ivls-eY(s_t) 7
where
2M ~0
V= ANt AN < Ay < A

as above. Simple calculations analogous to the ones in Lemma 2.1 imply that

M(1 +k) +M(l +k)20 O
7L }\‘m 177
where the constant & has the form (1.7). Consequently, using (2.5) we obtain

(1-B,)0|, < ]V[;f—:)k)(“(l—%)_llvls) <

m+ 1 m+1

|A%1=E, o (1) <

m+1

< MUEB) (14 (1 —% )_1 (1-a) ™ (D + 149p]) ).

1-6
km+1 m+1

This and (4.10) imply estimate (4.8). Theorem 4.2 is proved.

Exercise 4.2 In addition assume that the hypotheses of Theorem 4.2 hold
and |B(u, t)| < M . Show that in this case estimate (4.8) has the form

140D (p, s) - @) (p, s))| < C(q; M, O)A; 110

m+ 1
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§ 5 FExamples and Discussion

Example 5.1

Let us consider the nonlinear heat equation

ou _ 0%u

E_V@+f(x’u’t)’ O<w<l, t>0, (5.1)
u|x=0 = u|x:[ = 0 R (5.2)
ul,_g=uo(x) . (5.3)

Assume that v is a positive parameter and f (x, u, t) is a continuous function
of its variables which possesses the properties

(2, g, 1) = (@ g, £) S Mluy —uy|,  |f(x, 0, 1) < %

Problem (5.1)-(5.3) generates a dynamical system in L2(0, l) (see Section 3
of Chapter 2). Therewith

d2
% ok
where H%(0, 1) is the Sobolev space of the order s. The mapping B( -, t) given
by the formula w(x) — f(2, u(x), t) satisfies conditions (1.2) and (1.3) with
0 = 0. In this case spectral gap condition (2.3) has the form

am
s

A=-— D(A)=Hy(0, L) N H2(0, 1),

n2 2
vl—z((N+1) -N?) >

Thus, problem (5.1)—-(5.3) possesses an inertial manifold of the dimension N,
provided that

e (5.4)

for some q < 2 — /2.

Exercise 5.1 Find the conditions under which the inertial manifold of prob-
lem (5.1)—(5.3) is one-dimensional. What is the structure of the cor-
responding inertial form?

Exercise 5.2 Consider problem (5.1) and (5.3) with the Neumann bounda-
ry conditions:

ou
ox

_ou _
== =0 (5.5)

‘x:() ‘le

Show that problem (5.1), (5.3), and (5.5) has an inertial manifold
of the dimension N+ 1, provided condition (5.4) holds for some
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N> 0. (Hint: A=—v(d?/dz?) + & with condition (5.5), B(u, t) =
=—eu+f(v, u, t),where € > 0 is small enough).

Exercise 5.8 Find the conditions on the parameters of problem (5.1), (5.3),
and (5.5) under which there exists a one-dimensional inertial mani-
fold. Show that if f(x, w, t) = f(u, t), thenthe corresponding iner-
tial form is of the type

p(t) =fp(), t),  Dl,_o=Po-

Example 52

Consider the problem

ou

ou 04w ( )
+fx,u,5§,t, O<ax<l, t>0,

ot~ Vaa2

u|x=O:u|x=l: 0, u|t=0:u0(x) .

(5.6)

Here v > 0 and f(x, u, &, t) isa continuous function of its variables such that

|f(x, uy, &, t) = f(2, uy, &, t)| < L1|u1—u2|+L2|?;1—§2| 5.7

forallz € (0, 1), t 2 0 and
l

J[f(x, 0, 0, t)]2dx < L%,

where L j are nonnegat(i)ve numbers. As in Example 5.1 we assume that
A =—vdd_x22, D(A) = HY(0. ) NE2(0, 1), B(u, 1) = f(w u. & 1),
It is evident that
||B(u1, t) = B(uy, t)|| < L1||u1 —u2|| +L2“% _%@% .
Here | -| is the norm in LZ(O, 1) . By using the obvious inequality

aul2 o (T, 12 1
|2 = (5w, wenjio. ),
we find that
1 l
By, ) =Blug, 0)] < Jo(Ly 2+ L) |4V, ~u).
Hence, conditions (1.2) and (1.3) are fulfilled with

1wy (L)
9—2, M_maX{L3’ﬁnL1+L2 }
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Therewith spectral gap condition (2.3) acquires the form

FTeN+1) 2 2Nk 1)),

E12e75de = E

T N+l _ gV
2°2N+1 = 2IM

T T 1 ng v
2*@*@ INFI S 1M

must be valid for some 0 < ¢ < 2 — ﬁ . We can ensure the fulfilment of this con-
dition only in the case when

TqyV
2+/\E< qO 9 qozz_ﬁ7

M

where

k:_.]:_

2

ot

Thus, the equation

1+

or

Le.if

_ 1 (1 N !
M =max{L3, E(T_ELH_LZ)} < 2n7~m. (5.9)

Thus, in order to apply the above-presented theorems to the construction of the
inertial manifold for problem (5.6) one should pose some additional conditions
(see (5.7) and (5.9)) on the nonlinear term f(x, u, ou/0x, t) or require that the
diffusion coefficient v be large enough.

Exercise 54 Assume that f(z, u, &, t)=¢f(x, u, &, t) in (5.6), where
the function f possesses properties (5.7) and (5.8) with arbitrary
Lj > 0. Show that problem (5.6) has an inertial manifold for any
0 < &< gy, where

80=27T£V 21 {max{Lg; l(LLl+Lz)H

-1
U o fa+dn vA/n

Characterize the dependence of the dimension of inertial manifold
on¢.

Exercise 5.5 Study the question on the existence of an inertial manifold for
problem (5.6) in which the Dirichlet boundary condition is replaced
by the Neumann boundary condition (5.5).
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It should be noted that
A, =Cyn?(1+0(1)), mn->o, d=dmQ,

where kn are the eigenvalues of the linear part of the equation of the type

%?—:VAu+f(x, u, Vu, t), xe€Q, t>0,

in a multidimensional bounded domain Q . Therefore, we can not expect that Theo-
rem 3.1 is directly applicable in this case. In this connection we point out the paper
[3] in which the existence of IM for the nonlinear heat equation is proved in a boun-
ded domain Q < R? (d < 3) that satisfies the so-called “principle of spatial ave-
raging” (the class of these domains contains two- and three-dimensional cubes).

It is evident that the most severe constraint that essentially restricts an applica-
tion of Theorem 3.1 is spectral gap condition (3.1). In some cases it is possible to
weaken or modify it a little. In this connection we mention papers [6] and [7]
in which spectral gap condition (3.1) is given with the parameters ¢ = 2 and &k = 0
for 0 < O < 1. Besides it is not necessary to assume that the spectrum of the opera-
tor A is discrete. It is sufficient just to require that the selfadjoint operator A pos-
sess a gap in the positive part of the spectrum such that for its edges the spectral
condition holds. We can also assume the operator A to be sectorial rather than self-
adjoint (for example, see [6]).

Unfortunately, we cannot get rid of the spectral conditions in the construction
of the inertial manifold. One of the approaches to overcome this difficulty runs as
follows: let us consider the regularization of problem (0.1) of the form

o= Y- (5.10)

%—i‘ tAu+eA™u = B(u, t), u|
Here € > 0 and the number m > 0 is chosen such that the operator A=A+gAm
possesses spectral gap condition (3.1). Therewith IM for problem (5.10) should be
naturally called an approximate IM for system (0.1). Other approaches to the con-

struction of the approximate IM are presented below.

It should also be noted that in spite of the arising difficulties the number of equations
of mathematical physics for which it is possible to prove the existence of IM is large
enough. Among these equations we can name the Cahn-Hillard equations in the do-
main Q = (0, L)%, d = dimQ < 2, the Ginzburg-Landau equations (Q = (0, L)%,
d < 2),the Kuramoto-Sivashinsky equation, some equations of the theory of oscilla-
tions (d = 1), a number of reaction-diffusion equations, the Swift-Hohenberg equa-
tion, and a non-local version of the Burgers equation. The corresponding references
and an extended list of equations can be found in survey [8].

In conclusion of this section we give one more interesting application of the
theorem on the existence of an inertial manifold.
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Example 538

Let us consider the system of reaction-diffusion equations

ou _ ou _

E—vAu-i-f(u, Vu), %aQ—O, (5.11)
in a bounded domain Q « R? . Here u = (uy, ..., u,,) and the function f(u, &)
satisfies the global Lipschitz condition:

f(u, €)= f(v, M) < Lilu—of +]€ —nl*}?, (5.12)

where u, v € R™, & 1 € R™% and L > 0. We also assume that | f(0, 0)] < L.
Problem (5.11) can be rewritten in the form (0.1) in the space H = [L?(Q)]™
if we suppose

Au=-vAu+u, B(u)=u+f(u, Vu).
It is clear that the operator A is positive in its natural domain and it has a dis-
crete spectrum. Equation (5.12) implies that the relation

1/2
IB(u) ~B()| < L{nu—vu%nwu—v)uz} lu—o] <

: [1 +Lma><{1; %V}] {nu ol + vIV(u -U)HZ}W

is valid for B(w) . Thus,
1B(u) =B(w)l < M|AYV2(u -0,

where

1
M=1+ Lmax<1l; —;.
{ fv}

Therefore, problem (5.11) generates an evolutionary semigroup S, (see Chap-
ter 2) in the space D(AY2). An important property of S, is the following: the
subspace L which consists of constant vectors is invariant with respect to this
semigroup. The dimension of this subspace is equal to m . The action of the
semigroup in this subspace is generated by a system of ordinary differential
equations

fé_@; = f(u. 0), w(t)el. (5.13)

Exercise 5.6 Assume that equation (5.12) holds for £ = 11 = 0. Show that
equation (5.13) is uniquely solvable on the whole time axis for any
initial condition and the equation

sup {eL(S 7t)|u (s)|} < oo (5.14)

t<s

holds for any s € R.
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The subspace L consists of the eigenvectors of the operator A corresponding to the
eigenvalue kl = 1. The next eigenvalue has the form kz =V +1, where p; is
the first nonzero eigenvalue of the Laplace operator with the Neumann boundary
condition on 0€2. Therefore, spectral gap equation (3.1) can be rewritten in the
form

v, > g(l—i—LmaX{l; J_B ((1+£)W+1) (5.15)

\Y%

for N=m and 0 = 1/2, where 0 < ¢ < 2 — /2. It is clear that there exists vy >0
such that equation (5.15) holds for all v > v, . Therefore, we can apply Theorem 3.1
to find that if v is large enough, then there exists IM of the type

M :{p—i-q)(p):p elL,®: L ->HO L}.

The invariance of the subspace L and estimate (5.14) enable us to use Theorem 3.2
and to state that L = M. This easily implies that ®(p) = 0, i.e. M = L. Thus,
Theorem 3.1 gives us that for any solution % (t) to problem (5.11) there exists a so-
lution % (¢) to the system of ordinary differential equations (5.13) such that

l(t) —u(t)l; < Ce ¥t t20,

where the constant y > 0 does not depend on %(¢) and | - |; is the Sobolev norm
of the first order.

Exercise 5.7 Consider the problem
2

ou _ 0%

ot ox?

where the function f(#, u) has the form

+f(x, u), 0< o< m,; Ul _g=ul,_,=0, (6516)

xr=

S, u) = gy (uy, ug)sinw + gy (u;, uy)sin2x.
Here
T
2 o .
w; = T—Ju(x)smjxdx, ji=1,2,
0
and g; (u,, u,) are continuous functions such that
|9;(uy, uy) —g;(vy, vy)| <
< Lj(|u1 —7)1| +|u2—1)2| ) ; gj(O, 0)=0.

Show that if

v > ﬁ [n(LE+L35),
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then the dynamical system generated by problem (5.16) has the
two-dimensional (flat) inertial manifold

M= {p;sinx + pysin2x: p;, p, € R}
and the corresponding inertial form is:

Pr+ Vo= 01(Py, Py), Py +4VDy = g5(Py, Py) -

Exercise 5.8 Study the question on the existence of an inertial manifold
for the Hopf model of turbulence appearance (see Section 7 of Chap-
ter 2).

§ 6 Approximate Inertial Manifolds
Jfor Semzilinear Parabolic Equations

Even in the cases when the existence of IM can be proved, the question concerning
the effective use of the inertial form

Op+Ap = PB(p+D(p, t), t) (6.1

is not simple. The fact is that it is not practically possible to find a more or less ex-
plicit solution to the integral equation for CD(p, t) even in the finite-dimensional
case. In this connection we face the problem of approximate or asymptotic construc-
tion of an invariant (inertial) manifold. Various aspects of this problem related to fi-
nite-dimensional systems are presented in the book by Ya. Baris and O. Lykova [14].

For infinite-dimensional systems the problem of construction of an approxi-
mate IM can be interpreted as a problem of reduction, i.e. as a problem of construc-
tive description of finite-dimensional projectors P and functions CD(-, t): PH—
— (1 —P)H such that an equation of form (6.1) “inherits” (of course, this needs
to be specified) all the peculiarities of the long-time behaviour of the original system
(0.1). It is clear that the manifolds arising in this case have to be close in some sense
to the real IM (in fact, the dynamics on IM reproduces all the essential features of
the qualitative behaviour of the original system). Under such a formulation a prob-
lem of construction of IM acquires secondary importance, so one can directly con-
struct a sequence of approximate IMs. Usually (see the references in survey [8]) the
problem of the construction of an approximate IM can be formulated as follows: find
a surface of the form

M,={p+D(p, t): pe PH}, (6.2)

which attracts all the trajectories of the system in its small vicinity. The character of
closeness is determined by the parameter k]_vl +1 related to the decomposition
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?}?+Ap PB(p+aq, t),

dg

dt
We obtain the trivial approximate IM |\/|( ) if we put @ (p, t) = Dy(p, t) =0 in (6.2).
In this case M(O) is a finite- d1mens10nal subspace in # whereas inertial form (6.1)
turns into the standard Galerkin approximation of problem (0.1) corresponding to
this subspace. One can find the simplest non-trivial approximation M§1) using for-
mula (6.2) and assuming that

O(p, t)=D(p, t) = A" (1-P)B(p, t). (6.4)

The consideration of system (0.1) on l\/lz(l) leads to the second equation of equa-
tions (6.3) being replaced by the equality Aq = (1-P)B(p, t). The results of the
computer simulation (see the references in survey [8]) show that the use of just the
first approximation to IM has a number of advantages in comparison with the tradi-
tional Galerkin method (some peculiarities of the qualitative behaviour of the system
can be observed for a smaller number of modes).

6.3)
+Aq=(1-P)B(p+aq,t).

There exist several methods of the construction of an approximate IM. We present
the approach based on Lemma 2.1 which enables us to construct an approximate IM
of the exponential order, i.e. the surfaces in the phase space H such that their expo-
nentially small (with respect to the parameter A N +1 ) Vicinities uniformly attract all
the trajectories of the system. For the first time this approach was used in paper [15]
for a class of stochastic equations in the Hilbert space. Here we give its deterministic
version.
Let us consider the integral equation (see(2.1))

v(t)=BSFw](t), s-L<t<s

and assume that L = pkN where the parameter p possesses the property

+1
0
q EM(IQ_—Q 7{(1’6) p1—9+p)< 1. (6.5)
In this case equations (2.2) hold. Hence, Lemma 2.1 enables us to construct a collec-
tion of manifolds {M%} for L = pk;,a | with the help of the formula
ML ={p+®Lp, s): p e PH}, (6.6)

where

®L(p, s) = | e E=DAQB(w(1), T)dt

s—L

Qu(s, p). (6.7

Here v(t) = v(t, p) is a solution to integral equation (2.1) and L = pk]_veﬂ .
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Exercise 6.1 Show that both the function ®X(p, s) and the surface M%
do not depend on s in the autonomous case (B(u, t) = B(t)).

The following assertion is valid.

Theorem 6.1.

There exist positive numbers p, = p;(M, 0, A,) and A= A(M, 0, L)
such that if

_ -0
WS 2 Apl, L=piy,, 0<p<p, (6.9)

then the mappings ®L(-, s): PH — QH defined by equation (6.7) possess
the property

|AO(Qu(t) —®L(Pu(t), 1))l <

(@)
< oy eXp{—FO My (1 u)} +0 exp {—‘2—) %}vﬁ} 6.9

Jorall t >t,+L/2. Here 6, > 0 is an absolute constant and u(t) is a mild
solution to problem (1.1) such that
1A% (t) < R for telt,, +o). (6.10)
If |B(u, t)] < M, then estimate (6.9) can be rewritten as follows:
|AO(Quu(t) —DL(Pu(t), 1))l <

(o) -
< Gpexp {——50 %?VH(t—t*)}wz exp{-p23; ) (6.11)

where Dy is defined by equality (2.14).

Proof.
Let

a(t) = U(t, s; Pu(s)+ @L(Pu(s), s)), t,<s<t,

where U (t, S; v) is a mild solution to problem (1.1) with the initial condition
v € D(AY) at the moment s . Therewith w (t) = U(t, 0; u,). It is evident that

Qu(t) —®H(Pu(t), 1) = Q(u(t) —u () +

+ [Qa (t) - OL(Pa(t), t)} + [cpb(pa (t), t) — DL(Pu(t), t)} L (6.12)
Let us estimate each term in this decomposition. Equation (1.6) implies that

14%Q(u(t) —a ()l < Tt —s) 1A Qu(s) — DL(Pu(s), s)I, (6.13)



Approximate Inertial Manifolds for Semilinear Parabolic Equations 185

where
Oy(1) = o N1t +M(1+k)a; 15400 e
Using (2.16) we find that
14%(Q1i(s) —DL(Pi(s), s)) < By(L, t —5) (6.14)
where
By(L. 1) =Dy(1=q) e+ q(1-q) 2 (R+Dy) e 7T,

moreover, the second term in 3,,(L, T) can be omitted if [B(u, t)] < M (see Exer-
cise 2.1). At last equations (2.15) and (1.5) imply that

||A6(CDL(P7),(£), t)) — (DL(Pu(t), t)" <
< alT—qT] eaz(t_s)”Ae(Qu(s) DL(Pu(s), s)) . (6.15)

Thus, equations (6.12)—(6.15) give us the inequality

da(t) < ay(t—s)d(s)+By(L, t—s) (6.16)
fort > s > t,,where

d(t) = [A%Qu(t) — ®L(Pu(t), 1))
and

A _ _
= e N+1T+a1[M(1+k) F0+a(1-9) IJ o™

It follows from (6.16) that under the condition s + L/2 < t < s+ L the equation

d(t) < oy d(s)+ By(L. L/2) (6.17)
holds with

L
. L
oy = N2 +a1[M(1+k) kj‘\,1++19+%1} """
Itis clear that o, ; < 1/2 if

Ay L>4m2, A0 > 16a,M(1+k)
and
asL < In2, q<(1+16a;)". (6.18)
Let p;= p;(M, 0, &) be such that equation (6.18) holds for L = pk}& , and for
the parameter ¢ of the form (6.5) with 0 < p < p;. Then equation (6.8) with

A=4(1+4a;M(1+k)p,) implies that o , < 1/2.Let ¢, = t,+(1/2)nL . Then
it follows from (6.17) that
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1
d(t, 1) < 5a(t,)+By(L, L/2), n=0,1,2, ..
After iterations we find that

_ L
a(t,) < 2d(t)+2py(L. 5), m=0.1,2 .. (6.19)

Equation (6.17) also gives us that
1 L
a(n)<la@)+py(L. L), 1+
Therefore, it follows from (6.19) that
2 L
a(t) < Zexp{—z(t—tQIHZ}d(L)4—ZBN(L,Z)

forall ¢ > t,+L/2. This implies (6.9) and (6.11) if we take y = A,,,; in the equa-
tion for B, (L, L/2). Thus, Theorem 6.1 is proved.

<t<t,+L.

Do~

In particular, it should be noted that relations (6.9) and (6.11) also mean that a solu-
tion to problem (0.1) possessing the property (6.10) reaches the layer of the thick-
ness €y = ¢; €Xp{—cy }‘}v_ +61} adjacent to the surface {Mf } given by equation (6.6)
for ¢ large enough. Moreover, it is clear that if problem (0.1) is autonomous
(B(u, t) = B(u)) and if it possesses a global attractor, then the attractor lies in this
layer. In the autonomous case MZ does not depend on ¢ (see Exercise 6.1). These
observations give us some information about the position of the attractor in the
phase space. Sometimes they enable us to establish the so-called localization theo-
rems for the global attractor.

Exercise 6.2 Let |B(u, t)| < M. Use equations (1.4) and (1.8) to show
that
[40u()] < eI A0u| + Ry,
where Ry = M(1+k) k_lHe .
In particular, the result of this exercise means that assumption (6.10) holds for any

R > R and for ¢, large enough under the condition |B(u, t)| < M. In the general
case equation (6.10) is a variant of the dissipativity property.

Exercise 6.3 Let v, = Ué’s(t, s) be a function from C, g(s—L, s).
Assume that

L L L
v, = U, st s) = B; [v,_4](t), m=1,2, ..

and

CI)qL@(p, s)= Qvi,s(s, p), mn=01,2,..

Show that the assertions of Theorem 6.1 remain true for the function
CDi(p, s) if we add the term
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q" (ool +co(Dy+R))

to the right-hand sides of equations (6.9) and (6.11). Here q is de-
fined by equality (6.5) and |?J 0|S is the norm of the function v, in the
space C,, g(s—L, s).

Therefore, the function Cl)z(p, s) generates a collection of approximate inertial
manifolds of the exponential (with respect to A ~+1) order for 7 large enough.

Example 6.1

Let us consider the nonlinear heat equation in a bounded domain Q < R?:

a—uzAquf(u, Vu), xeQ, t>s,

ot (6.20)
Ulpn=0, u|,_ = ug()

Assume that the function f(w, &) possesses the properties
|f(wy, &1) = flug, &) < Cijug —ug| +18 —&9)),  [Sf(w, E) < Cy.
We use Theorem 6.1 and the asymptotic formula

dy ~cgN?4, N> oo,

for the eigenvalues of the operator —A in Q  R? to obtain that in the Sobolev
space Hé(Q) for any N there exists a finite-dimensional Lipschitzian surface
M, of the dimension N such that

dist (u(t), My) < Cyexp{—-o NV (t—t,)} + Cyexp{—c, N/}

Hy(Q)
for t > ¢, and for any mild (in H(l)(Q)) solution u (¢) to problem (6.20). Here ¢,
is large enough, Cj and o, are positive constants.

Exercise 6.4 Consider the abstract form of the two-dimensional system of
the Navier-Stokes equations
%% +VAu+b(u, u)= f(t), ul
(see Example 3.5 and Exercises 4.10 and 4.11 of Chapter 2). Assume
that |A2f (t)” < C for t = 0. Use the dissipativity property for
(6.21) and the formula

o= %o (6.21)

A
collcgk—’llf

for the eigenvalues of the operator A to show that there exists a col-
lection of functions {®(p, t): ¢t > 1} from PD(A) into (1-P)D(A)
possessing the properties

< ck
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a) [|AD(p, 1)l < ¢yN7VZ;
|A(@ (D1, 1) = (P, 1)) < c3|Alpy —ps))
forany p, py, py € PD(A);

b) for any solution u(t) € D(A) to problem (6.21) there
exists t* > 1 such that

JAQ(u(t) —D(Pu(t), ) <
< cgexp{—,NV2(t—1,)} + c,exp{—-c N2}

Here P is the orthoprojector onto the first N eigenelements of the
operator A .

Exercise 6.5 Use Theorem 6.1 to construct approximate inertial manifolds
for (a) the nonlocal Burgers equation, (b) the Cahn-Hilliard equa-
tion, and (c) the system of reaction-diffusion equations (see Sec-
tions 3 and 4 of Chapter 2).

In conclusion of the section we note (see [8], [9]) that in the autonomous case the ap-
proximate IM can also be built using the equation

(®'(p); —Ap+PB(p+®(p))y + AD(p) = QB(p+ D(p)). (6.22)
Here p e PH, Q =1-P, ®'(p) is the Frechét derivative and (®'(p), w) is its
value at the point p on the element w . At least formally, equation (6.22) can be ob-
tained if we substitute the pair {p(¢); ®(p(¢))} into equation (6.3). The second of
equations (6.3) implicitly contains a small parameter k;,lﬂ . Therefore, using (6.22)
we can suggest an iteration process of calculation of the sequence {q)m} giving the
approximate IM:

AD(0) = QB (p+®, (1) +
(D) () 5 Ap —PB(p+ D@y y(P)) , k=1, (6.23)

where the integers v;(k) are such that
0<v(k)<k-1, kliinmvi(k)zw, i=1, 2, 3.

One should also choose the zeroth approximation and concretely define the form of
the values v; (k) (for example, we can take ®y(v) = 0 and v, (k) =k-1,7=1, 2,
3). When constructing a sequence of approximate IMs one has to solve only a linear
stationary problem on each step. From the point of view of concrete calculations this
gives certain advantages in comparison with the construction used in Theorem 6.1.
However, these manifolds have the power order of approximation only (for detailed
discussion of this construction and for proofs see [9]).

Exercise 6.6 Prove that the mapping ®;(v) has the form (6.4) under the
condition ®y(v) = 0. Write down the equation for ®,(v) when
Vi(2) =1, Vvy(2)=v3(2)=0.
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§ 7 Inertial Manifold for Second Order
in Time Equations

The approach to the construction of IM given in Sections 2—4 is essentially based on
the fact that the system has form (0.1) with a selfadjoint positive operator A . How-
ever, there exists a wide class of problems which cannot be reduced to this form.
From the point of view of applications the important representatives of this class are
second order in time systems arising in the theory of nonlinear oscillations:

d®u du B
—d—t—2—+286?+Au_B(u, t), t>s, €>0,
7.1
) du ) (7.1)
u|t=s—u0, a =u; .
t=s

In this section we study the existence of IM for problem (7.1). We assume that
A is a selfadjoint positive operator with discrete spectrum (L, and e, are the cor-
responding eigenvalues and eigenelements) and the mapping B (u, t) possesses the
properties of the type (1.2) and (1.3) for 0 < 6 < 1/2,i.e. B(u, t) is a continuous
mapping from D(Ae) x R into H such that

1B(0, o) < M,,

IA

|B(uy, t) =B(ug, t)] < M[A%(u;—uy)|, (7.2)

where 0 < 0 < 1/2 and uy, uy € D(AY) = %,.

The simplest example of a system of the form (7.1) is the following nonlinear
wave equation with dissipation:

0%u ou  0%u ( i 6u)_

-é-t-2—+ 8—8? 5;65”“”*“’55 =0, O<x<L, t>s,

Upeo= Uy, =0 (7.3)
ou

= uy(7) -

t=s

ul,_g=uo@),

Let J6= D(AY2) x H .1t is clear that F is a separable Hilbert space with the
inner product
(U, V) = (Aug, vg) +(uy, vy), (7.4)

where U = (u4; %) and V= (v,; v,) are elements of J. In the space J prob-

lem (7.1) can be rewritten as a system of the first order:
d
&U(t)+AU(t)= B(U(t), t), t>s; U|,_,=U- (7.5)
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Here

u(t) = (u(): Z89), 0 = (ug: ) < %,

The linear operator A and the mapping B(U, t) are defined by the equations:
AU = (—uy; Aug+2euy), D(A)=D(A) x D(A2), (7.6)
B(U, 1) = (05 B(ug, 1)), U= (ug; up)-

Exercise 7.1 Prove that the eigenvalues and eigenvectors of the operator
A have the form:

A, =ex fed—w,, fr =(e; A, e,), n=12 .., (D

where [, and e, are the eigenvalues and eigenvectors of A .

Exercise 7.2 Display graphically the spectrum of the operator A on the
complex plane.

These exercises show that although problem (7.1) can be represented in the form
(7.5) which is formally identical to (0.1) we cannot use Theorem 3.1 here. Neverthe-
less, after a small modification the reasoning of Sections 2—4 enables us to prove the
existence of IM for problem (7.1). Such a modification based on an idea from [16] is
given below.

First of all we prove the solvability of problem (7.1). Let us first consider the li-
near problem

du du B
d—t2+ZSE+Au =h(t), t>s,
(7.8)
_ du|  _
u|tzs—u0, a =Uj .
t=s
These equations can also be rewritten in the form (cf. (7.5))
QU@+ AU =H), U|,_ =T, (7.9)

where U(t) = (u(t); u(t)) and H(t) = (0; h(t)). We define a mild solution to
problem (7.8) (or (7.9)) on the segment [s, s+ T'] as a function w(t) from the class

Ls.7 = C(s, s+T; F9) N Cl(s, s+T; H)YNC2(s, s+T; F 1)

which satisfies equations (7.8). Here 9’6 = D(Ae) as before (see Chapter 2). One
can prove the existence and uniqueness of mild solutions to (7.8) using the Galerkin
method, for example. The approximate Galerkin solution of the order m is
defined as a function
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m
w(t) = g()ey
k=1
satisfying the equations

(2 (), €j) + 28 (2, (1), ) + (A, (1), €)= (R(1), ¢)), t>s, (7.10)

(%, (3), ej) = (uy, ej)’ (2, ()5 ej) = (uy, ¢;)

for j =1, 2, ..., m. Moreover, we assume that g;(t) € C(s, s+T) and g;(t) is
absolutely continuous. Hereinafter we use the notation o (t) = dv/d¢. Evidently
equations (7.10) can be rewritten in the form

Uy, (t)+2e0,,(t)+Au,,(t)=Dp,,h(t),

) (7.1D)
7’077@‘t=$:pm7’007 um‘t:S:pmul )
where p, is the orthoprojector onto Lin{e,, ... e, } in .
In the exercises given below it is assumed that
h(t) e L*(R, H), wu,eD(AY2), wu,eH. (7.12)

Exercise 7.8 Show that problem (7.10) is uniquely solvable on any segment
[s, s+T] and u,,(t) e Ly 7.

Exercise 7.4 Show that the energy equality

Ll O + 14120, (1)) + 26 J|’@'Lm(r)’|2 dr =

3
- %(”pmul”z + ”Al/zpmuowz) +J(h(r), U,,(T))dT  (7.13)

holds for any solution to problem (7.10).
Exercise 7.5 Using (7.11) and (7.13) prove the a priori estimate
JAY240,, (O + [tt ()] + A2 20,,,(8)] < C(T, ug, uy)
for the approximate Galerkin solution 2, () to problem (7.8).

Exercise 7.6 Using the linearity of problem (7.11) show that for every two
approximate solutions u,,(¢) and u,,(¢) the estimate

HA_l/Z (um(t) - 7“ZVrL’(t))HZ +

i (8) = o ()] + AV (e (0) = 0o () <
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S Crlpy =] +
A2 (p,,, Py g +ess sup [P, = D) e (D)

holds forall ¢ € [s, s+T],where T > 0 is an arbitrary number.

Exercise 7.7 Using the results of Exercises 7.5 and 7.6 show that we can
pass to the limit 72 — oo in equations (7.11) and prove the existence
and uniqueness of mild solutions to problem (7.8) on every segment
[s, s+ T] under the condition (7.12).

Exercise 7.8 For a mild solution u(t) to problem (7.8) prove the energy
equation:

L (b + 1472 ()f2) + 2 g'[ (o) dr =

l
=Sl )« [0, ie . @

S

In particular, the exercises above show that for h(t) = (0 problem (7.8) generates a
linear evolutionary semigroup e*A in the space J6 = D(A!/2) x H by the formula

e A (ug; uy) = (u(t); u(t)), (7.15)

where w(¢) is amild solution to problem (7.8) for (t) = 0. Equation (7.14) implies
that the semigroup e'A is contractive for € > 0.

Exercise 7.9 Assume that conditions (7.12) are fulfilled. Show that the
mild solution to problem (7.8) can be presented in the form
t
((t); u(t)) = e t=9A (uy; u1)+J'e—<t—s)A(o; h(t))dt, (7.16)
S

where the semigroup e A is defined by equation (7.15).

Let us now consider nonlinear problem (7.1) and define its mild solution as
a function U(t) = (u(t); u(t)) € C(s, s+T; Jb) satisfying the integral equation
t
Ut)=e =AY, + je—(t—S)A B(U(t), 1)dt (7.17)
S

on [s, s+T].Here B(U(t), t) = (0; B(u(t), t)) and Uy = (g uyp).
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Exercise 7.10 Show that the estimates
IB(U, )5 < M(1+1Ul%),
[B(U. 1) =B(Uy, t)]5, < MU =y,
hold in the space %6 = D(A1/2) x H . Here M is a positive constant.

Exercise 7.11 Follow the reasoning used in the proof of Theorems 2.1 and
2.3 of Chapter 2 to prove the existence and uniqueness of a mild so-
lution to problem (7.1) on any segment [s, s+77].

Thus, in the space 6 there exists a continuous evolutionary family of operators
S(t, s) possessing the properties
S(t, t)y=1, S(t, 1) S(t,s)=S(t s),
and
S(t, s)Uy = (u(t); u(t)),

where w(t) is a mild solution to problem (7.1) with the initial condition U, =
= (ug: uy).

Let condition &2 > L 4q hold for some integer N . We consider the decomposi-
tion of the space 7 into the orthogonal sum

Fb= Fb,® Ty,
where
Jb, = Lin{(e,; 0), (0; e,): k=1,2, .. N}
and J6, is defined as the closure of the set
Lin {(e;; 0), (0; e;): k > N+1}.

Exercise 7.12 Show that the subspaces %1 and %2 are invariant with re-
spect to the operator A . Find the spectrum of the restrictions of the
operator A to each of these spaces.

Let us introduce the following inner products in the spaces 6, and J, (the pur-
pose of this introduction will become apparent further):

U, Vv =&2(up, vo) —(Aun, V) + (EUg+ Uy, €V +V ,
< >1 (0 0)( 0 O)( 0 1 0 1) (7.18)

(U, Vg = (Auy, UO)+(82 =2y 1) (ug, Vo) +(EUg+ Uy, EVEFD)) .

Here U= (uy; u;) and V= (v,; v;) are elements from the corresponding sub-
space F,. Using (7.18) we define a new inner product and a norm in J by the
equalities:

<U> V>:<U13 V1>1+<U29 Vv2>27 |Ul:<U9 U>1/27

where U= U; + U, and V="V, + I}, are decompositions of the elements U and V
into the orthogonal terms V;, U, € J;, ©=1, 2.
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Lemma 7.1.

The estimates

U1, = ﬁ% [e2 [ AOug|, U= (ug: u,) e Fy; (7.19)
‘N

[ “91 Sy e|AOug|, U= (ug: uy) e %, (7.20)
N+ 1

hold for 0 < 0 < 1/2. Here
Sy = [Hy, min| 1, /m ‘ (7.21)
N, ¢ N+1 TN

Proof.

Let U= (uy; u) € ;. It is evident that in this case HABUOH < “1% o
forany 3 > 0. Therefore,

U1 2 efugf® - A2l 2 4?22 — )[40,

i.e. equation (7.19) holds. Let U € J6, . Then using the inequality

[ABug| = 1y, i Jug], B >0, ugelinfe,: k=N+1) (7.22)
for 0 < 0 < 1 we find that
U5 > 82|AY 20 + (62— (1+ 82) py 1) [

If we take 6 = Oy . uj_vlﬁ and use (7.22), then we obtain estimate (7.20). The
lemma is proved.

In particular, this lemma implies the estimate
0 -1
”A@uon < x4 Oy, ¢ U] (7.23)

forany U = (uy; u,) € J6,where 0 < 0 < 1/2 and SN’S has the form (7.21).

Exercise 7.18 Prove the equivalence of the norm || and the norm generated
by the inner product (7.4).

Exercise 7.14 Show that we can take 5N,s = /€% =y, for 6=0 in (7.20)
and (7.23).

Exercise 7.15 Prove that the eigenvectors { f,f of the operator A (see
(7.7)) possess the following orthogonal properties:

S = iy =S, [iy=0, k#n,
St f7)=0, 1<k<N. (7.24)
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Note that the last of these equations is one of the reasons of introducing a new inner
product.
Let Py be the orthoprojector onto the subspace 76, in J6, i =1, 2.
K3

Lemma 7.2.

The equality

A

|eAPy ) = ¢ Nt >0, (7.25)

is valid. Here |-| is the operator norm which is induced by the corres-
ponding vector norm.

Proof.
Let U e J,. We consider the function y(t) = le=AtUf? . Since by, is inva-
riant with respect to e”A?, the equation

W) = (Au(t), u(t)+ (62 =2y ) ((0), u(t)) +la+eul®

holds, where w(t) is a solution to problem (7.8) for 2(t) = 0. After simple cal-
culations we obtain that

d .
-a\'l?/+28qj = 4(e2 -y, ) (U+eu, u).

It is evident that

2 e~y (i+eu, u) < (e2—py, Dlul®+la+eul® < y(r).

Therefore,
d
C%,+28lj/ <2,/e% =y V.
Consequently,
w(t) < e Nly0), 1> 0. (7.26)

If we now notice that

-\

_ N t -
eXp{_At}fN+1 = ¢ "N+l fN+1 )

then equation (7.26) implies (7.25). Thus, Lemma 7.2 is proved.

Let us consider the subspaces
FE = Lin{ s : k < N}.

Equation (7.24) gives us that the subspaces are orthogonal to each other and there-
fore J6, = %f ® Jb, . Using (7.24) it is easy to prove (do it yourself) that
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‘eAtP%,’ <oy eR, (7.27)
1

+
Aol

‘e—Ath < e . 1>0. (7.28)

1

We use the following pair of orthogonal (with respect to the inner product
(-, -)) projectors in the space 4

le?%; , Q=[—P:E%I++P%2

to construct the inertial manifold of problem (7.1) (or (7.5)). Lemma 7.2 and equa-
tions (7.27) and (7.28) imply the dichotomy equations

leAtp| < o/N "', teR; |eAlQ| < e_kN“m, t>0. (7.29)

We remind that X, = &—,/e? -, and €2 > [y, .
The assertion below plays an important role in the estimates to follow.
Lemma 7.3.
Let B(U, t) = (0; B(ug, t)), where U= (uy; u,) € 3 and B(u,) pos-
sesses properties (7.2). Then

B(U, t) < My+EKylUl, Ue %,

B(Uy, t) =B(Uy, 1) < Ky|Uy =Uyf, Uy, Uy € 36, (7.30)
where
Ky = M, 187 1/% max (1, —zﬁi\iﬂ_] (7.31)
&~ Uyt

The proof of this lemma follows from the structure of the mapping B(U, t) and from
estimates (7.2) and (7.23).

Exercise 7.16 Show that one can take K, = Ml(gz—;,tj\/ﬂ)_l/2 for 6 =0 in
(7.30) (Hint: see Exercise 7.14).

Let us now consider the integral equation (cf. (2.1) for L = o0 )
V(1) = By[V](0) =

s :
= e (t=5)Ap —Je‘(t‘T)APB(V(T), T)dt+ J e~(t=DAQB(V(1), T)dt  (7.32)
i

—00
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in the space C, of continuous vector-functions U(t) on (-0, s] with the values
in J such that the norm

—y(s — 1,,— -
|U|EtSL<1pse YE=D1U(1) < oo, v=5( Nty ),
is finite. Here p € P and t € (-0, s).

Exercise 7.17 Show that the right-hand side of equation (7.32) is a continu-
ous function of the variable ¢ with the values in 7.

Lemma 7.4.

The operator %fj maps the space C, into itself and possesses the pro-

perties
1 1 4Ky
1B [Vl < Ipl+M, (T+ _ j+ - — 1V (7.33)

P 0 XN AN+1 }‘N+1_}“N

and
4K
19, [V] -3 VL]l < f-—-:N—f—Wl—Vﬂ. (7.34)
'N+1 N

Proof.

Let us prove (7.34). Evidently, equations (7.29) and (7.30) imply that
S
T—1)
BBy V0] < Ky [0 vy +

t
t

+KNJ e N Dy (1) _ vt de

Since
V(1) = Vy(1)] < eIV =14]
it is evident that
‘%Z[Vl](t)_%zwz](t)‘ < qe'C -1
with

t
q = J- (}‘N V)(t= t)d’[—i_". (M\Hl_w(t_r)d’t

—00

Simple calculations show that g < 4Ky (Ay,.;—Ay )~!. Consequently, equa-
tion (7.34) holds. Equation (7.33) can be proved similarly. Lemma 7.4 is proved.
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Thus, if for some g < 1 the condition
4K,
- - N
holds, then equation (7.32) is uniquely solvable in C and its solution V' can be esti-
mated as follows:
_ 1 1
IVl < (1-¢) 1(|p|+MO(F+F)). (7.36)
N 'N+1

Therefore, we can define a collection of manifolds { M} in the space 76 by the for-
mula

M, ={p+®(p, s): p € PI}, (7.37)
where
O(p, s) = J' e~(t=DAQB(V(1), T)dr. (7.38)

Here V(1) is a solution to integral equation (7.32). The main result of this section is
the following assertion.

Theorem 7.1.

Assume that

4Ky,
q

Sfor some 0 < g < 1, where 7@ =g— [e2 - L, and Ky is defined by formula

(7.31). Then the function ®(p, s) given by equality (7.38) satisfies the Lip-
schitz condition

|®(py. 5) = D(py. 5)| < 2(%@ 1= Dy (7.40)

g2 > Uy, and Ay, —Ay = (7.39)

and the manifold |\/|S 1S tnvariant with respect to the evolutionary opera-
tor S(t, T) generated by the formula

S(t, Uy = (u(t); u(t)), t=s,
in Jb, where wu(t) is a solution to problem (7.1) with the initial condition

Uy= (ug; uy). Moreover, if 0 < g < 2—4/2, then there exist initial conditions
Uy = (uf; u}) € My such that

|S(t. s)Uy = S(t. s)Uy| < C,e "= |QUy - D(PU, )

for t > s, where y = %(7@\[ +Ayn41)-

The proof of the theorem is based on Lemma 7.4 and estimates (7.29) and (7.30).
It almost entirely repeats the corresponding reasonings in Sections 2 and 3. We give
the reader an oppotunity to recover the details of the reasonings as an exercise.
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Let us analyse condition (7.39). Equation (7.31) implies that (7.39) holds if

Hy+1i7Hy o ‘_LM1 “?vﬁ/?, (7.41)

9 /82_“N T q

&% = 2y,

However, if we assume that

8.2
Uy~ Hy 2 %Ml T (7.42)

then for condition (7.41) to be fulfilled it is sufficient to require that

2Uy,q S €2 < 2y, + Hy- (7.43)

Thus, if for some N conditions (7.42) and (7.43) hold, then the assertions of Theo-
rem 7.1 are valid for system (7.1). This enables us to formulate the assertion on the
existence of IM as follows.

Theorem 7.2.
Assume that the eigenvalues Ly of the operator A possess the properties
inf N5 0 and Uy (el = cokP(1+0(1)), p>0, koo, (744

N Hyyq

Jor some sequence {N(k)} which tends to infinity and satisfies the estimate

842,, .0
Moy +1~ By 2 =g Mibngey 1, 0<a< 2 -2 .

Then there exists €, > 0 such that the assertions of Theorem 7.1 hold for all
€2¢g;.

Proof.
Equation (7.44) implies that there exists &, such that the intervals

[2 U@y 110 2HN@) 41+ Myl * 2 Ko,

cover some semiaxis [80, +oo). Indeed, otherwise there would appear a subse-

quence {N(k;)} such that

Mn(e,) < Z(HN(kj+1)+1 - “N(kj)ﬂ)

But that is impossible due to (7.44). Consequently, for any & > g, there exists
N = N, such that equations (7.42), (7.43) as well as (7.39) hold.

Exercise 7.18 Consider problem (7.3) with the function f(x, t, u, %)

= f(=, t, u) possessing the property
|f(@, 6, wy) = f(@, b, ug)| < Ljug —uy.
Use Theorem 7.1 to find a domain in the plane of the parameters

(8, L) for which one can guarantee the existence of an inertial ma-
nifold.
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§ 8 Approximate Inertial Manifolds
for Second Order in Time Equations

As seen from the results of Section 7, in order to guarantee the existence of IM for
a problem of the type

d®u | du B
a—t—z—+ya7+Au_B(u),
(8.1
U‘|t=0:u0’ %I-L =up,
Hizo

we have to require that the parameter y = 2& > 0 be large enough and the spectral
gap condition (see (7.41)) be valid for the operator A . Therefore, as in the case with
parabolic equations there arises a problem of construction of an approximate inertial
manifold without any assumptions on the behaviour of the spectrum of the operator
A and the parameter y > 0 which characterizes the resistance force.

Unfortunately, the approach presented in Section 6 is not applicable to the
equation of the type (8.1) without any additional assumptions on v . First of all, it is
connected with the fact that the regularizing effect which takes place in the case of
parabolic equations does not hold for second order equations of the type (8.1) (in
the parabolic case the solution at the moment ¢ > 0 is smoother than its initial con-
dition).

In this section (see also [17]) we suggest an iteration scheme that enables us to
construct an approximate IM as a solution to a class of linear problems. For the sake
of simplicity, we restrict ourselves to the case of autonomous equations (B(u, ) =
= B(u)). The suggested scheme is based on the equation in functional derivatives
such that the function giving the original true IM should satisfy it. This approach was
developed for the parabolic equation in [9] (see also [8]). Unfortunately, this ap-
proach has two defects. First, approximate IMs have the power order (not the expo-
nential one as in Section 6) and, second, we cannot prove the convergence of
approximate IMs to the exact one when the latter exists.

Thus, in a separable Hilbert space H we consider a differential equation of the type
(8.1) where v is a positive number, A is a positive selfadjoint operator with discrete
spectrum and B () is a nonlinear mapping from the domain D(Al/ 2) of the operator
A2 into H such that for some integer m > 2 the function B(u) lies in C” as a
mapping from D(Al/ 2) into A and for every p > 0 the following estimates hold:

; (8.2)

K
”(B(k)(u); wy, ..., wk>” < CPH”Al/zwj
=1
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k
[<BU) (w) =B (w*); wy, ..., wy)| < Cp||A1/2(u—u*)||H”A1/2wj”, (8.3)
Jj=1

where k=0, 1, ..., m, ||| is a norm in the space H, [A12u] < p, |AY2u < p,
and w; e D(AY?). Here B()(w) is the Frechét derivative of the order k of B(u)
and (B(k)(u); wy, ..., W) isits value on the elements w, ..., w, .

Let L, p be a class of solutions to problem (8.1) possessing the following
properties of regularity:

D) fork=0,1,.., m—1andforall T >0

u(k)(t) e C(0, T; D(A))
and
w(m)(t) e C(0, T; D(AY2)), wlm+1)(1) e C(0, T; H),
where C (0, T'; V) is the space of strongly continuous functions on [0, T]
with the values in V, hereinafter u(*)(t) = o u(t);
1D forany u € Lm’ p the estimate

lute D@ +lar2u® @ +aut =D < B2 ©

holds for k =1, ..., m and for ¢ > ¢", where ¢" depends on % and u; only.
In fact, the classes L,, p are studied in [18]. This paper contains necessary and
sufficient conditions which guarantee that a solution belongs to a class L, p.
It should be noted that in [18] the nonlinear wave equation of the type
Gtzu-l—y@tu —Au+g(u) =f(v), 2eQ, t>0,

(8.5)
u|aQ:O’ u|t:0=u0(x), 6tu|t:0=u1(x),

serves as the main example. Here y > 0, f(x) € C*(Q) and the conditions set on
the function g(s) from C*(IR) are such that we can take g(u) = sinu or g(u) =
=u2P*tl where p=0,1,2,.. for d=dimQ <2 and p=0, 1 for d = 3.
In this example the classes Lm, p are nonempty for all 7 . Other examples will be
given in Chapter 4.

We fix an integer N and assume P = P); to be the projector in H onto the sub-
space generated by the first N eigenvectors of the operator A. Let Q =1—P . If we
apply the projectors P and ) to equation (8.1), then we obtain the following sys-
tem of two equations for p (¢) = PU(t) and q(t) = Qu(t):

atzp+yatp+Ap=PB(p+q) , 5.6

afq +v0,q+Aq=QB(p+q) .
The reasoning below is formal. Its goal is to obtain an iteration scheme for the deter-
mination of an approximate IM. We assume that system (8.6) has an invariant mani-
fold of the form

M={p+h(p,p); p+l(p,p)): p,p e PH} (8.7
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in the phase space D(Al/ 2) x H .Here h and | are smooth mappings from PH x PH
into QD(A). If we substitute q(t) = h(p(t), 0,p(t)) and 0,q(t) = L(p(t), 0,pn(t))
in the second equality of (8.6), then we obtain the following equation:

(B,l: D) + (0, l; —yp—Ap+PB(p+h(p, D))+
+yl(p, p)+AR(p, D) = QB(p+h(p, p)) -
The compatibility condition
Lp(t), 8,p(t)) = 0,1 (p(1), 9,p(1))
gives us that
Hp. p) = (8, p)+ (0, h; —yp —Ap+PB(p+h(p, D))

Hereinafter 5p S and O, f are the Frechét derivatives of the function f(p,p) with
respectto p and p; <5p f; w)y and (O o f; w) are values of the corresponding deri-
vatives on an element w .

Using these formal equations, we can suggest the following iteration process to
determine the class of functions {hk; lk} giving the sequence of approximate IMs
with the help of (8.7):

Aly(p, ©) = QB +Ny_ (P, D)) _Ylv(zc)(pa P) =8, l_1; D) —

~(8yly_13 YD —Ap+PB(p+hy_1(p, D)) , (8.8)

where k=1, 2, 3, ... and the integers v(lc) should be choosen such that k—1 <
< v(k) < k.Here l,(p, p) is defined by the formula

(D, D) = (8l _y3 DY + (Ol 13 =YD —Ap+PB(p+hy_y(p, D)), (89
where k =1, 2, 3, ... . We also assume that
ho(p, ) = ly(p, ) = 0. (8.10)

Exercise 8.1 Find the form of 2 (p, p) and I;(p, p) for v(1)= 0 and for
v(l)=1.

The following assertion contains information on the smoothness properties of the
functions %, and [, which will be necessary further.

Theorem 8.1.

Assume that the class of functions {hn; ln} is defined according to
(8.8)—(8.10). Then for each n the functions h, and |, belong to the class
C™ as mappings from PH x PH into QH and for all integers o, B > 0 such
that o+ 3 < m the estimates
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HA(DO‘»ﬁhn(p, D); Wy, ey Wy Wi, e u}B>H <

a B
< Cy p.r | [14wd- [ [14"20d (8.11)

=1 =1

HA1/2<D0L,Bln(p, D); Wis ooy Wei Wiy eees wﬁ>“ <

o’

< B
< Cop.r | [lAwd- T JIAY%0 (8.12)

1=1 =1
are valid for all p and p from PH such that |Ap| < R and |AY2p| < R.
Hereinafter D% Bf is the mized Frechét derivative of the function | of the
order o. with respect to p and of the order [3 with respect to p; the values
w; and u)j are from PH. Moreover, if a.=0 or 3 =0, then the correspon-
ding products in (8.11) and (8.12) should be omitted.

Proof.
We use induction with respect to 7 . It follows from (8.10) and (8.2) that esti-

mates (8.11) and (8.12) are valid for n = 0, 1. Assume that (8.11) and (8.12) hold
forall n < k —1. Then the following lemma holds.

Lemma 8.1.
Let F,(p,p)=B(p +h,(p, p)) and let
F& Pw) = (D% BR,(p, p); wy. ooy w1y, ..., dbp).

Then for v < k—1 and for all integers o, B =0 such that o+ < m
the estimate

a B
ReP) < o Jlam) T 1A 519
=1 =1
holds, where w;, w;, p, pePH and |Ap| <R, |A2p| < R.
Proof.
It is evident that F;" B (w) is the sum of terms of the type
By (y)=(BS)(p+h,(p, P)); Yps s Yy, s20.
Here y is one of the values of the form:

Yo =ws+ (8, we),

Yuro = (D% Thy; wy, oo, W Wy, .., u'JB).
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Equation (8.2) implies that

S
By @) = Ge ] Tla"2uf-
j=1

Therefore, the induction hypothesis gives us (8.13).

Let us prove (8.12). The induction hypothesis implies that it is sufficient to estimate
the derivatives of the second term in the right-hand side of (8.9). It has the form

<8phk _1s Dk(p, p)) ) (8.14)
where
Dy(p, p) = =yp —Ap+PB(p+hy_(p. D))
The Frechét derivatives of value (8.14)
are sums of the terms of the type

G(G, T) = <DG’ T+1hk,1(p’ p)’ wjl’ EERN wjg’ wil, tees wi‘[’ y(j, '['>7

where

yc,‘[: <DO{-G, ﬁ_TDk(pa p), wwl’ ooy ww >

Here 0 <o <a, 0<1< B and the sets of indices possess the following proper-
ties:

w

pl’ 9 pﬁ7T

s
a—-0o

{jl) ”"jG} m{wla (AR (L)O(—G} = ®7
Uy detUlon, ., oo = {1, 2, ..., a};
{7;1, ceny if}ﬂ{pl’ ceey pB*‘C} = @,

{@'1, e ir}U{pl, e pB_T} = {1, 2, ..., B}.
The induction hypothesis implies that

(e} T
6. < O] Tjau |- T[4 a0 |
0=1 0=1

Using the induction hypothesis again as well as Lemma 8.1 and the inequality

lal2pr] < A2 IPH|,

we obtain an estimate of the following form (if c = o or T = B , then the correspon-
ding product should be considered to be equal to 1):

o-c -z
%, d = OO T [Avo TT|4" 00
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Hereinafter kk is the k -th eigenvalue of the operator A . Thus, it is possible to state
that

IAG (o, T)| < 0(1+k}V/Z)H||AwZ.||.H”A1/2w¢H. (8.15)
7 %

Using the inequality
IQnl < 2y, 14Qnl, s>o0, (8.16)

and equation (8.15) it is easy to find that estimates (8.12) are valid for n = k. If we
use (8.8), (8.12) and follow a similar line of reasoning, we can easily obtain (8.11).
Theorem 8.1 is proved.

Theorem 8.1 and equation (8.4) imply the following lemma.

Lemma 8.2.

Assume that u(t) is a solution to problem (8.1) lying in L m=1.

Let p(t) = Pu(t) and let
a5(t) = hy(p(1), (1)), 8s(t) = L(p(1), 0,p(1)) - 817D
Then the estimates
a0+ AaP O <
with 0 <j <m-1 and
g @ + |4 af ) <

are valid for t large enough.

m, R’

N
:UQ

A
:UQ

Proof.
It should be noted that qgj ) (t) is the sum of terms of the form

(D% B (p, 0,p), PV (), ... P 1) PV ), L B (2,

where a., f, i, ..., ¢

ar Tpo e Tpare nonnegative integers such that

l<a+B<yg, bt F g T T Tg=

Similar equation also holds for qy) (¢) . Further one should use Theorem 8.1 and
the estimates

DR + LA +lape DR < B2, txh, 1sk<m,

which follow from (8.4).

Let us define the induced trajectories of the system by the formula

Ug(t) = (ug(t); (1)),
where s =0, 1, 2, ... and
u(t) = () +a,(1), (1) = 6,p(1) +a,(0). (8.18)
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Here p(t) = Pu(t), u(t) is asolution to problem (8.1); g (¢) and g(¢) are defined
with the help of (8.17). Assume that %(¢) liesin L, . Then Lemma 8.2 implies
that the induced trajectories can be estimated as follows:

“Auz ﬂﬁj)(UH +|\Au§j)(t)H <Cps, 0<j<m—1;
[P |40 < o,

for t large enough. Using (8.3), (8.4), and the last estimates, it is easy to prove the
following assertion (do it yourself).

Lemma 8.3.
Let
Ey(t)=B(p(t)+a(1)) =B(p(1) +q(1)).
Then
J
B0 < Cp ;> A2 (@) gl (0)
=0

for =0, 1, ..., m and for t large enough.

The main result of this section is the following assertion.

Theorem 8.2.

Let u(t) be a solution to problem (8.1) lying in L,, p with m = 2.
Assume that h,(p, p) and 1,(p, p) are defined by (8.8)—(8.10). Then the es-
timates

[Ad] (u(t) —u, (1) < C, p WVL5, (8.19)
a2 a{<atu<t>—an<t>>u < Gy phyits (820)

are valid for n < m—1 and for t large enough. Here 0 <j <m-n -1,
u, (t) and %,(t) are defined by (8.18), and Ay, is the (N+1)-th eigenva-
lue of the operator A.

Proof.
Let us consider the difference between the solution « (¢) and the trajectory in-
duced by this solution:

Xs(t) = ult) —ug(t),  Zs(t) = 0ult) —uy(t), 520,

where 7 () and uy(t) are defined by formula (8.18). Since ¥ (t) = q(t), equation
(8.4) implies that

a2 G+1)( (o) + HAX(‘]) W) <c, =012 .., m-1, (8.21)
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for t large enough. Equations (8.8)—(8.10) also give us that
A1) = =6(0) =y (1) + QE (1) -
We use Lemma 8.3 and equation (8.21) to find that
[V < o2, j=0.1, .., m-2,

for ¢ large enough. Therefore, equation (8.19) holds for 2 = 0, 1 and for ¢ large
enough. From equations (8.6), (8.8), and (8.9) it is easy to find that

Ay = =0 Lae—1= YO Tv(ey -1~ V<O oy iy —15 PEy (-1 =
=0yl _1; PE,_)+QE, 4
and
Xie=0Xp_1t <8phk_1; PE, _}). (8.22)
Lemma 8.4.
The estimates
J
[467(8,hy: PE| < Cay® > [AV2 (o) (8.23)
s=0
and
|12 ag’<8pz PE )| < CA”ZZHAWX(S 0 (8.24)
=0
are valid for t large enough and for each v >0, where j=0,1,..., m—1.
Proof.

Let f, =h, or f,=1,.Itis clear that the value aij(ﬁpfv; PE) is the
algebraic sum of terms of the form:

(3 o
<Da’ﬁ+1fv; pY1s cees pyaa D 19 e D ﬁ: atSPEv> .

Therefore, Theorem 8.1 and Lemma 8.3 imply (8.23) and (8.24). Lemma 8.4
is proved.

We use Lemmata 8.3 and 8.4 as well as inequality (8.16) to obtain that
Jj+2

WE cmNal{ZHAx“) o]+ Z“AXv(k)l I}

g iy Z Eris
=0

where 7 =0, 1, ..., m—2 and the numbers ¢, j and d, j do not depend on N .

(8.25)
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If we now assume that (8.19) holds for n < k —1, then equation (8.25) implies

a (8.19) for n =k and for k¥ < m —1. Using (8.22) and (8.23) we obtain equation
It) (8.20). Theorem 8.2 is proved.

r Corollary 8.1

3 Let the manifold M,, have the form (8.7) with h(p, p)=h, (p, D) and

I(p, p)=1,p, p). We also assume that U(t)= (u(t); u(t)), where u(t)
is the solution to problem (0.1) from the class L,, p. Then

dist (UL M,) < C oy E . n=0,1,2.m-1.

D(A)x DAL/2)
Thus, the thickness of the layer that attracts the trajectories in the phase space has

the power order with respect to kN +1 unlike the semilinear parabolic equations
of Section 6.

Example 81

Let us consider the nonlinear wave equation (8.5). Let d = dimQ < 2. We as-
sume the following (cf. [18]) about the function g (s):
S

lim s—l"-g(c)dc >0;

|s| = o0

there exists C; > 0 such that

|s| = o0

S
lim s~1 sg(s)—CIJ.g(G)dG >0;
0

for any m there exists 3(m) > 0 such that
lgtm)(s) < Cy(1+s|PUm)). (8.26)

Under these assumptions the solution u(t) lies in L,, p for R >0 large
enough if and only if the initial data satisfy some compatibility conditions [18].
Moreover, the global attractor 4 of system (8.5) exists and any trajectory lying
in A possesses properties (8.4) forallt e R and k =1, 2, ..., [18]. It is easy
to see that Theorem 8.2 is applicable here (the form of A, B(-) and H is evi-
dent in this case). In particular, Theorem 8.2 gives us that for a trajectory
U(t) = (u(t); 8,u()) of problem (8.5) which lies in the global attractor 4 the
estimate

. . 1/2
{\\Aaz(u@) —u, ()7 +]A4120] (0,u(t) —anu»uz} < Cppi N

holds for all »=1, 2, ..., all j=1, 2, ..., and all ¢t € R. Here %,(t) and
u,,(t) are defined with the help of (8.18). Therewith
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sup{dist(U, M,,): Ue A} <c, 02, n=1,2, .., (8.27)

where M, is a manifold of the type (8.7) with & = h,,(p, p) and l = I (p, D).
Here dist(U, M,,) is the distance between U and M, in the space
D(A) x D(AY2). Equation (8.27) gives us some information on the location of
the global attractor in the phase space.

Other examples of usage of the construction given here can be found in papers [17]
and [19] (see also Section 9 of Chapter 4).

§ 9 Idea of Nonlinear Galerkin Method

Approximate inertial manifolds have proved to be applicable to the computational
study of the asymptotic behaviour of infinite-dimensional dissipative dynamical sys-
tems (for example, see the discussion and the references in [8]). Their usage leads
to the appearance of the so-called nonlinear Galerkin method [20] based on the re-
placement of the original problem by its approximate inertial form. In this section we
discuss the main features of this method using the following example of a second or-
der in time equation of type (8.1):

d2u
d2

_ du|  _
+Ydt+Au B(u), ul,_,= g, -agtzo—ul. 9.1

If all conditions on A and B(-) given in the previous section are fulfilled, then
Theorem 8.2 is valid. It guarantees the existence of a family of mappings {hk; lk}
from PH x PH into QH possessing the properties:

1) there exist constants Mj = Mj(n, p) and Lj = Lj(n, p), j=1, 2, such

that

|AR, (Do, Do) < My, ”Al/z Ly(Po, @O)H < Mye, 9.2)
|A(R,, (0, 1) =Ry (g, D2))| < L1(||A(p1 —py)| +[AY2 (24 —I'Jz)”), 93

|42 (1, (b1, B1) ~L(pey 52| < Li(JAGy ~po)| +]4Y2 (51 ~o)] ) O
for all D; and pj from PH such that
[Apf? + a2 < p2,  j=0,1, p>0;

2) for any solution %(t) to problem (9.1) whichliesin L,, , for m > 2 the es-
timate
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{”A(u(t)—un +[Av2 (0, u(t) —a, (1)) } <O, pins 95

~ 0 =T o

is valid (see Theorem 8.2) for all 7 < m —1 and ¢ large enough. Here
3 wu,,(t) = p(t) +h,(0(1), 0,0(1))
(1) = 0,p(t) +1,(p(1), 2,p(1))

Ay 41 isthe (N+1)-th eigenvalue of A, and R is the constant from (8.4).

(9.6)

The family {hk; lk} is defined with the help of a quite simple procedure (see (8.8)
and (8.9)) which can be reduced to the process of solving of stationary equations of
the type Av = g in the subspace QH . Moreover,

ho(p, B) = lo(p, P) =0,  hy(p, P)=ATTQB(p), Ii(p,p)=0. (9D

In particular, estimates (9.5) and (9.6) mean (see Corollary 8.1) that trajectories
U(t) = (u(t); 0,u(t)) of system (9.1) are attracted by a small (for N large enough)
vicinity of the manifold

M, ={(p+h,(p, D) p+l,(p, p)): p, pePH}. (9.8)

The sequence of mappings {%, (p, p)} generates a family of approximate inertial
forms of problem (9.1):

*p+y0,p+Ap =PB(p+h,(p, 8,p)). (9.9)

A finite-dimensional dynamical system in PH which approximates (in some sense)
the original system corresponds to each form. For » = 0 equation (9.9) transforms
into the standard Galerkin approximation of problem (9.1) (due to (9.7)).If » > 0,
then we obtain a class of numerical methods which can be naturally called the non-
linear Galerkin methods. However, we cannot use equation (9.9) in the computa-
tional study directly. The point is that, first, in the calculation of hn(p, 1{)) we have
to solve a linear equation in the infinite-dimensional space @H and, second, we can
lose the dissipativity property. Therefore, we need additional regularization. It can
be done as follows. Assume that fn(p, p) stands for one of the functions hn(p, 1'9)
or I, (p, p). We define the value

1/2
F30:B) = f g, (02 1) = 2 (B7(1401 + 1AV2512) )Py s, (0. )., 9.10)

where y (s) is an infinitely differentiable function on IR, such that a) 0 < x(s)<1,
b) x(s)=1for 0 <s<1; c)y(s)=0 fors>2; R is the radius of dissipativity
(see (8.4) for k = 0) of system (9.1); Py, is the orthoprojector in H onto the sub-
space generated by the first M eigenvectors of the operator A, M > N . We consider
the following N -dimensional evolutionary equation in the subspace By H :
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8]:2p*+y85p*+Ap* = PyB(p* + R, (p*, 6,p%)),
(9.11)
D

i

roo = Entos 0P|, _ o= Enuy -

Exercise 9.1 Prove that problem (9.11) has a unique solution for ¢ > 0 and
the corresponding dynamical system is dissipative in By H x P H .

We call problem (9.11) a nonlinear Galerkin (n, N, M)-approximation of problem
(9.1). The following assertion is valid.
Theorem 9.1.

Assume that the mappings h,(p,p) and |, (p,P) satisfy equations
(9.2)-(9.5) for n < m—1 and for some m > 2. Moreover, we assume that
(9.5) is valid for all t > 0. Let h; and l; be defined by (9.10) with the help
of h,, and l, and let

uy, (1) = p*(t) + 12, (p"(¢), 9,p"(t)),
uy(t) = 0,0*(t) +1,(v*(t), 8,p"(1)),

where p*(t) is a solution to problem (9.11). Then the estimate

12 <
{“Al/Z(u(t) —u () +[0,u(t) —7/7;2('?)”2} i

< (o 21+ ay 2 L) exo(Br) ©.12)

holds, where wu(t) is a solution to problem (9.1) which lies in L,, p for
m > 2 and possesses property (8.4) for k=1 and for all t > 0. Here n <
<m-1, oy, oy and B are positive constants independent of M and N,
kk 18 the k -th eigenvalue of the operator A.

Proof.
Let p(t) = Pyu(t). We consider the values

u(t) —uy,(t) = p(t) =p*(t) + [Quu(t) =, (p (1), 8,p(1))]+
+[1,(0(2), 8,0(8)) =15, (p7(2), 0,0°(1))]

and
oyu(t) =1, (1) = 8, (p(1) —p"(1)) +[@ 0y u(t) =1, (p(2), 0, p(1))] +
+ [, (2 (1), 8y (1)) =1, (p"(1). 8,p"(1))] -

The equalities
By (p(1), 6,0(1)) = Ry (p(1), 0,0(1))
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and
Pyl (p(1), 0,p(t)) = L,,(p(t), 0,p(1))

are valid for the class of solutions under consideration. Therefore, we use (9.5) to
find that

V2 ws) (1) <

C C
< ¢y (142 (o (1)~ () + 6,0 (1) ~0,0°(0)] )+ 2 + (nﬁ’ff/z (9.13)
AM+1 kN+1

and
[0, u(t) —2,u;,(1)] <

< 0, (12 (6 (0) - )+ oup(0) -0 (D)) + o s

|) }\‘1/2 }\%7;;31)/2 ’

9.14)

Therefore, we must compare the solution p*(¢) to problem (9.11) with the value
p(t) = Pyu(t) which satisfies the equation

Zp+y0,p+Ap = QuyB(p +Qyu) (9.15)

with the same initial conditions as the function p*(¢). Let »(¢) = p(t) —p*(¢). Then
it follows from (9.11) and (9.15) that

Zr(t)+yo,r(t)+Ar(t) = F(t, p*, u),
r(0)=0, 0,7(0)=0,

9.16)

where
F(t, p% u) = Qu[B(u(t)) =B(w,(1))] -
Due to the dissipativity of problems (9.11) and (9.15) we use (9.13) to obtain
U212 e g2 )2 (0 +1)/2 | ny=172
172, o5 w)ll < Cp{lAV2r(0)]* + 17 (0)l +C, AN T O

for the class of solutions under consideration. Therefore, equation (9.16) implies
that

. — . — _ 1 _
L8 (12 + 142 (o)) < ol @1 + 141202+ Ty g 230 + €Oy
Hence, Gronwall’s lemma gives us that
I ()1 + 142 (O < (€, p AT +Chyfhy) eR

This and equations (9.13) and (9.14) imply estimate (9.12). Theorem 9.1 is proved.

If we take n = 0 and N = M in Theorem 9.1, then estimate (9.12) changes into the
accuracy estimate of the standard Galerkin method of the order N . Therefore, if the
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parameters N, M , and n are compatible such that A M1 S kﬁ,i 11 , then the error of

the corresponding nonlinear Galerkin method has the same order of smallness as in
the standard Galerkin method which uses M basis functions. However, if we use the
nonlinear method, we have to solve a number of linear algebraic systems of the order
M —N and the Cauchy problem for system (9.11) which consists of N equations.
In particular, in order to determine the value hl(p, ») we must solve the equation

Ahy(p, D)= (B —Fy)QB(p)

for n = 1 and choose the numbers N and M such that kM 41 S k]%, +1 - Moreover,
if A, =cyk®(1+0(1)), 6 >0,as k— co,then the values N and M must be com-
patible such that M < ¢ N2,

We note that Theorem 9.1 as well as the corresponding variant of the nonlinear
Galerkin method can be used in the study of the asymptotic properties of solutions
to the nonlinear wave equation (8.5) under some conditions on the nonlinear term
g(u) . Other applications of Theorem 9.1 can also be pointed out.
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